Romero J, Ringø E, Merrifield DL. The gut microbiota of fish. In: Merrifield DL, Ringø E, editors. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. 2014. 75–100.
Wang AR, Ran C, Ringø E, Zhou ZG. Progress in fish gastrointestinal microbiota research. Rev Aquacult. 2017;10:626–40.
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Yu Y, Feng W, Yan Q, Gong Y. Host species as a strong determinant of the intestinal microbiota of fish larvae. J Microbiol. 2012;50:29–37.
Article
PubMed
CAS
Google Scholar
Li X, Yan Q, Ringø E, Wu X, He Y, Yang D. The influence of weight and gender on intestinal bacterial community of wild largemouth bronze gudgeon (Coreius guichenoti, 1874). BMC Microbiol. 2016;16:191.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, Stutz WE. Major histocompatibility complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol. 2014;23:4831–45.
Article
PubMed
CAS
Google Scholar
Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10(3):644–54.
Article
PubMed
CAS
Google Scholar
Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep. 2016;6:24340.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dehler CE, Secombes CJ, Martin SAM. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture. 2017;467:149–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sullam KE, Essinger SD, Lozupone CA, O'connor MP, Rosen GL, Knight R, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21:3363–78.
Article
PubMed
Google Scholar
Ringø E, Zhou Z, Gonzalez Vecino JL, Wadsworth S, Romero J, Krogdahl Å, et al. Effect of dietary components on the gut microbiota of aquatic animals: a never-ending story? Aquac Nutr. 2016;22:219–82.
Article
CAS
Google Scholar
Ringø E, Birkbeck TH. Intestinal microflora of fish larvae and fry. Aquac Res. 1999;30:73–93.
Article
Google Scholar
Hansen GH, Olafsen JA. Bacterial interactions in early life stages of marine cold water fish. Microb Ecol. 1999;38:1–26.
Article
PubMed
CAS
Google Scholar
Romero J, Navarrete P. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb Ecol. 2006;51(4):422–30.
Article
PubMed
CAS
Google Scholar
Munro PO, Barbour A, Blrkbeck TH. Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. J Appl Bacteriol. 2010;77(5):560–6.
Article
Google Scholar
Ingerslev HC, Jorgensen LG, Strube ML, Larsen N, Dalsgaard I, Boye M, Madsen L. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture. 2014;424:24–34.
Article
Google Scholar
Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5:207.
Article
PubMed
PubMed Central
Google Scholar
Ringo E, Olsen RE. The effect of diet on aerobic bacterial flora associated with intestine of Arctic charr (Salvelinus alpinus L.). J Appl Microbiol. 1999;86(1):22–8.
Article
PubMed
CAS
Google Scholar
Ringo E, Sperstad S, Myklebust R, Refstie S, Krogdahl A. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.) - the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture. 2006;261(3):829–41.
Article
CAS
Google Scholar
Ringo E, Strøm E. Microflora of Arctic charr, Salvelinus alpinus L.: gastrointestinal microflora of free-living fish and effect of diet and salinity on intestinal microflora. Aquac Res. 1994;25(6):623–9.
Article
Google Scholar
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5(10):1595–608.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu S, Wang G, Angert ER, Wang W, Li W, Zou H. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One. 2012;7(2):e30440.
He L, Hao B, Xie C, Luo X, Zhang Z, Zhu X. Isolation and identification of major cellulase-producing fungi in intestines of grass carp. Chin J Appl Environ Biol. 2009;15(3):414–8.
Article
CAS
Google Scholar
Ray AK, Roy T, Mondal S, Ringo E. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res. 2010;41(10):1462–9.
CAS
Google Scholar
Ray AK, Ghosh K, Ringø E. Enzyme-producing bacteria isolated from fish gut. A review. Aquac Nutr. 2012;18:465–92.
Article
CAS
Google Scholar
Jolles P, Muzzarelli RAA. Chitin and chitinases. In: Jolles P, Muzzarelli RAA, editors. EXS (Basel). Birkhauser Verlag; 1999.
Sugita H, Ito Y. Identification of intestinal bacteria from Japanese flounder (Paralichthys olivaceus) and their ability to digest chitin. Lett Appl Microbiol. 2006;43(3):336–42.
Article
PubMed
CAS
Google Scholar
Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringo E. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture. 2012;326:1–8.
Article
CAS
Google Scholar
Macdonald NL, Stark JR, Austin B. Bacterial microflora in the gastro-intestinal tract of dover sole (Solea solea L.), with emphasis on the possible role of bacteria in the nutrition of the host. FEMS Microbiol Lett. 1986;35(1):107–11.
Article
CAS
Google Scholar
Sakata T, Okabayashi J, Kakimoto D. Variations in the intestinal microflora of Tilapia reared in fresh and sea water. Nihon-suisan-gakkai-shi. 1980;46(3):313–7.
Article
Google Scholar
Gao Z, Luo W, Liu H, Zeng C, Liu X, Yi S, Wang W. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoS One. 2012;7(8):e42637.
Zhou Z, Ren Z, Zeng H, Yao B. Apparent digestibility of various feedstuffs for bluntnose black bream Megalobrama amblycephala Yih. Aquac Nutr. 2008;14(2):153–65.
Article
CAS
Google Scholar
Li X-F, Liu W-B, Lu K-L, Xu W-N, Wang Y. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol. 2012;33(2):316–23.
Article
PubMed
CAS
Google Scholar
Ministry of Agriculture of the People’s Republic of China Chinese fisheries yearbook. Chinese agricultural press. In: Beijing; 2017.
Google Scholar
Tsao WS. A biological study of Magalobrama amblycephala and M. terminalis of Liang-tse Lake. Acta Hydrobiologica Sinica. 1960;1:57–78.
