Lu C, Sun X, Li N, Wang W, Kuang D, Tong P, Han Y, Dai J. CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (Albany NY). 2018;10(4):833–52.
Article
CAS
Google Scholar
Petry HM, Bickford ME. The second visual system of the tree shrew. J Comp Neurol. 2018;527(3):679-93.
Article
PubMed
Google Scholar
Xiao J, Liu R, Chen CS. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zool Res. 2017;38(3):127–37.
Article
PubMed
PubMed Central
Google Scholar
Ye L, He M, Huang Y, Zhao G, Lei Y, Zhou Y, Chen X. Tree shrew as a new animal model for the study of lung cancer. Oncol Lett. 2016;11(3):2091–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Y, Feng YM, Lu C, Han Y, Liu L, Sun X, Dai J, Xia X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J Gen Virol. 2017;98(8):2069–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Yi X, Du L, Wang H, Tang J, Wang M, Qi C, Li H, Lai Y, Xia W, et al. A study of Epstein-Barr virus infection in the Chinese tree shrew (Tupaia belangeri chinensis). Virol J. 2017;14(1):193.
Article
PubMed
PubMed Central
Google Scholar
Hu YD, Zhao Q, Zhang XR, Xiong LL, Zhang ZB, Zhang P, Zhang RP, Wang TH. Comparison of the properties of neural stem cells of the hippocampus in the tree shrew and rat in vitro. Mol Med Rep. 2018;17(4):5676–83.
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Chang Q, Zhang Y, Zou X, Chen L, Zhang L, Lv L, Liang B. Relationships between body weight, fasting blood glucose concentration, sex and age in tree shrews (Tupaia belangeri chinensis). J Anim Physiol Anim Nutr (Berl). 2013;97(6):1179–88.
Article
CAS
Google Scholar
Fang H, Sun YJ, Lv YH, Ni RJ, Shu YM, Feng XY, Wang Y, Shan QH, Zu YN, Zhou JN. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Sci Rep. 2016;6:24905.
Article
PubMed
PubMed Central
Google Scholar
Fuchs E, Flugge G, Ohl F, Lucassen P, Vollmann-Honsdorf GK, Michaelis T. Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus. Physiol Behav. 2001;73(3):285–91.
Article
CAS
PubMed
Google Scholar
Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, et al. Genome of the Chinese tree shrew. Nat Commun. 2013;4:1426.
Article
PubMed
Google Scholar
Wu M, Kuang DX, Huang YQ, Miao YR, Liu XC, Dai JJ. Age-related changes of corneal endothelial cell in healthy Chinese tree shrew measured by non-contact specular microscope. Int J Ophthalmol. 2017;10(12):1798–804.
PubMed
PubMed Central
Google Scholar
Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics. 2012;39(3):131–7.
Article
CAS
PubMed
Google Scholar
Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O'Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. MBio. 2018;9(5):1-14.
Sharpton TJ. Role of the gut microbiome in vertebrate evolution. mSystems. 2018;3(2):1-5.
Article
PubMed
PubMed Central
Google Scholar
Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.
Article
CAS
PubMed
Google Scholar
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.
Article
CAS
PubMed
Google Scholar
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am J Phys Anthropol. 2014;155(4):652–64.
Article
PubMed
Google Scholar
Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ Microbiol. 2016;18(5):1312–25.
Article
PubMed
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silue N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome. 2018;29(7–8):558–76.
Article
CAS
PubMed
Google Scholar
Li R, Xu W, Wang Z, Liang B, Wu JR, Zeng R. Proteomic characteristics of the liver and skeletal muscle in the Chinese tree shrew (Tupaia belangeri chinensis). Protein Cell. 2012;3(9):691–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veit J, Bhattacharyya A, Kretz R, Rainer G. On the relation between receptive field structure and stimulus selectivity in the tree shrew primary visual cortex. Cereb Cortex. 2014;24(10):2761–71.
