Ahmaruzzaman M, Sharma DK. Adsorption of phenols from wastewater. J Colloid Interface Sci. 2005;287(1):14–24.
Article
PubMed
CAS
Google Scholar
Kahru A, Maloverjan A, Sillak H, Põllumaa L. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry. Environ Sci Pollut Res. 2002;9(1):27–33.
Article
Google Scholar
Autenrieth RL, Bonner JS, Akgerman A, Okaygun M, McCreary EM. Biodegradation of phenolic wastes. J Hazard Mater. 1991;28(1–2):29–53.
Article
CAS
Google Scholar
Kahru A, Põllumaa L, Reiman R, Rätsep A, Liiders M, Maloveryan A. The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: a test battery approach. Environ Toxicol. 2000;15(5):431–42.
Article
CAS
Google Scholar
Zhou S, Watanabe H, Wei C, Wang D, Zhou J, Tatarazako N, et al. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor. Ecotoxicol Environ Saf. 2015;115:217–22.
Article
PubMed
CAS
Google Scholar
Veeresh GS, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res. 2005;39(1):154–70.
Article
PubMed
CAS
Google Scholar
Vazquez I, Rodriguez J, Maranon E, Castrillon L, Fernandez Y. Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process. J Hazard Mater. 2006;137(3):1681–8.
Article
PubMed
CAS
Google Scholar
Hopper DJ, Kemp PD. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid. J Bacteriol. 1980;142(1):21–6.
PubMed
PubMed Central
CAS
Google Scholar
Viggor S, Heinaru E, Loponen J, Merimaa M, Tenno T, Heinaru A. Biodegradation of dimethylphenols by bacteria with different ring-cleavage pathways of phenolic compounds. Environ Sci Pollut Res Int. 2002;1:19–26.
Article
Google Scholar
Ng LC, Shingler V, Sze CC, Poh CL. Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene. 1994;151(1–2):29–36.
Article
PubMed
CAS
Google Scholar
Ewers J, Rubio MA, Knackmuss HJ, Freier-Schroder D. Bacterial metabolism of 2,6-xylenol. Appl Environ Microbiol. 1989;55(11):2904–8.
PubMed
PubMed Central
CAS
Google Scholar
Tomei MC, Annesini MC. Biodegradation of phenolic mixtures in a sequencing batch reactor. Environ Sci Pollut Res. 2008;15(3):188–95.
Article
CAS
Google Scholar
Jardinier N, Blake G, Mauchamp A, Merlin G. Design and performance of experimental constructed wetlands treating coke plant effluents. Water Sci Technol. 2001;44(11–12):485–91.
Article
PubMed
CAS
Google Scholar
Schultze-Nobre L, Wiessner A, Wang D, Bartsch C, Kappelmeyer U, Paschke H, et al. Removal of dimethylphenols from an artificial wastewater in a laboratory-scale wetland system planted with Juncus effusus. Ecol Engin. 2015;80:151–5.
Article
Google Scholar
Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ü. Constructed wetlands for wastewater treatment. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF, editors. Wetlands and natural resource management. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. p. 69–96.
Chapter
Google Scholar
Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, et al. Microbial processes influencing performance of treatment wetlands: a review. Ecol Engin. 2009;35(6):987–1004.
Article
Google Scholar
Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Evol Microbiol. 1999;49(Pt 2):567–76.
CAS
Google Scholar
Groenewegen PE, Breeuwer P, van Helvoort JM, Langenhoff AA, de Vries FP, de Bont JAM. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J Gen Microbiol. 1992;138(Pt 8):1599–605.
Article
PubMed
CAS
Google Scholar
Hoffmann D, Müller RH, Kiesel B, Babel W. Isolation and characterization of an alkaliphilic bacterium capable of growing on 2,4-dichlorophenoxyacetic acid and 4- chloro-2-methylphenoxyacetic acid. Acta Biotechnol. 1996;16(2–3):121–31.
Article
CAS
Google Scholar
Müller RH, Jorks S, Kleinsteuber S, Babel W. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res. 1999;154(3):241–6.
Article
PubMed
Google Scholar
Zhang C, Kang Q, Wang X, Zilles JL, Müller RH, Werth CJ. Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media. Environ Sci Technol. 2010;44(8):3085–92.
