Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70:461–77.
Article
CAS
PubMed
Google Scholar
Staniek A, Woerdenbag HJ, Kayser O. Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact. 2008;3:75–93.
Article
CAS
Google Scholar
Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev. 2012;11:487–505.
Article
CAS
Google Scholar
Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nature Rev Drug Discov. 2005;4:206–20.
Article
CAS
Google Scholar
Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new cancer agents. Chem Rev. 2009;109:3012–43.
Article
CAS
PubMed
Google Scholar
Jain SK. Ethnobotany and research in medicinal plants in India. CIBA Found Symp. 1994;185:153–64.
CAS
PubMed
Google Scholar
Russo A, Borrelli F. B. monnieri, a reputed nootropic plant: an overview. Phytomedicine. 2005;12:305–17.
Article
CAS
PubMed
Google Scholar
Jain P, Kulshreshtha DK. Bacoside A1, a minor saponin from B. monnieri. Phytochemistry. 1993;33:449–51.
Article
CAS
Google Scholar
Kapoor LD. CRC Handbook of Ayurvedic Medicinal Plants. Poca Raton: FL, CRC Press; 1990.
Google Scholar
Jain P, Khanna NK, Trehan N, Pendse VK, Godhwani JL. Antiinflammatory effects of an Ayurvedic preparation, Brahmi Rasayan, in rodents. Ind J Exp Biol. 1994;32:633–6.
CAS
Google Scholar
Sumathy T, Subramanian S, Govindasamy S, Balakrishna K, Veluchamy G. Protective role of B. monnieri on morphine induced hepatotoxicity in rats. Phtotherapy Res. 2001;15:643–5.
Article
CAS
Google Scholar
Sairam K, Dorababu M, Goel RK, Bhattacharya SK. Antidepressant activity of standardized extract of B. monnieri in experimental models of depression in rats. Phytomedicine. 2002;9:207–11.
Article
CAS
PubMed
Google Scholar
Woo SL, Ruocco M, Vinalle F, et al. Trichoderma- based products and their widespred use in agriculture. The open Mycology Journal. 2014;8:71–126.
Article
Google Scholar
Harman GE. Myths and dogmas of biocontrol: changes in perceptions derived from research on T. harzianum T-22. Plant Dis. 2000;84:377–93.
Article
CAS
PubMed
Google Scholar
Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 2003;87:4–10.
Article
CAS
PubMed
Google Scholar
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma spp. – opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56.
Article
CAS
PubMed
Google Scholar
Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, et al. Study of the three-way interaction between T. atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet. 2006;50:307–21.
Article
CAS
PubMed
Google Scholar
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma–plant–pathogen interactions. Soil Biol Biochem. 2008;40:1–10.
Article
CAS
Google Scholar
Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 2008;7:89–123.
Article
CAS
Google Scholar
Grondona I, Mr H, Tejada M, Md G, Pf M, Pd B, Monte E, Garcíaacha I. Physiological and biochemical characterization of T. harzianum, a biological control agent against soilborne fungal plant pathogens. Appl Environ Microbiol. 1997;63:3189–98.
CAS
PubMed
PubMed Central
Google Scholar
Harman GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathol. 2006;96:190–4.
Article
CAS
Google Scholar
Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M. Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun. 2012;7:1545–50.
CAS
PubMed
Google Scholar
Daniel JF, De S, Filho ER. Peptaibols of Trichoderma. Nat Prod Rep. 2007;24:1128–41.
Article
CAS
PubMed
Google Scholar
Rohrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Divers. 2014;69:117–46.
Article
PubMed
PubMed Central
Google Scholar
Berg A, Grigoriev PA, Degenkolb T, Neuhof T, Härtl A, Schlegel B, Grafe U. Isolation, structure elucidation and biological activities of trichofumins a, B, C and D, new 11 and 13mer peptaibols from Trichoderma sp. HKI 0276. J Peptide Sci. 2003;9:810–6.
Article
CAS
Google Scholar
Maddau L, Cabras A, Franceschini A, Linaldeddu BT, Crobu S, Roggio T, Pagnozzi D. Occurrence and characterization of peptaibols from T. citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Microbiology. 2009;165:3371–881.
Article
Google Scholar
Singh D, Sharma JP, Jaglan S, Dar AH, Khajuria A, Singh VP, Vishwakarma RA. Brachiatin d and process for production thereof; 2014. p. WO2015029069 A1.
Google Scholar
Yun BS, Yoo ID, Kim YH, Kim YS, Lee SJ, Kim KS, Yeo WH. Peptaivirins a and B, two new antiviral peptaibols against TMV infection. Tetrahedron Lett. 2000;41:1429–31.
Article
CAS
Google Scholar
Leclerc G, Goulard C, Prigent Y, Bodo B, Wróblewski H, Rebuffat S. Sequences and Antimycoplasmic properties of Longibrachins LGB II and LGB III, two novel 20-residue Peptaibols from Trichoderma longibrachiatum. J Nat Prod. 2001;64:164–70.
Article
CAS
PubMed
Google Scholar
Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvolgyi C. Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung. 2005;52:137–68.
Article
CAS
PubMed
Google Scholar
Degenkolb T, Grafenhan T, Nirenberg HI, Gams W, Brückner HT. brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem. 2006;54:7047–61.
Article
CAS
PubMed
Google Scholar
Viterbo ADA, Wiest ARIC, Brotman Y, Chet ILAN, Kenerley C. The 18mer peptaibols from T. virens elicit plant defence responses. Mol Plant Pathol. 2007;8:737–46.
Article
CAS
PubMed
Google Scholar
Iwatsuki M, Kinoshita Y, Niitsuma M, Hashida J, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Nonaka K, Masuma R, Otoguro K. Antitrypanosomal peptaibiotics, trichosporins B-VIIa and B-VIIb, produced by T. polysporum FKI-4452. J Antibiot. 2010;63:331–3.
