Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.
Article
CAS
PubMed
Google Scholar
Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11(9):639–47.
Article
CAS
PubMed
Google Scholar
Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.
Article
CAS
PubMed
Google Scholar
Douglas A. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23(1):38–47.
Article
Google Scholar
Morimoto J, Simpson SJ, Ponton F. Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster. Biol Lett. 2017;13(7):20160966.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lize A, McKay R, Lewis Z. Kin recognition in Drosophila: the importance of ecology and gut microbiota. The ISME J. 2014;8(2):469–77.
Article
PubMed
Google Scholar
Damodaram KJP, Ayyasamy A, Kempraj V. Commensal bacteria aid mate-selection in the fruit fly, Bactrocera dorsalis. Microb Ecol. 2016;72(3):725–9.
Article
PubMed
Google Scholar
Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MD, Ribeiro C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 2017;15(4):e2000862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wong AC-N, Wang Q-P, Morimoto J, Senior AM, Lihoreau M, Neely GG, Simpson SJ, Ponton F: Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Biol 2017, 27(15):2397–2404. e2394.
Article
PubMed
CAS
Google Scholar
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. P Natl Acad Sci USA. 2010.
Leftwich PT, Clarke NV, Hutchings MI, Chapman T. Gut microbiomes and reproductive isolation in Drosophila. Proc Natl Acad Sci U S A. 2017:201708345.
Zhao Y, Wang W, Zhu F, Wang X, Wang X, Lei C. The gut microbiota in larvae of the housefly Musca domestica and their horizontal transfer through feeding. AMB Express. 2017;7(1):147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One. 2012;7(7):e36978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 2014;14(1):136.
Article
PubMed
PubMed Central
Google Scholar
Ben-Yosef M, Jurkevitch E, Yuval B. Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol. 2008;33(2):145–54.
Article
Google Scholar
Drew R, Lloyd A. Bacteria associated with fruit flies and their host plants. Fruit flies, their biology, natural enemies and control. 1989;3:131–40.
Google Scholar
Ruokolainen L, Ikonen S, Makkonen H, Hanski I. Larval growth rate is associated with the composition of the gut microbiota in the Glanville fritillary butterfly. Oecologia. 2016;181(3):895–903.
Article
CAS
PubMed
Google Scholar
Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23(11):2727–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, Ulissi U, Crotti E, Daffonchio D, Bandi C. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012;12(1):S2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dale C, Moran NA. Molecular interactions between bacterial symbionts and their hosts. Cell. 2006;126(3):453–65.
Article
CAS
PubMed
Google Scholar
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8(3):218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 2011;7(9):e1002272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11(8):e1001631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drew R, Courtice A, Teakle D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia. 1983;60(3):279–84.
Article
CAS
PubMed
Google Scholar
Erkosar B, Storelli G, Defaye A, Leulier F. Host-intestinal microbiota mutualism: “learning on the Fly”. Cell Host Microbe. 2013;13(1):8–14.
Article
CAS
PubMed
Google Scholar
Petri L: Ricerche sopra i batteri intestinali della mosca olearia. Roma: Memorie della Regia Stazione di Patologia Vegetale di Roma 1909.
Douglas A. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43(1):17–37.
Article
CAS
PubMed
Google Scholar
Capuzzo C, Firrao G, Mazzon L, Squartini A. Girolami V: ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol. 2005;55(4):1641–7.
Article
CAS
PubMed
Google Scholar
Fitt GP, O'Brien R. Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecologia. 1985;67(3):447–54.
Article
PubMed
Google Scholar
Smith DC, Douglas AE: The biology of symbiosis: Edward Arnold (Publishers) Ltd.; 1987.
Blum JE, Fischer CN, Miles J, Handelsman J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio. 2013;4(6):e00860–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Broderick NA, Raffa KF, Goodman RM, Handelsman J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol. 2004;70(1):293–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 2012;3(4):307–21.
Article
PubMed
PubMed Central
Google Scholar
Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One. 2013;8(8):e70749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol. 2009;75(10):3281–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drew R, Lloyd A. Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am. 1987;80(5):629–36.
Article
Google Scholar
Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol. 2008;54(9):1377–83.
Article
CAS
PubMed
Google Scholar
Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly–bacteria interactions. Mol Ecol. 2008;17(5):1375–86.
