Thomas GM, Poinar GO. Xenorhabdus gen. Nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol. 1979;29:352–60.
Article
Google Scholar
Poinar GO. Biology and taxonomy of Steinernematidae and Heterorhabtididae. In: Gaugler R, Kaya HK, editors. Entomopathogenic nematodes in biological control. Boca Raton: USA: CRC Press; 1990. p. 365.
Google Scholar
Gotz P, Boman A, Boman HG. Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proc R Soc B Biol Sci. 1981;212:333–50.
Article
Google Scholar
Dunphy GB, Webster JM. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum nonimmune larvae of Galleria mellonella. J Invertebr Pathol. 1991;58:40–51.
Article
Google Scholar
Yang J, Zeng H-M, Lin H-F, Yang X-F, Liu Z, Guo L-H, Yuan J-J, Qiu D-W. An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J Invertebr Pathol. 2012;110:60–7.
Article
CAS
Google Scholar
Burman M. Neoaplectana carpocapsae: toxin production by axenic insect parasitic nematodes. Nematologica. 1982;28:62–70.
Article
CAS
Google Scholar
Webster JM, Chen G, Hu K, Li J. Bacterial metabolites. In: Gaugler R, editor. Entomopathogenic nematology. New York: CAB International; 2002. p. 99–114.
Chapter
Google Scholar
Dutky SR. Insect microbiology. Adv Appl Microbiol. 1959;1:175–200.
Article
CAS
Google Scholar
Paul VJ, Frautschy S, Fenical W, Nealson KH. Antibiotics in microbial ecology. J Chem Ecol. 1981;7:589–97.
Article
CAS
Google Scholar
McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP. Biologically active metabolites from Xenorhabdus spp., part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod. 1991;54:785–95.
Article
CAS
Google Scholar
Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF. Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod. 2008;71:1074–7.
Article
CAS
Google Scholar
McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DRJ, Engelhardt LM, White AH. Biologically active metabolites from Xenorhabdus spp., part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod. 1991;54:774–84.
Article
CAS
Google Scholar
Sundar L, Chang FN. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus. J Gen Microbiol. 1993;139:3139–48.
Article
CAS
Google Scholar
Zhou Q, Grundmann F, Kaiser M, Schiell M, Gaudriault S, Batzer A, Kurz M, Bode HB. Structure and biosynthesis of xenoamicins from entomopathogenic Xenorhabdus. Chem - A Eur J. 2013;19:16772–9.
Article
CAS
Google Scholar
Böszörményi E, Érsek T, Fodor AM, Fodor AM, Földes LS, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormány A, Pekár S, Szentirmai A, Sztaricskai F, Taylor RAJ. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol. 2009;107:746–59.
Article
Google Scholar
Gualtieri M, Aumelas A, Thaler J-O. Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot (Tokyo). 2009;62:295–302.
Article
CAS
Google Scholar
Kronenwerth M, Bozhüyük KAJ, Kahnt AS, Steinhilber D, Gaudriault S, Kaiser M, Bode HB. Characterisation of taxlllaids A-G; natural products from Xenorhabdus indica. Chem - A Eur J. 2014;20:17478–87.
Article
CAS
Google Scholar
Grundmann F, Kaiser M, Kurz M, Schiell M, Batzer A, Bode HB. Structure determination of the bioactive depsipeptide xenobactin from Xenorhabdus sp. PB30.3. RSC Adv. 2013;3:22072–7.
Article
CAS
Google Scholar
Nollmann FI, Dowling A, Kaiser M, Deckmann K, Grösch S, Ffrench-Constant R, Bode HB. Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum. Beilstein J Org Chem. 2012;8:528–33.
Article
CAS
Google Scholar
Reimer D, Cowles KN, Proschak A, Nollmann FI, Dowling AJ, Kaiser M, French-Constant R, Goodrich-Blair H, Bode HB. Rhabdopeptides as insect-specific virulence factors from entomopathogenic bacteria. ChemBioChem. 2013;14:1991–7.