Google Scholar
Ke HW. An excellent fresh-water food fish, Megalobrama amblycephala, and its propagating and culturing. Acta Hydrobiologica Sinica. 1975;5(5):293–312.
Google Scholar
Hynes HBN. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. J Anim Ecol. 1950;19(1):36–58.
Article
Google Scholar
Uchii K, Matsui K, Yonekura R, Tani K, Kenzaka T, Nasu M, Kawabata Z. Genetic and physiological characterization of the intestinal bacterial microbiota of bluegill (Lepomis macrochirus) with three different feeding habits. Microbial Ecol. 2006;51(3):277–84.
Article
CAS
Google Scholar
Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, Kim CH. Study of host-microbe interactions in zebrafish. In: William HD, Monte W, Leonard IZ, editors. Methods in cell biology. Academic press; 2011. P 105:87–116.
Liang X, Fu Y, Liu H. Isolation and characterization of enzyme-producing bacteria of the silkworm larval gut in bioregenerative life support system. Acta Astronaut. 2015;116:247–53.
Article
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol. 2013;79(8):2519–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.
Article
PubMed
CAS
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miSeq illumina sequencing platform. Environ Microbiol. 2013;79(17):5112–20.
Article
CAS
Google Scholar
Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 2011;6:e27310.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. Vegan: community ecology package 2015. http://vegan.r-forge.r-project.org/.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(D1):D109–14.
Article
PubMed
CAS
Google Scholar
Robyt JF, Whelan WJ. The α-amylases. London: Starch and its Derivatives. Chapman & Hall; 1968. p. 430–76.
Google Scholar
Saha AK, Ray AK. Cellulase activity in rohu fingerlings. Aquacult Int. 1998;6(4):281–91.
Article
CAS
Google Scholar
Sadasivam S, Manickam A. Biochemical methods for agricultural sciences. In: Wiley eastern limited; 1992.
Google Scholar
Bernfeld P, Colowick SP, Kaplan NO. Methods in enzymology., vol. 149. New York: Acad Press Inc; 1955.
Google Scholar
Danulat E, Kausch H. Chitinase activity in the digestive tract of the cod, Gadus morhua (L.). J Fish Biol. 2010;24(2):125–33.
Article
Google Scholar
Koeck DE, Pechtl A, Zverlov VV, Schwarz WH. Genomics of cellulolytic bacteria. Curr Opin Biotech. 2014;29:171–83.
Article
PubMed
CAS
Google Scholar
Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ. Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus). FEMS Microbiol Ecol. 2011;78(2):285–96.
Article
PubMed
CAS
Google Scholar
Hamlin HJ, Hunt von Herbing I, Kling LJ. Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout post-hatching ontogeny. J Fish Biol. 2000;57(5):716–32.
Article
Google Scholar
Navarrete P, Espejo RT, Romero J. Molecular analysis of microbiota along the digestive tract of juvenile Atlantic Salmon (Salmo salar L.). Microbial Ecol. 2009;57(3):550–61.
Article
CAS
Google Scholar
Li J, Ni J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol. 2014;117(6):1750–60.
Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. P Natl Acad Sci USA. 2011;108:4578–85.
Article
Google Scholar
Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One. 2012;7(6):e34242.
Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol. 2012;14(1):4–12.
Article
PubMed
CAS
Google Scholar
Sugita H, Shibuya K, Shimooka H, Deguchi Y. Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture. 1996;145(1–4):195–203.
Article
Google Scholar
Maiuta ND, Schwarzentruber P, Schenker M, Schoelkopf J. Microbial population dynamics in the faeces of wood-eating loricariid catfishes. Lett Appl Microbiol. 2013;56(6):401–7.
Article
PubMed
CAS
Google Scholar
Larsen AM, Mohammed HH, Arias CR. Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol. 2014;116(6):1396–404.
Article
PubMed
CAS
Google Scholar
Tsuchiya C, Sakata T, Sugita H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett Appl Microbiol. 2008;46(1):43–8.
PubMed
CAS
Google Scholar
Sheu S-Y, Shiau Y-W, Wei Y-T, Chen W-M. Gemmobacter lanyuensis sp nov., isolated from a freshwater spring. Int J Syst Evol Microbiol. 2013;63:4039–45.
Article
PubMed
CAS
Google Scholar
Zhang M, Sun Y, Chen K, Yu N, Zhou Z, Chen L, Du Z, Li E. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture. 2014;434:449–55.
Article
CAS
Google Scholar
McDonald R, Schreier HJ, Watts JEM. Phylogenetic analysis of microbial communities in different regions of the gastrointestinal tract in Panaque nigrolineatus, a wood-eating fish. PLoS One. 2012;7(10):e48018.
McDonald R, Zhang F, Watts JEM, Schreier HJ. Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME J. 2015;9(12):2712–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gatesoupe FJ, Infante JLZ, Cahu C, Quazuguel P. Early weaning of seabass larvae, Dicentrarchus labrax: the effect on microbiota, with particular attention to iron supply and exoenzymes. Aquaculture. 1997;158(1–2):117–27.
Article
Google Scholar
Sugita H, Kawasaki J, Deguchi Y. Production of amylase by the intestinal microflora in cultured freshwater fish. Lett Appl Microbiol. 1997;24(2):105–8.
Article
PubMed
CAS
Google Scholar
Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, Jiang X, Cai H, Ebersberger I, Xu M, et al. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. Giga Sci. 2017;6(7):1–13.
Article
Google Scholar
Volkova IV. Activities of digestive enzymes in plant-eating fish at early phases of ontogenesis. Astrakhan: Cand Sci (Biol.) Dissertation; 1999.
Google Scholar
Munilla-Moran R, Stark JR, Barbour A. The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture. 1990;88(3–4):337–50.
Article
CAS
Google Scholar