Racytea J, Bernard S, Paulitsch-Fuchsa AH, Yntema DR, Bruning H, Rijnaarts HHM. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system. Water Res. 2013;47(16):6395–405.
Article
Google Scholar
Racyte J, Sharabati J-A-D, Paulitsch-Fuchs AH, Yntema DR, Mayer MJJ, Bruning H, et al. Combining fluidized activated carbon with weak alternating electric fields for disinfection. Carbon. 2011;49(15):5321–8.
Article
CAS
Google Scholar
Giladi M, Porat Y, Blatt A, Wasserman Y, Kirson ED, Dekel E, et al. Microbial growth inhibition by alternating electric fields. Antimicrob Agents Chemother. 2008;52(10):3517–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giladi M, Porat Y, Blatt A, Shmueli E, Wasserman Y, Kirson ED, et al. Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection. Antimicrob Agents Chemother. 2010;54(8):3212–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valle A, Zanardini E, Abbruscato P, Argenzio P, Lustrato G, Ranalli G, et al. Effects of low electric current (LEC) treatment on pure bacterial cultures. J Appl Microbiol. 2007;103(5):1376–85.
Article
CAS
PubMed
Google Scholar
Loghavi L, Sastry SK, Yousef AE. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnol Prog. 2008;24:148–53.
Article
CAS
PubMed
Google Scholar
Ito T, Kawwamura T, Nakagawa A, Yamazaki S, Syuto B, Takaki K. Preservation of fresh food using AC electric field. J Adv Oxid Technol. 2014;7(2):249–53.
Google Scholar
Romel R, Mohamed HMH, Sastry SK. Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating. LWT-Food Sci Technol. 2013;54(1):194–8.
Article
Google Scholar
Loghavi L, Sastry SK, Yousef AE. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnol Prog. 2009;25(1):85–94.
Article
CAS
PubMed
Google Scholar
Dave D, Ghaly AE. Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Biol Sci. 2011;6(4):486–510.
Article
CAS
Google Scholar
Zhou G, Xu X, Liu Y. Preservation technologies for fresh meat - A review. Meat Sci. 2010;86(1):119–28.
Article
CAS
PubMed
Google Scholar
Doulgeraki AI, Ercolini D, Villani F, Nychas G-JE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol. 2012;157(2):130–41.
Article
PubMed
Google Scholar
Jääskeläinen E, Hultman J, Parshintsev J, Riekkola M-L, Björkroth J. Development of spoilage bacterial community and volatile compounds in chilled beef under vacuum or high oxygen atmospheres. Int J Food Microbiol. 2016;223:25–32.
Article
PubMed
Google Scholar
Jones TH, Vail KM, McMullen LM. Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol. 2013;165(2):97–110.
Article
CAS
PubMed
Google Scholar
Neubeck M, Baurb C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol. 2015;211:57–65.
Article
Google Scholar
Morsy MK, Zór K, Kostesha N, Alstrøm TS, Heiskanen A, El-Tanahi H, et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control. 2016;60:346–52.
Article
CAS
Google Scholar
Casaburi A, Piombino P, Nychas G-J, Villani F, Ercolini D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015;45:83–102.
Article
CAS
PubMed
Google Scholar
Hammond ST, Brown JH, Burger JR, Flanagan TP, Fristoe TS, Mercado-Silva N, et al. Food spoilage, storage, and transport: Implications for a sustainable future. Bioscience. 2015;65(8):758–68.
Article
Google Scholar
Argyri AA, Mallouchos A, Panagou EZ, Nychas G-JE. The dynamics of the HS/SPME-GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions. Int J Food Microbiol. 2015;193:51–8.
Article
CAS
PubMed
Google Scholar
Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H. Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia (Bratisl). 2009;64(2):239–45.
Article
CAS
Google Scholar
Ercolini D, Casaburi A, Nasi A, Ferrocino I, Monaco RD, Ferranti P, et al. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers. Int J Food Microbiol. 2010;142:120–31.
Article
CAS
PubMed
Google Scholar
Ercolini D, Russo F, Blaiotta G, Pepe O, Mauriello G, Villani F. Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl Environ Microbiol. 2007;73(7):2354–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Storia AL, Ferrocino I, Torrieri E, Monaco RD, Mauriello G, Villani F, et al. A combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. Int J Food Microbiol. 2012;158(3):186–94.
Article
PubMed
Google Scholar
Ercolini D, Russo R, Nasi A, Ferranti P, Villani F. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol. 2009;75(7):1990–2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nychas G-JE, Skandamis PN, Tassou CC, Koutsoumanis KP. Meat spoilage during distribution. Meat Sci. 2008;78(1–2):77–89.
Article
PubMed
Google Scholar
Casaburi A, Nasi A, Ferrocino I, Monaco RD, Mauriello G, Villani F, et al. Spoilage-related activity of Carnobacterium maltaromaticum strains in air-stored and vacuum-packed meat. Appl Environ Microbiol. 2011;77(20):7382–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao F, Zhou G, Ye K, Wang S, Xu X, Li C. Microbial changes in vacuum-packed chilled pork during storage. Meat Sci. 2015;100:145–9.
