Team CW, Pachauri RK, Meyer LA. Climate change 2014: synthesis report. Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change. J Roman Stud. 2015;4:85–8.
Google Scholar
Moss AR, Jouany JP, Newbold J, Agabriel J, Givens I. Methane production by ruminants: its contribution to global warming. Ann Zootech. 2000;49(49):231–53.
Article
CAS
Google Scholar
Clark H. Nutritional and host effects on methanogenesis in the grazing ruminant. Animal. 2013;7:41–8.
Article
CAS
PubMed
Google Scholar
McAllister TA, Meale SJ, Valle E, Guan LL, Zhou M, Kelly WJ, Henderson G, Attwood GT, Janssen PH. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. J Anim Sci. 2015;93(4):1431–49.
Article
CAS
PubMed
Google Scholar
Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal. 2010;4(3):351–65.
Article
CAS
PubMed
Google Scholar
Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal. 2010;4(7):1024–36.
Article
CAS
PubMed
Google Scholar
Shibata M, Terada F. Factors affecting methane production and mitigation in ruminants. Anim Sci J. 2010;81(1):2–10.
Article
CAS
PubMed
Google Scholar
Kumar S, Puniya AK, Puniya M, Dagar SS, Sirohi SK, Singh K, Griffith GW. Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol. 2009;25(9):1557–66.
Article
Google Scholar
Kumar S, Choudhury PK, Carro MD, Griffith GW, Dagar SS, Puniya M, Calabro S, Ravella SR, Dhewa T, Upadhyay RC, Sirohi SK, Kundu SS, Wanapat M, Puniya AK. New aspects and strategies for methane mitigation from ruminants. Appl Microbiol Biotechnol. 2014;98(1):31–44.
Article
CAS
PubMed
Google Scholar
Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett. 1994;117:157–62.
Article
CAS
PubMed
Google Scholar
Hegarty RS. Reducing rumen methane emissions through elimination of rumen protozoa. Aust J Agric Res. 1999;50(8):1321–7.
Article
Google Scholar
Machmüller A, Soliva CR, Kreuzer M. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod Nutr Dev. 2003;43(1):41–55.
Article
PubMed
Google Scholar
Bird SH, Hegarty RS, Woodgate R. Persistence of defaunation effects on digestion and methane production in ewes. Aust J Exp Agric. 2008;48(2):152–5.
Article
CAS
Google Scholar
Hegarty RS, Bird SH, Vanselow BA, Woodgate R. Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br J Nutr. 2008;100(6):1220–7.
Article
CAS
PubMed
Google Scholar
Qiu J. China: the third pole. Nature. 2008;454(7203):393–6.
Article
CAS
PubMed
Google Scholar
Huang XD, Tan HY, Long R, Liang JB, Wright AD. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China. BMC Microbiol. 2012;12:237.
Article
PubMed
PubMed Central
Google Scholar
Ding XZ, Long RJ, Kreuzer M, Mi JD, Yang B. Methane emissions from yak (Bos grunniens) steers grazing or kept indoors and fed diets with varying forage: concentrate ratio during the cold season on the Qinghai-Tibetan plateau. Anim Feed Sci Technol. 2010;162(3–4):91–8.
Article
CAS
Google Scholar
Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, Wang W, Qiu Q, Huang X, Zhou J, Long R, Zhao F, Shi P. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;26(14):1873–9.
Article
CAS
PubMed
Google Scholar
Huang XD, Martinez-Fernandez G, Padmanabha J, Long R, Denman SE, McSweeney CS. Methanogen diversity in indigenous and introduced ruminant species on the Tibetan plateau. Archaea. 2016;2016:5916067.
Article
PubMed
PubMed Central
Google Scholar
Huang J, Li Y, Luo Y. Bacterial community in the rumen of Tibetan sheep and Gansu alpine fine-wool sheep grazing on the Qinghai-Tibetan plateau, China. J Gen Appl Microbiol. 2017;63(2):122–30.
Article
CAS
PubMed
Google Scholar
Wright AD, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD. Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol. 2004;70(3):1263–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karnati SK, Yu Z, Sylvester JT, Dehority BA, Morrison M, Firkins JL. Technical note: specific PCR amplification of protozoal 18S rDNA sequences from DNA extracted from ruminal samples of cows. J Anim Sci. 2003;81(3):812–5.
Article
CAS
PubMed
Google Scholar
Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71(2):491–9.
Article
CAS
PubMed
Google Scholar
Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol. 2006;72(9):5734–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, VanHorn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright AD, Northwood KS, Obispo NE. Rumen-like methanogens identified from the crop of the folivorous south American bird, the hoatzin (Opisthocomus hoazin). ISME J. 2009;3(10):1120–6.
