Eckersall PD, Lawson FP, Bence L, Waterston MM, Lang TL, Donachie W, et al. Acute phase protein response in an experimental model of ovine caseous lymphadenitis. BMC Vet Res. 2007;3:35.
Article
PubMed
PubMed Central
Google Scholar
Billington SJ, Esmay PA, Songer JG, Jost BH. Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS Microbiol Lett. 2002;208:41–5.
Kimberling CV. Caseous Lymphadenitis. Jensen Swift’s Dis. Sheep. 3rd ed. Philadelphia: Lea e Febiger; 1988. p. 374–7.
Google Scholar
Pekelder JJ. Caseous lymphadenitis. In: Martin WB, Aitken ID, editors. Dis. Sheep. 3rd ed. Iowa: Blackwell Publishing; 2000. p. 270–4.
Google Scholar
AGS S. Principais Enfermidades dos Ovinos. Criação de ovinos. 2nd ed. Jaboticabal: Funep; 2001. p. 220–1.
Google Scholar
Dorella FA, Fachin MS, Billault A, Dias Neto E, Soravito C, Oliveira SC, et al. Construction and partial characterization of a Corynebacterium pseudotuberculosis bacterial artificial chromosome library through genomic survey sequencing. Genet Mol Res. 2006;5:653–63.
CAS
PubMed
Google Scholar
Seyffert N, Guimarães AS, Pacheco LGC, Portela RW, Bastos BL, Dorella FA, et al. High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. Res Vet Sci. 2010;88:50–5.
Article
CAS
PubMed
Google Scholar
Eggleton DG, Middleton HD, Doidge CV, Minty DW. Immunisation against ovine caseous lymphadenitis: comparison of Corynebacterium pseudotuberculosis vaccines with and without bacterial cells. Aust Vet J. 1991;68:317–9.
Article
CAS
PubMed
Google Scholar
Stanford K, Brogden KA, McClelland LA, Kozub GC, Audibert F. The incidence of caseous lymphadenitis in Alberta sheep and assessment of impact by vaccination with commercial and experimental vaccines. Can J Vet Res. 1998;62:38–43.
CAS
PubMed
PubMed Central
Google Scholar
Williamson LH. Caseous lymphadenitis in small ruminants. Vet Clin North Am Food Anim Pract. 2001;17:359–71. vii. [cited 2014 Mar 25]
Article
CAS
PubMed
Google Scholar
Paton MW, Walker SB, Rose IR, Watt GF. Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. Aust Vet J. 2003;81:91–5.
Article
CAS
PubMed
Google Scholar
Ribeiro OC, Silva JAH, Oliveira SC, Meyer R, Fernandes GB. Dados preliminares sobre uma vacina viva contra a linfadenite caseosa.pdf. Pesqui Agropecu Bras. 1991;26:461–5.
Google Scholar
Pinho MJR, Dorella FA, Coelho KS, Fonseca CT, Cardoso FC, Meyer R, et al. Immunization with recombinant Corynebacterium pseudotuberculosis Heat-Shock Protein (Hsp)-60 is able to induce an immune response in mice, but fails to confer protection against infection. Open Vet Sci J. 2009;3:22–7.
Article
CAS
Google Scholar
Costa MP, McCulloch JA, Almeida SS, Dorella FA, Fonseca CT, Oliveira DM, et al. Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. BMC Res Notes. 2011;4:243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro D, Rocha FS, Leite KM, Soares SC, Silva A, Portela RW, et al. An iron-acquisition-deficient mutant of Corynebacterium pseudotuberculosis efficiently protects mice against challenge. Vet Res. 2014;45:28.
Article
PubMed
PubMed Central
Google Scholar
Dorella FA, Pacheco LG, Seyffert N, Portela RW, Meyer R, Miyoshi A, et al. Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development. Expert Rev Vaccines. 2009;8:205–13.
Article
CAS
PubMed
Google Scholar
Zhang Y, Praszkier J, Hodgson A, Pittard AJ. Molecular analysis and characterization of a broad-host-range plasmid, pEP2. J Bacteriol. 1994;176:5718–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller L, Richter M, Hapke C, Stern D, Nitsche A. Genomic expression libraries for the identification of cross-reactive orthopoxvirus antigens. PLoS One. 2011;6:e21950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siebold C, García-Alles LF, Erni B, Baumann U. A mechanism of covalent substrate binding in the x-ray structure of subunit K of the Escherichia coli dihydroxyacetone kinase. Proc Natl Acad Sci U S A. 2003;100:8188–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheek S, Ginalski K, Zhang H, Grishin NV. A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol. 2005;5:6.
Article
PubMed
PubMed Central
Google Scholar
Jenkins BT, Hajra AK. Glycerol kinase and dihydroxyacetone kinase in rat brain. J Neurochem. 1976;26:377–85.