Article
CAS
Google Scholar
Houard J, Aumelas A, Noël T, Pages S, Givaudan A, Fitton-Ouhabi V, Villain-Guillot P, Gualtieri M. Cabanillasin, a new antifungal metabolite, produced by entomopathogenic Xenorhabdus cabanillasii JM26. J Antibiot (Tokyo). 2013;66:617–20.
Article
CAS
Google Scholar
Singh J, Banerjee N. Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila. J Bacteriol. 2008;190:3877–85.
Article
CAS
Google Scholar
Thaler JO, Baghdiguian S, Boemare N. Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl Environ Microbiol. 1995;61:2049–52.
CAS
PubMed
PubMed Central
Google Scholar
Boemare NE, Boyer-Giglio MH, Thaler JO, Akhurst RJ, Brehelin M. Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Appl Environ Microbiol. 1992;58:3032–7.
CAS
PubMed
PubMed Central
Google Scholar
Fuchs SW, Proschak A, Jaskolla TW, Karas M, Bode HB. Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. Org Biomol Chem. 2011;9:3130–2.
Article
CAS
Google Scholar
Malan AP, Knoetze R, Moore SD. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. J Invertebr Pathol. 2011;108:115–25.
Article
Google Scholar
de Waal JY, Malan AP, Addison MF. Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in temperate regions. Biocontrol Sci Tech. 2011;21:1161–76.
Article
Google Scholar
le Vieux PD, Malan AP. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). South African J Enol Vitic. 2013;34:296–306.
Google Scholar
Pillay U, Martin LA, Rutherford RS, Berry SD. Entomopathogenic nematodes in sugarcane in South Africa. Proc South African Sugar Technol Assoc. 2009;82:538–41.
Google Scholar
Malan AP, Manrakhan A. Susceptibility of the Mediterranean fruit fly (Ceratitis capitata) and the Natal fruit fly (Ceratitis rosa) to entomopathogenic nematodes. J Invertebr Pathol. 2009;100:47–9.
Article
Google Scholar
Webster JM, Li J, Chen G. Indole derivatives with antibacterial and antimycotic properties. US5569668A. 1995. Canada.
Gregson RP, McInerney B V. Xenocoumacins. EP0192713B1. 1991. Australia.
Webster JM, Li J, Chen G. Xenomins novel heterocyclic compounds with antimicrobial and antneoplastic properties. US5827872A. 1998. Canada.
Webster JM, Li J, Chen G. Heterocyclic compounds with antibacterial and antimycotic properties. US6316476B1. 2001. Canada.
Rhodes SH, Lyons GR, Gregson RP, Akhurst RJ, Lacey MJ. Xenorhabdin antibiotics. WO1984001775A1. 1984. Australia.
Gaultieri M, Villain-Guillot P, Givaudan A, Pages S. Cabanillasin, a new antifungal compound, produced by entomopathogenic Xenorhabdus cabanillasii. EP2468718A1. 2012. France.
Gaultieri M, Villain-Guillot P, Givaudan A, Pages S. Nemaucin, an antibiotic produced by entomopathogenic Xenorhabdus cabanillasii. WO2012085177 A1. 2012. France.
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH. AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43:W237–43.
Article
CAS
Google Scholar
Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014;158:412–21.
Article
CAS
Google Scholar
Rautenbach M, Vlok NM, Eyéghé-Bickong HA, Van der Merwe MJ, Stander MA. An electrospray mass spectrometry study on the "in vacuo" hetero-oligomers formed by the antimicrobial peptides, surfactin and gramicidin S. J Am Soc Mass Spectrom. 2017;28:1623–37.
Article
CAS
Google Scholar
Dreyer J, Malan AP, Dicks LMT. Three novel Xenorhabdus–Steinernema associations and evidence of strains of Xenorhabdus khoisanae switching between different clades. Current Microbiol. 2017;74:938–42.
Article
CAS
Google Scholar