Article
CAS
PubMed
Google Scholar
Stammer H-J. Die bakteriensymbiose der trypetiden (Diptera). Z Morphol Okol Tiere. 1929;15(3):481–523.
Article
Google Scholar
Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 2011;334(6056):670–4.
Article
CAS
PubMed
Google Scholar
Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14(3):403–14.
Article
CAS
PubMed
Google Scholar
Piper AM, Farnier K, Linder T, Speight R, Cunningham JP. Two gut-associated yeasts in a Tephritid fruit fly have contrasting effects on adult attraction and larval survival. J Chem Ecol. 2017;43(9):891–901.
Article
CAS
PubMed
Google Scholar
Kuzina LV, Peloquin JJ, Vacek DC, Miller TA. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol. 2001;42(4):290–4.
CAS
PubMed
Google Scholar
Daser U, Brandl R. Microbial gut floras of eight species of tephritids. Biol J Linn Soc. 1992;45(2):155–65.
Article
Google Scholar
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive fly larvae to overcome host defences. R Soc Open Sci. 2015;2(7):150170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaspi R, Mossinson S, Drezner T, Kamensky B, Yuval B. Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiol Entomol. 2002;27(1):29–38.
Article
Google Scholar
Kyritsis GA, Augustinos AA, Cáceres C, Bourtzis K. Medfly gut microbiota and enhancement of the sterile insect technique: similarities and differences of Klebsiella oxytoca and Enterobacter sp. AA26 probiotics during the larval and adult stages of the VIENNA 8D53+ genetic sexing strain. Front Microbiol. 2017;8:2064.
Article
PubMed
PubMed Central
Google Scholar
Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AM, Cáceres C, Bourtzis K. Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter sp. in larval diet-based probiotic applications. PloS One. 2015;10(9):e0136459.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hamden H, Guerfali MMS, Fadhl S, Saidi M, Chevrier C. Fitness improvement of mass-reared sterile males of Ceratitis capitata (Vienna 8 strain)(Diptera: Tephritidae) after gut enrichment with probiotics. J Econ Entomol. 2013;106(2):641–7.
Article
CAS
PubMed
Google Scholar
Vijaysegaran S, Walter G, Drew R. Mouthpart structure, feeding mechanisms, and natural food sources of adult Bactrocera (Diptera: Tephritidae). Ann Entomol Soc Am. 1997;90(2):184–201.
Article
Google Scholar
Moadeli T, Taylor PW, Ponton F. High productivity gel diets for rearing of Queensland fruit fly. J Pest Sci. 2017;2(90):507–20.
Article
Google Scholar
Koyle ML, Veloz M, Judd AM, Wong AC-N, Newell PD, Douglas AE, Chaston JM. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. JoVE (J Vis Exp). 2016;113:e54219.
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.r-project.org/ 2017.Accession date: 01-Jan-2017.
Wickham H: ggplot2: elegant graphics for data analysis. 2009.
Ripley BD. Modern applied statistics with S: springer; 2002.
Google Scholar
Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One. 2014;9(4):e95056.
Article
PubMed
PubMed Central
CAS
Google Scholar
Drew R. Amino acid increases in fruit infested by fruit flies of the family Tephritidae. Zool J Linnean Soc. 1988;93(2):107–12.
Article
Google Scholar
Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, Rossmann P, Hrnčíř T, Kverka M, Zákostelská Z. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dubos RJ, Schaedler RW. The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med. 1960;111(3):407–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9(4):e1003318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khaeso K, Andongma AA, Akami M, Souliyanonh B, Zhu J, Krutmuang P, Niu C-Y. Assessing the effects of gut bacteria manipulation on the development of the oriental fruit fly, Bactrocera dorsalis (Diptera; Tephritidae). Symbiosis. 2018;74(2):97–105.
Article
Google Scholar
Heys C, Lizé A, Blow F, White L, Darby A, Lewis ZJ. The effect of gut microbiota elimination in Drosophila melanogaster: a how-to guide for host–microbiota studies. Ecol Evol. 2018.
Meats A, Streamer K, Gilchrist A. Bacteria as food had no effect on fecundity during domestication of the fruit fly Bactrocera tryoni. J Appl Entomol. 2009;133(8):633–9.
Article
Google Scholar