Article
CAS
Google Scholar
Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res. 2002;106:996–1004.
Article
CAS
Google Scholar
Brotman Y, Kapuganti JG, Viterbo A. Trichoderma. Curr Biol. 2010;20:R390–1.
Article
CAS
PubMed
Google Scholar
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiology. 2007;153:3417–37.
Article
CAS
PubMed
Google Scholar
Neuhof T, Berg A, Besl H, Schwecke T, Dieckmann R, von Dohren H. Peptaibol production by Sepedonium strains parasitizing boletales. Chem Biodivers. 2007;4:1103–15.
Article
CAS
PubMed
Google Scholar
Ilina EN. Direct matrix-assisted laser desorption–ionisation (MALDI) mass-spectrometry bacteria profiling for identifying and characterizing pathogens. Acta Nature. 2009;1:115–20.
CAS
Google Scholar
Helmel M, Marchetti-Deschmann M, Raus M, Posch AE, Herwig C, Sebela M, Allmaier G. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes. Anal Biochem. 2015;470:25–33.
Article
CAS
PubMed
Google Scholar
Sharma R, Singh VP, Singh D, Yusuf F, Kumar A, Vishwakarma RA, Chaubey A. Optimization of nonribosomal peptides production by a psychrotrophic fungus: T. velutinum ACR-P1. Appl Microbiol Biotechnol. 2016;100:9091–102.
Article
CAS
PubMed
Google Scholar
Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67:491–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoch M, Salgotra A, Singh G. Endophytic fungi found in association with B. monnieri as resourceful producers of industrial enzymes and antimicrobial bioactive natural products. Braz Arch Biol Techn. 2014a;57:714–22.
Article
CAS
Google Scholar
Katoch M, Singh G, Sharma S, Gupta N, Sangwan PL, Saxena AK. Cytotoxic and antimicrobial activities of endophytic fungi isolated from B. monnieri (L.) Pennell (Scrophulariaceae). BMC Complem Altern M. 2014b;14:52.
Article
Google Scholar
Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol. 1985;1:17–20.
Article
CAS
Google Scholar
Katoch M, Paul A, Singh G, Sridhar SN. Fungal endophytes associated with Viola odorata Linn. As bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med. 2017;17:385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh G, Katoch A, Razak M, Kitchlu S, Goswami A, Katoch M. Bioactive and biocontrol potential of endophytic fungi associated with Brugmansia aurea Lagerh. FEMS Microbiol Lett. 2017;364:fnx194.
Google Scholar
Katoch M, Singh A, Singh G, et al. Phylogeny, antimicrobial, antioxidant and enzyme-producing potential of fungal endophytes found in V. odorata. Ann Microbiol. 2017;67:529–40.
Article
CAS
Google Scholar
White TJ, Bruns T, Lee SJWT, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols. San Diego: Academic press; 1990. p. 315–22.
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Druzhinina IS, Kopchinskiy AG, KomoÅ„ M, Bissett J, Szakacs G, et al. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol. 2005;42:813–28.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol. 2007;24:1596–9.
Article
CAS
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
CAS
PubMed
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.
Article
PubMed
Google Scholar
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:11030–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebuffat S, Prigent Y, Auvin-guette C, Bodo B. Tricholongins BI and BII, 19-residue peptaibols from T. longibrachiatum. Eur J Biochem. 1991;201:661–74.
Article
CAS
PubMed
Google Scholar
Mitova MI, Murphy AC, Lang G, Blunt JW, Cole AL, Ellis G, Munro MH. Evolving trends in the dereplication of natural product extracts. 2. The isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum. J Nat Prod. 2008;71:1600–3.
Article
CAS
PubMed
Google Scholar
Mourey A, Canillac N. Anti-listeria monocytogenes activity of essential oils components of conifers. Food Control. 2002;13:289–92.
Article
CAS
Google Scholar
Chaverri P, Rocha FB, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. Systematics of the T. harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia. 2015;107:558–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chugh JK, Wallace BA. Peptaibols: models for ion channels. Biochem Soc Trans. 2001;29:565–70.
Article
CAS
PubMed
Google Scholar
Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM. Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of T. virens. J Biol Chem. 2011;286:4544–54.
Article
CAS
PubMed
Google Scholar
Paranagama PA, Wijeratne EK, Gunatilaka AL. Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiversii (1). J Nat Prod. 2007;70:1939–45.
Article
CAS
PubMed
Google Scholar
Bode HB, Bethe B, Hofs R, Zeeck A. Big effects from small changes: possible ways to explore nature's chemical diversity. ChemBioChem. 2002;3:619–27.
Article
CAS
PubMed
Google Scholar
Mikkola R, Andersson MA, Kredics L, Grigoriev PA, Sundell N, Salkinoja-Salonen MS. 20-residue and 11-residue peptaibols from the fungus T. longibacterium are synergistic in forming Na+/K+ permeable channels and adverse action towards mammalian cells. FEBS J. 2012;279:4172–90.
Article
CAS
PubMed
Google Scholar
Ruiz N, Weilgosz CG, Grovel O, Petit KE, Benkada M, Mohamed DPTR, Bissett J, Verite P, Barnathan G, Pouchus YF. New trichobrachins, 11 residue peptaibols from a marine strain of T. longibrachiatum. Peptides. 2007;28:1351–8.
Article
CAS
PubMed
Google Scholar
Ishiyama D, Satou T, Senda H, Fujimaki T, Honda R, Kanazawa S. Heptaibin, a novel antifungal peptaibol antibiotic from Emericellopsis sp. BAUA8289. The J Antibiotics. 2000;53:728–32.
Article
CAS
Google Scholar