Dey U, Chatterjee S, Mondal NK. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Reports. 2016;10:1–7.
Article
Google Scholar
Singh AK. Published in proceedings of national seminar on hydrology with focal theme on water quality held at National Institute of arsenic contamination in groundwater of north eastern India. Hydrology. 2004. http://wilsonweb.physics.harvard.edu/arsenic/references/singh.pdf. Accessed 8 Dec 2017
Devi NL, Chandra I, Shihua Q. Recent status of arsenic contamination in groundwater of northeastern India – a review. Rep Opin. 2009;1:22–32.
Google Scholar
Today N. Water sources in 23 districts of Assam contaminated with arsenic and fluoride » northeast today. 2017. https://www.northeasttoday.in/water-sources-in-23-districts-of-assam-contaminated-with-arsenic-and-fluoride/. Accessed 27 Aug 2017.
Das S, Bora SS, Prasad JL, Barooah M, Yadav RN, Chetia M. Groundwater arsenic contamination in north eastern states of India. J Environ Res Dev. 2015;9:621–32.
CAS
Google Scholar
Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta. 2002;58:201–35.
Article
PubMed
CAS
Google Scholar
Oremland RS, Stolz JF. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005;13:45–9.
Article
PubMed
CAS
Google Scholar
Mukhopadhyay R, Rosen BP, Phung LT, Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev. 2002;26:311–25.
Article
PubMed
CAS
Google Scholar
Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M. Isolation and characterization of arsenic resistant bacteria from wastewater. Brazilian J Microbiol. 2014;45(4):1309–15.
Paul D, Kazy SK, Gupta AK, Pal T, Sar P. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS One. 2015;10:1–40.
Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi S. Arsenicresistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol. 2007;103:2299–2308.
Ji G, Silver S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Biochemistry. 1992;89:9474–8.
CAS
Google Scholar
Bachate SP, Cavalca L, Andreoni V. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol. 2009;107:145–56.
Article
PubMed
CAS
Google Scholar
Srivastava S, Verma PC, Singh A, Mishra M, Singh N, Sharma N, et al. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal. Appl Microbiol Biotechnol. 2012;95:1275–91.
Article
PubMed
CAS
Google Scholar
Wang G, Huang Y, Li J. Bacteria live on arsenic analysis of microbial arsenic metabolism--a review. Wei Sheng Wu Xue Bao. 2011;51:154–60.
PubMed
CAS
Google Scholar
Lloyd JR, Oremland RS. Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements. 2006;2:85–90.
Article
CAS
Google Scholar
Kraemer SM. Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci Res Across Boundaries. 2004;66:3–18.
Article
CAS
Google Scholar
Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ. Bacterial ability in AsIII oxidation and AsV reduction: relation to arsenic tolerance, P uptake, and siderophore production. Chemosphere. 2015;138:995–1000.
Article
PubMed
CAS
Google Scholar
Behari JR, Prakash R. Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA). Chemosphere. 2006;63:17–21.
Article
PubMed
CAS
Google Scholar
Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46:327–38.
Article
PubMed
CAS
Google Scholar
Hogg JC, Lehane MJ. Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1999;65:4227–9.
PubMed
PubMed Central
CAS
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
PubMed
CAS
Google Scholar
Erickson K. The jukes-cantor model of molecular evolution. Primus. 2010;20:438–45.
Article
Google Scholar
Buyer JS. Rapid sample processing and fast gas chromatography for identification of bacteria by fatty acid analysis. J Microbiol Methods. 2002;51:209–15.
Article
PubMed
CAS
Google Scholar
Krieg NR, Krieg RN. Spirillum. Bergey’s Man Syst Archaea Bact. Chichester: John Wiley & Sons, Ltd; 2015. p. 1–14.
Google Scholar
Simeonova DD, Lièvremont D, Lagarde F, Muller DA, Groudeva VI, Lett MC, et al. Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett. 2004;237:249–53.