Article
CAS
PubMed
Google Scholar
Pacholewicz E, Liakopoulos A, Swart A, Gortemaker B, Dierikx C, Havelaar A, et al. Reduction of extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli through processing in two broiler chicken slaughterhouses. Int J Food Microbiol. 2015;215:57–63.
Article
CAS
PubMed
Google Scholar
Pacholewicz E, Swart A, Schipper M, Gortemaker GG, Wagenaar JA, Havelaar AH, et al. A comparison of fluctuations of Campylobacter and Escherichia coli concentrations on broiler chicken carcasses during processing in two slaughterhouses. Int J Food Microbiol. 2015;205:119–27.
Article
PubMed
Google Scholar
Cody WL, Wilson JW, Hendrixson DR, McIver KS, Hagman KE, Ott CM, et al. Skim milk enhances the preservation of thawed -80 °C bacterial stocks. J Microbiol Methods. 2008;75(1):135–8.
Article
PubMed
PubMed Central
Google Scholar
Kermanshahi RK, Sailani MR. Effect of static electric field treatment on multiple antibiotic-resistant pathogenic strains of Escherichia coli and Staphylococcus aureus. J Microbiol Immunol Infect. 2005;38(6):394–8.
PubMed
Google Scholar
Takayuki K, Kanako K. In: Freshness keeping apparatus using space potential generator. JP5683032. Japan; 2015. Available online: http://www.freepatentsonline.com/JP5683032B1.html.
Ko W, Yang S, Chang C, Hsieh C. Effect of adjustable parallel high voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration. LWT-Food Sci Technol. 2016;66:151–7.
Article
CAS
Google Scholar
Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82(3):330–3.
Article
CAS
PubMed
Google Scholar
Jiang X, Yu X, Fan J, Guo L, Zhu C, Jiang W, et al. RFT2 is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenesis by sustaining cell proliferation and protecting against cell death. Cancer Lett. 2014;353(1):78–86.
Article
CAS
PubMed
Google Scholar
Filipiča J, Kraigher B, Tepuš B, Kokol V, Mandic-Mulec I. Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol. 2012;120:225–32.
Article
Google Scholar
Gobinath D, Prapulla SG. Permeabilized probiotic Lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides. Biotechnol Lett. 2014;36(1):153–7.
Article
CAS
PubMed
Google Scholar
Griffith KL, Richar E, Wolf J. Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun. 2002;290:397–402.
Article
CAS
PubMed
Google Scholar
Li W, Zhao X, Zou S, Ma Y, Zhang K, Zhang M. Scanning assay of β-galactosidase activity. Appl Biochem Microbiol. 2012;48(6):603–7.
Article
Google Scholar
Zituni D, Schutt-Gerowitt H, Kopp M, Kronke M, Addicks K, Hoffmann C, et al. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields. Int J Oral Sci. 2014;6(1):7–14.
Article
CAS
PubMed
Google Scholar
Røder HL, Raghupathi PK, Herschend J, Brejnrod A, Knøchel S, Sørensen SJ, et al. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiol. 2015;51:18–24.
Article
PubMed
Google Scholar
Lerma LL, Benomar N, Gálvez A, Abriouel H. Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. Int J Food Microbiol. 2013;161(2):97–106.
Article
Google Scholar
Loghavi L, Sastry SK, Yousef AE. Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnol Bioeng. 2007;98(4):872–81.
Article
CAS
PubMed
Google Scholar
Velasco-Alvarez N, González I, Damian-Matsumura P, Gutiérrez-Rojas M. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system. Bioresour Technol. 2011;102(2):1509–15.
Article
CAS
PubMed
Google Scholar
Thrash JC, Coates JD. Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol. 2008;42(11):3921–31.
Article
CAS
PubMed
Google Scholar
Danevčič T, Stopar D. Asymmetric response of carbon metabolism at high and low salt stress in Vibrio sp. DSM14379. Microb Ecol. 2011;62(1):198–204.
Article
PubMed
Google Scholar
Vilhelmsson O, Miller K. Synthesis of pyruvate dehydrogenase in Staphylococcus aureus is stimulated by osmotic stress. Appl Environ Microbiol. 2002;68(5):2353–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machado LF, Pereira RN, Martins RC, Teixxeira JA, Vicente AA. Moderate electric fields can inactivate Escherichia coli at room temperature. J Food Eng. 2010;96(4):520–7.
Article
Google Scholar
Boor KJ. Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol. 2006;4(1), e23.
Article
PubMed
PubMed Central
Google Scholar
Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increase ATP level in cells cultivated in vitro. J Photochem Photobiol B. 1995;27:219–23.
Article
CAS
PubMed
Google Scholar
Jain S, Sharma A, Basu B. Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes. Carbon. 2015;81:193–202.
Article
CAS
Google Scholar
Amarjargal A, Tijing LD, Ruelo MTG, Park C-H, Pant HR, Iv FPV, et al. Inactivation of bacteria in batch suspension by fluidized ceramic tourmaline nanoparticles under oscillating radio frequency electric fields. Ceram Int. 2013;39(2):2141–5.
Article
CAS
Google Scholar
Moody A, Marx G, Swanson BG, Bermúdez-Aguirre D. A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound. Food Control. 2014;37:305–14.
Article
CAS
Google Scholar