Article
CAS
PubMed
Google Scholar
Bächler C, Schneider P, Bähler P, Lustig A, Erni B. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J. 2005;24:283–93. [cited 2013 Oct 7]
Article
PubMed
Google Scholar
Komuro A, Bamming D, Horvath CM. Negative Regulation of Cytoplasmic RNA-Mediated Antiviral Signaling. Cytokine. 2009;43:350–8.
Article
Google Scholar
Ubol S, Phuklia W, Kalayanarooj S, Modhiran N. Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. J Infect Dis. 2010;201:923–35.
Article
CAS
PubMed
Google Scholar
Nagy TA, Moreland SM, Andrews-Polymenis H, Detweiler CS. The Ferric Enterobactin Transporter, Fep, is Required for Persistent Salmonella Infection. Infect Immun. 2013;81:4063–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruiz JC, D’Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, et al. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One. 2011;6:e18551.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Sá MDC A, Gouveia GV, CDC K, JLA V, de Mattos-Guaraldi AL, da Costa MM. Distribution of PLD and FagA, B, C and D genes in Corynebacterium pseudotuberculosis isolates from sheep and goats with caseus lymphadenitis. Genet Mol Biol. 2013;36:265–8.
Article
Google Scholar
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.
Article
CAS
PubMed
Google Scholar
Li N, Zhang C, Li B, Liu X, Huang Y, Xu S, et al. Unique iron coordination in iron-chelating molecule vibriobactin helps Vibrio cholerae evade mammalian siderocalin-mediated immune response. J Biol Chem. 2012;287:8912–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva A, Schneider MPC, Cerdeira L, Barbosa MS, Ramos RTJ, Carneiro AR, et al. Complete genome sequence of Corynebacterium pseudotuberculosis I19, a strain isolated from a cow in Israel with bovine mastitis. J Bacteriol. 2011;193:323–4.
Article
CAS
PubMed
Google Scholar
Rando RR. Membrane-bound lecithin-retinol acyltransferase. Biochem Biophys Res Commun. 2002;292:1243–50.
Article
CAS
PubMed
Google Scholar
Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol. 1998;180:2549–55.
CAS
PubMed
PubMed Central
Google Scholar
Margot P, Wahlen M, Gholamhoseinian A, Piggot P, Karamata D. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol. 1998;180:749–52.
CAS
PubMed
PubMed Central
Google Scholar
Ohnishi R, Ishikawa S, Sekiguchi J. Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol. 1999;181:3178–84.
CAS
PubMed
PubMed Central
Google Scholar
Shi X, Zeng H, Xue Y, Luo M. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods. 2011;7:33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anantharaman V, Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 2003;4:R11.
Article
PubMed
PubMed Central
Google Scholar
Bannantine JP, Lingle CK, Stabel JR, Ramyar KX, Garcia BL, Raeber AJ, et al. MAP1272c encodes an NlpC/P60 protein, an antigen detected in cattle with Johne’s disease. Clin Vaccine Immunol. 2012;19:1083–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parthasarathy G, Lun S, Guo H, Ammerman NC, Geiman DE, Bishai WR. Rv2190c, an NlpC/P60 family protein, is required for full virulence of Mycobacterium tuberculosis. PLoS One. 2012;7:e43429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senkevich TG, Wyatt LS, Weisberg AS, Koonin EV, Moss B. A conserved poxvirus NLPC/P60 superfamily protein contributes to vaccinia virus virulence in mice but not to replication in cell culture. Virology. 2009;374:506–14.
Article
Google Scholar
Upton C, Slack S, Hunter AL, Roper RL, Ehlers A. Poxvirus Orthologous Clusters : toward Defining the Minimum Essential Poxvirus Genome. J Virol. 2003;
Iyer LM, Balaji S, Koonin EV, Aravind L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 2006;117:156–84.
Article
CAS
PubMed
Google Scholar
Trost E, Al-Dilaimi A, Papavasiliou P, Schneider J, Viehoever P, Burkovski A, et al. Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genomics. 2011;12:383.
Article
PubMed
PubMed Central
Google Scholar
Chhatwal GS. Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol. 2002;10:205–8.
Article
CAS
PubMed
Google Scholar
Paterson GK, Mitchell TJ. The biology of Gram-positive sortase enzymes. Trends Microbiol. 2004;12:89–95.
Davies JR, Svensäter G, Herzberg MC. Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology. 2009;155:1977–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabet C, Lecuit M, Cabanes D, Cossart P. LPXTG Protein InlJ, a Newly Identified Internalin Involved in Listeria monocytogenes Virulence. Infect Immun. 2005;73:6912-22.
Yamaguchi M, Terao Y, Mori Y, Hamada S, Kawabata S. PfbA, a novel plasmin- and fibronectin-binding protein of Streptococcus pneumoniae, contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol Chem. 2008;283:36272–9.
Article
CAS
PubMed
PubMed Central
Google Scholar