Article
PubMed
CAS
Google Scholar
Aggett J, Aspell AC. The determination of arsenic(III) and total arsenic by atomic-absorption spectroscopy. Analyst. 1976;101:341.
Article
PubMed
CAS
Google Scholar
Gladysheva TB, Oden KL, Rosen BP. Properties of the arsenate reductase of plasmid R773. Biochemistry. 1994;33:7288–93.
Article
PubMed
CAS
Google Scholar
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56.
Article
PubMed
CAS
Google Scholar
Sarkar A, Kazy SK, Sar P. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology. 2013;22:363–76.
Article
PubMed
CAS
Google Scholar
Alexander DB, Zuberer DA. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils. 1991;12:39–45.
Article
CAS
Google Scholar
Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, et al. Groundwater arsenic contamination in Brahmaputra river basin: a water quality assessment in Golaghat (Assam), India. Environ Monit Assess. 2011;173:371–85.
Article
PubMed
CAS
Google Scholar
Das S, Bora S, Lahan J, Barooah M, Yadav R, Chetia M. Groundwater arsenic contamination in north eastern states of India. J Environ Res Dev J Environ Res Dev. 2014;9:621–632.
Mahanta C, Choudhury R, Basu S, Hemani R, Dutta A, Barua PP, et al. Preliminary assessment of arsenic distribution in Brahmaputra River basin of India based on examination of 56,180 public groundwater wells. Safe sustain use arsenic-contaminated aquifers Gangetic plain. Cham: Springer International Publishing; 2015. p. 57–64.
Book
Google Scholar
Chakraborty M, Mukherjee A, Ahmed KM. A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Curr Pollut Rep. 2015;1(4):220-47.
Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, et al. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr. 2006;24:142–63.
PubMed
Google Scholar
Islam F, Gault G, Bootham C, Polya D, Charnock J, CHatterjee D, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature. 2004;430:68.
Article
PubMed
CAS
Google Scholar
Silver S, Phung LT. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol. 2005;71:599–608.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turpeinen R, Pantsar-Kallio M, Häggblom M, Kairesalo T. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ. 1999;236:173–80.
Article
PubMed
CAS
Google Scholar
Xie Z, Wang Y, Duan M, Xie X, Su C. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China. Front Earth Sci. 2011;5:37–44.
Article
CAS
Google Scholar
Park JM, Lee JS, Lee J-U, Chon HT, Jung MC. Microbial effects on geochemical behavior of arsenic in as-contaminated sediments. J Geochemical Explor. 2006;88:134–8.
Article
CAS
Google Scholar
Jackson C, Jackson E, Dugas S, Gamble K, William S. Microbial transformations of arsenite and arsenate in natural environments. Recent Res Dev Microbiol. 2003;7:103–18.
CAS
Google Scholar
Silver S, Budd K, Leahy KM, Shaw WV, Hammond D, Novick RP, et al. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus. J Bacteriol. 1981;146:983–96.
PubMed
PubMed Central
CAS
Google Scholar
Ji G, Silver S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol. 1992;174:3684–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, et al. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater. 2013;262:1039–47.
Article
PubMed
CAS
Google Scholar
Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus Iron acquisition. Annu Rev Microbiol. 2011;65:129–47.
Article
PubMed
CAS
Google Scholar
Basavraj N, Deepak V. Medical applications of siderophores. Eur J Gen Med. 2011;8:229–35.
Article
Google Scholar
Del Giudice I, Limauro D, Pedone E, Bartolucci S, Fiorentino G. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. Biochim Biophys Acta - Proteins Proteomics. 2013;1834:2071–9.
Article
CAS
Google Scholar
Krafft T, Macy J. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. FEBS J. 1998;255:647–53.
CAS
Google Scholar
Elias M, Wellner A, Goldin-Azulay K, Chabriere E, Vorholt JA, Erb TJ, et al. The molecular basis of phosphate discrimination in arsenate-rich environments. Nature. 2012;491:134–7.
Article
PubMed
CAS
Google Scholar