Article
CAS
PubMed
Google Scholar
Felsenstein J. PHYLIP–phylogeny inference package (version 3.6). Cladistics. 1993;5:164–6.
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
St-Pierre B, Wright AD. Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos). BMC Microbiol. 2012;12:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
King EE, Smith RP, St-Pierre B, Wright AD. Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl Environ Microbiol. 2011;77(16):5682–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li ZP, Liu HL, Jin CA, Cui XZ, Jing Y, Yang FH, Li GY, Wright AD. Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China. Microb Ecol. 2013;66(4):879–88.
Article
PubMed
Google Scholar
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lwin KO, Matsui H. Comparative analysis of the methanogen diversity in horse and pony by using mcrA gene and archaeal 16s rRNA gene clone libraries. Archaea. 2014;2014:483574.
Article
PubMed
PubMed Central
Google Scholar
Daquiado AR, Cho KM, Kim TY, Kim SC, Chang HH, Lee YB. Methanogenic archaea diversity in Hanwoo (Bos taurus coreanae) rumen fluid, rectal dung, and barn floor manure using a culture-independent method based on mcrA gene sequences. Anaerobe. 2014;27:77–8.
Article
CAS
PubMed
Google Scholar
Xue D, Chen H, Zhao X, Xu S, Hu L, Xu T, Jiang L, Zhan W. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan plateau. Syst Appl Microbiol. 2017;40(4):227–36.
Article
PubMed
Google Scholar
Xue D, Chen H, Chen F, He Y, Zhao C, Zeng L, Li W. Analysis of the rumen bacteria and methanogenic archaea of yak (Bos grunniens) steers grazing on the Qinghai-Tibetan plateau. Livest Sci. 2016;188:61–7.
Article
Google Scholar
Tymensen LD, McAllister TA. Community structure analysis of methanogens associated with rumen protozoa reveals bias in universal archaeal primers. Appl Environ Microbiol. 2012;78(11):4051–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly WJ, Li D, Lambie SC, Jeyanathan J, Cox F, Li Y, Attwood GT, Altermann E, Leahy SC. Complete genome sequence of methanogenic archaeon ISO4-G1, a member of the methanomassiliicoccales, isolated from a sheep rumen. Genome Announc. 2016;4(2):e00221–16.
PubMed
PubMed Central
Google Scholar
Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O'Toole PW, Brugère JF. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics. 2014;15:679.
Article
PubMed
PubMed Central
Google Scholar
Danielsson R, Schnürer A, Arthurson V, Bertilsson J. Methanogenic population and CH4 production in swedish dairy cows fed different levels of forage. Appl Environ Microbiol. 2012;78(17):6172–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, CS P-P˜n, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 2014;24(9):1517–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin W, Cheng Y, Zhu W. The community structure of Methanomassiliicoccales in the rumen of Chinese goats and its response to a high-grain diet. J Anim Sci Biotechnol. 2017;8:47.
Article
PubMed
PubMed Central
Google Scholar
Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313.
Article
PubMed
PubMed Central
Google Scholar
Boadi D, Benchaar C, Chiquette J, Masse D. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci. 2004;84(3):319–35.
Article
Google Scholar
Liang GR, Tian FY, Xing DY, Yin ZL, Suo-Lang SZ. Preliminary classification and identification of Tibetan sheep rumen ciliate in Nyingchi. Gansu Anim Vet Sci. 2014;44(7):26–8.
Gui R. Rumen ciliate protozoal fauna and composition of the grazing sheep and effect of supplementary concentrated feed on them. Chin J Anim Vet Sci. 1992;23(4):372–9.
Guirong, Su NR, Hua ZX, Zhu S, Imai S. Rumen ciliated protozoan fauna of the yak (Bos grunniens) in China with the description of Entodinium monuo n. sp. J Eukaryot Microbiol. 2000;47(2):178–82.
Coleman GS, Laurie JI. The uptake and metabolism of glucose, maltose and starch by the rumen ciliate Epidinium ecaudatum caudatum. J Gen Microbiol. 1976;96(2):364–74.
Article
CAS
PubMed
Google Scholar
Mishima T, Katamoto H, Horii Y, Kakengi VA, Ito A. Rumen ciliates from Tanzanian short horn zebu cattle, Bos taurus indicus, and the infraciliature of Entodinium palmare n.sp. and Enoploplastron stokyi (Buisson, 1924). Eur J Protistol. 2009;45(2):77–86.
Guyader J, Eugène M, Nozière P, Morgavi DP, Doreau M, Martin C. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal. 2014;8(11):1816–25.
Article
CAS
PubMed
Google Scholar
Tymensen LD, Beauchemin KA, McAllister TA. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology. 2012;158:1808–17.
Article
CAS
PubMed
Google Scholar
Baraka TA. Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J Am Sci. 2012;8:448–62.
Google Scholar