Article
PubMed
Google Scholar
Yao YG. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)? Zool Res. 2017;38(3):118–26.
Article
PubMed
PubMed Central
Google Scholar
Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, Knight R, Leigh S, Stumpf R, Wolf T, et al. The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol. 2018;80(6):e22867.
Article
PubMed
Google Scholar
Costello EK, Gordon JI, Secor SM, Knight R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 2010;4(11):1375–85.
Article
CAS
PubMed
Google Scholar
Liao F, Gu W, Li D, Liang J, Fu X, Xu W, Duan R, Wang X, Jing H, Dai J. Characteristics of microbial communities and intestinal pathogenic bacteria for migrated Larus ridibundus in Southwest China. Microbiologyopen. 2018;8(4):e00693.
Article
PubMed
PubMed Central
Google Scholar
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.
Article
PubMed
PubMed Central
Google Scholar
Goto K, Ohashi H, Takakura A, Itoh T. Current status of helicobacter contamination of laboratory mice, rats, gerbils, and house musk shrews in Japan. Curr Microbiol. 2000;41(3):161–6.
Article
CAS
PubMed
Google Scholar
Whary MT, Fox JG. Detection, eradication, and research implications of helicobacter infections in laboratory rodents. Lab Anim (NY). 2006;35(7):25–27, 30–26.
Article
Google Scholar
Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.
Article
PubMed
PubMed Central
Google Scholar
Gordon DM, FitzGibbon F. The distribution of enteric bacteria from Australian mammals: host and geographical effects. Microbiology. 1999;145(Pt 10):2663–71.
Article
CAS
PubMed
Google Scholar
Drzewiecka D. Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol. 2016;72(4):741–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.
Article
CAS
PubMed
Google Scholar
Cao Y, Zheng X, Li F, Bo X. mmnet: an R package for metagenomics systems biology analysis. Biomed Res Int. 2015;2015:167249.
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.
CAS
PubMed
Google Scholar
Wilkinson TJ, Huws SA, Edwards JE, Kingston-Smith AH, Siu-Ting K, Hughes M, Rubino F, Friedersdorff M, Creevey CJ. CowPI: a rumen microbiome focussed version of the PICRUSt functional inference software. Front Microbiol. 2018;9:1095.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Cui Z, Jin D, Tang L, Xia S, Wang H, Xiao Y, Qiu H, Hao Q, Kan B, et al. Distribution of pathogenic Yersinia enterocolitica in China. Eur J Clin Microbiol Infect Dis. 2009;28(10):1237–44.
Article
CAS
PubMed
Google Scholar
Guo Y, Zhou H, Qin L, Pang Z, Qin T, Ren H, Pan Z, Zhou J. Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One. 2016;11(4):e0153561.
Article
PubMed
PubMed Central
Google Scholar
Adesoji AT, Ogunjobi AA, Olatoye IO, Call DR. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. Ann Clin Microbiol Antimicrob. 2015;14:35.
Article
PubMed
PubMed Central
Google Scholar
Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51 table of contents.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996;40(11):2562–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teng LJ, Hsueh PR, Ho SW, Luh KT. High prevalence of inducible erythromycin resistance among Streptococcus bovis isolates in Taiwan. Antimicrob Agents Chemother. 2001;45(12):3362–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaller MA, Mujeeb I, Hollis RJ, Jones RN, Doern GV. Evaluation of the discriminatory powers of the dienes test and ribotyping as typing methods for Proteus mirabilis. J Clin Microbiol. 2000;38(3):1077–80.
CAS
PubMed
PubMed Central
Google Scholar
Zhang SX, Zhou YM, Tian LG, Chen JX, Tinoco-Torres R, Serrano E, Li SZ, Chen SH, Ai L, Chen JH, et al. Antibiotic resistance and molecular characterization of diarrheagenic Escherichia coli and non-typhoidal Salmonella strains isolated from infections in Southwest China. Infect Dis Poverty. 2018;7(1):53.
Article
PubMed
PubMed Central
Google Scholar