Article
PubMed
CAS
Google Scholar
González AJ, Gallego A, Gemini VL, Papalia M, Radice M, Gutkind G, et al. Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int Biodeter Biodegr. 2012;66(1):8–13.
Article
CAS
Google Scholar
Yilmaz F, Icgen B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environ Sci Pollut Res Int. 2014;21(12):7413–24.
Article
PubMed
CAS
Google Scholar
Vacca DJ, Bleam WF, Hickey WJ. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol. 2005;71(7):3797–805.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rosch V, Denger K, Schleheck D, Smits TH, Cook AM. Different bacterial strategies to degrade taurocholate. Arch Microbiol. 2008;190(1):11–8.
Article
PubMed
CAS
Google Scholar
Hollender J, Dott W, Hopp J. Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5. Appl Environ Microbiol. 1994;60(7):2330–8.
PubMed
PubMed Central
CAS
Google Scholar
Bae HS, Lee JM, Kim YB, Lee S-T. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation. 1996;7(6):463–9.
Article
PubMed
CAS
Google Scholar
Pieper DH, Stadler-Fritzsche K, Knackmuss H, Timmis KN. Formation of dimethylmuconolactones from dimethylphenols by Alcaligenes eutrophus JMP 134. Appl Environ Microbiol. 1995;61(6):2159–65.
PubMed
PubMed Central
CAS
Google Scholar
Bartilson M, Nordlund I, Shingler V. Location and organization of the dimethylphenol catabolic genes of Pseudomonas CF600. Mol Gen Genet. 1990;220(2):294–300.
Article
PubMed
CAS
Google Scholar
Ribbons DW. Specificity of monohydric phenol oxidations by meta cleavage pathways in Pseudomonas aeruginosa T1. Arch Microbiol. 1970;74(2):103–15.
CAS
Google Scholar
Shingler V, Franklin FC, Tsuda M, Holroyd D, Bagdasarian M. Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J Gen Microbiol. 1989;135(5):1083–92.
PubMed
CAS
Google Scholar
Hopper DJ, Chapman PJ. Gentisic acid and its 3- and 4-methyl-substituted homologues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Biochem J. 1971;122(1):19–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pieper DH, Engesser KH, Knackmuss HJ. (+)-4-Carboxymethyl-2,4-dimethylbut-2-en-4-olide as dead-end metabolite of 2,4-dimethylphenoxyacetic acid or 2,4-dimethylphenol by Alcaligenes eutrophus JMP 134. Arch Microbiol. 1990;154(6):600–4.
Article
CAS
Google Scholar
Chen YF, Chao H, Zhou NY. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl Microbiol Biotechnol. 2014;98(3):1349–56.
Article
PubMed
CAS
Google Scholar
Chao H-J, Chen Y-F, Fang T, Xu Y, Huang WE, Zhou N-Y. HipH catalyzes the hydroxylation of 4-hydroxyisophthalate to protocatechuate in 2,4-xylenol catabolism by Pseudomonas putida NCIMB 9866. Appl Environ Microbiol. 2016;82(2):724–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shingler V, Powlowski J, Marklund U. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol. 1992;174(3):711–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao Z, Huo F, Huang Y, Zhu X, Lu JR. A novel 2,3-xylenol-utilizing Pseudomonas isolate capable of degrading multiple phenolic compounds. Bioresour Technol. 2012;104:59–64.
Article
PubMed
CAS
Google Scholar
Martinez-Lavanchy PM, Chen Z, Lunsmann V, Marin-Cevada V, Vilchez-Vargas R, Pieper DH, et al. Microbial toluene removal in hypoxic model constructed wetlands occurs predominantly via the ring monooxygenation pathway. Appl Environ Microbiol. 2015;81(18):6241–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hendrickx B, Junca H, Vosahlova J, Lindner A, Ruegg I, Bucheli-Witschel M, et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods. 2006;64(2):250–65.
Article
PubMed
CAS
Google Scholar
Pérez-Pantoja D, González B, Pieper DH. Aerobic degradation of aromatic hydrocarbons. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 799–837.
Chapter
Google Scholar
Leahy JG, Batchelor PJ, Morcomb SM. Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev. 2003;27(4):449–79.
Article
PubMed
CAS
Google Scholar
Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, et al. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl Environ Microbiol. 2004;70(4):2211–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Basile LA, Erijman L. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading. FEMS Microbiol Ecol. 2010;73(2):336–48.
PubMed
CAS
Google Scholar
Arai H, Akahira S, Ohishi T, Maeda M, Kudo T. Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology. 1998;144(Pt 10):2895–903.
Article
PubMed
CAS
Google Scholar
Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev. 2008;32(5):736–94.
Article
PubMed
CAS
Google Scholar
Santos PM, Sá-Correia I. Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol. 2007;131(4):371–8.
Article
PubMed
CAS
Google Scholar
Arenghi FLG, Barbieri P, Bertoni G, de Lorenzo V. New insights into the activation of o-xylene biodegradation in Pseudomonas stutzeri OX1 by pathway substrates. EMBO Rep. 2001;2(5):409–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jeong JJ. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology. 2003;149(11):3265–77.
Article
PubMed
CAS
Google Scholar
Kahru A, Kurvet M, Külm I. Toxicity of phenolic wastewater to luminescent bacteria photobacterium phosphoreum and activated sludges. Water Sci Technol. 1996;33(6):139–46.
Article
CAS
Google Scholar
Kahru A, Pollumaa L, Reiman R, Ratsep A. Predicting the toxicity of oil-shale industry wastewater by its phenolic composition. Altern Lab Anim. 1999;27(3):359–66.
PubMed
CAS
Google Scholar
Kahru A, Reiman R, Rätsep A. The efficiency of different phenol-degrading bacteria and activated sludges in detoxification of phenolic leachates. Chemosphere. 1998;37(2):301–18.
Article
PubMed
CAS
Google Scholar
Kahru A, Kurvet M, Kurvet I. The study of toxicological impact of different compounds in complex mixtures: a case study on ash-heap water. Rev Clin Pharmacol Pharmacokin. 1997;11(2–3):137–41.
CAS
Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703.
Article
PubMed
PubMed Central
CAS
Google Scholar
RDP Naive Bayesian Classifier. [cited 10 November 2016]. Available from: http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp.
NCBI. National Center for Biotechnology Information Nucleotide. Delftia sp. strain LCW 16S ribosomal RNA gene, partial sequence. Available from: https://www.ncbi.nlm.nih.gov/nuccore/KY643688.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual: Cold Spring Harbor Laboratory; 1989.
Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, et al. Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol. 2006;72(6):4232–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baldwin BR, Nakatsu CH, Nies L. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol. 2003;69(6):3350–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sei K, Asano K, Tateishi N, Mori K, Ike M, Fujita M. Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng. 1999;88(5):542–50.
Article
PubMed
CAS
Google Scholar
Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol. 2009;11(9):2216–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
NCBI. National Center for Biotechnology Information. [cited 5 February 2017 ]. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi.
EMBL-EBI. [cited 12 April 2017]. Available from: http://www.ebi.ac.uk/Tools/st/.
PATRIC. Pathosystems Resource Integration Center. [cited 23 September 2017]. Available from: https://www.patricbrc.org/.
Lünsmann V, Kappelmeyer U, Taubert A, Nijenhuis I, von Bergen M, Heipieper HJ, et al. Aerobic toluene degraders in the rhizosphere of a constructed wetland model show diurnal polyhydroxyalkanoate metabolism. Appl Environ Microbiol. 2016;82(14):4126–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wieczorek S, Combes F, Lazar C, Giai Gianetto Q, Gatto L, Dorffer A, et al. DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. Bioinformatics. 2017;33(1):135–6.
Article
PubMed
CAS
Google Scholar
KEGG. Kyoto Encyclopedia of Genes and Genomes. KOALA Orthology And Links Annotation. [cited August 30 2017]. Available from: http://www.kegg.jp/blastkoala/.
Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM. The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere. 1995;30(6):1041–51.
Article
CAS
Google Scholar
Toxnet. Toxicology Data Network. U.S. National Libray of Medicine. [cited 2 December 2016]. Available from: https://chem.sis.nlm.nih.gov/chemidplus/.