Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641–79.
Article
CAS
PubMed
Google Scholar
Croucher NJ, et al. Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol. 2009;191(5):1480–9.
Article
CAS
PubMed
Google Scholar
Imamovic L, et al. OI-57, a genomic island of Escherichia coli O157, is present in other seropathotypes of Shiga toxin-producing E. coli associated with severe human disease. Infect Immun. 2010;78(11):4697–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gartemann KH, et al. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol. 2008;190(6):2138–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hacker J, et al. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol. 1997;23(6):1089–97.
Article
CAS
PubMed
Google Scholar
Dobrindt U, et al. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004;2(5):414–24.
Article
CAS
PubMed
Google Scholar
Burrus V, Marrero J, Waldor MK. The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid. 2006;55(3):173–83.
Article
CAS
PubMed
Google Scholar
Burrus V, et al. Conjugative transposons: the tip of the iceberg. Mol Microbiol. 2002;46(3):601–10.
Article
CAS
PubMed
Google Scholar
Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010;74(4):621–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 2004;155(5):376–86.
Article
CAS
PubMed
Google Scholar
Lawley TD, et al. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett. 2003;224(1):1–15.
Article
CAS
PubMed
Google Scholar
Mathee K, et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A. 2008;105(8):3100–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
He J, et al. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A. 2004;101(8):2530–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu X, Gurkar AU, Lory S. Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2006;103(52):19830–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carter MQ, Chen J, Lory S. The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol. 2010;192(13):3249–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komano T. Shufflons: multiple inversion systems and integrons. Annu Rev Genet. 1999;33:171–91.
Article
CAS
PubMed
Google Scholar
Ishiwa A, Komano T. PilV adhesins of plasmid R64 thin pili specifically bind to the lipopolysaccharides of recipient cells. J Mol Biol. 2004;343(3):615–25.
Article
CAS
PubMed
Google Scholar
Liberati NT, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 2006;103(8):2833–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang TT, et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 1998;212(1):77–86.
Article
CAS
PubMed
Google Scholar
Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology. 1983;1(9):784–91.
Article
CAS
Google Scholar
Ravaoarinoro M, et al. Rapid method for isolating detergent-insoluble outer membrane proteins from Pseudomonas aeruginosa. Electrophoresis. 1994;15(5):594–6.
Article
CAS
PubMed
Google Scholar
Lam JS, Anderson EM, Hao Y. LPS quantitation procedures. Methods Mol Biol. 2014;1149:375–402.
Article
CAS
PubMed
Google Scholar
Fomsgaard A, Freudenberg MA, Galanos C. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol. 1990;28(12):2627–31.
CAS
PubMed
PubMed Central
Google Scholar
Lee CH, Tsai CM. Quantification of bacterial lipopolysaccharides by the purpald assay: measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core by periodate oxidation. Anal Biochem. 1999;267(1):161–8.
Article
CAS
PubMed
Google Scholar
Genco CA, Clark VL. Role of outer-membrane proteins and lipopolysaccharide in conjugation between Neisseria gonorrhoeae and Neisseria cinerea. J Gen Microbiol. 1988;134(12):3285–94.
CAS
PubMed
Google Scholar
Hitchcock PJ, Brown TM. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983;154(1):269–77.
CAS
PubMed
PubMed Central
Google Scholar
Frangioni JV, Neel BG. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993;210(1):179–87.
Article
CAS
PubMed
Google Scholar
Youn JH, et al. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol. 2008;180(7):5067–74.
Article
CAS
PubMed
Google Scholar
Ishiwa A, Komano T. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J Bacteriol. 2003;185(17):5192–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobs MA, et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003;100(24):14339–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 1999;63(3):523–53.
CAS
PubMed
PubMed Central
Google Scholar
King JD, et al. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun. 2009;15(5):261–312.
Article
CAS
PubMed
Google Scholar
Winsor GL, et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44(D1):D646–53.
Article
PubMed
Google Scholar
Hao Y, et al. Five new genes are important for common polysaccharide antigen biosynthesis in Pseudomonas aeruginosa. MBio. 2013;4(1):e00631–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choudhury B, Carlson RW, Goldberg JB. The structure of the lipopolysaccharide from a galU mutant of Pseudomonas aeruginosa serogroup-O11. Carbohydr Res. 2005;340(18):2761–72.
Article
CAS
PubMed
Google Scholar
Yokota S, et al. The structure of the O-specific chain of lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584). J Biochem. 1986;99(6):1551–61.
CAS
PubMed
Google Scholar
Rocchetta HL, Pacan JC, Lam JS. Synthesis of the A-band polysaccharide sugar D-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol. 1998;29(6):1419–34.
Article
CAS
PubMed
Google Scholar
King JD, et al. The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-D-rhamnose biosynthesis pathway. FEBS J. 2009;276(10):2686–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrd MS, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 2009;73(4):622–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forsberg LS, Carlson RW. The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359. The complete structure of the core region of R. etli lipopolysaccharides. J Biol Chem. 1998;273(5):2747–57.
Article
CAS
PubMed
Google Scholar
Huszar G, et al. Detection of pyrogens in intravenous IgG preparations. Biologicals. 2002;30(2):77–83.
Article
CAS
PubMed
Google Scholar
Ochiai M, et al. Interfering effect of diphtheria-tetanus-acellular pertussis combined (DTaP) vaccines on the bacterial endotoxin test. Biologicals. 2001;29(1):55–8.
Article
CAS
PubMed
Google Scholar
Bang FB. A bacterial disease of Limulus polyphemus. Bull Johns Hopkins Hosp. 1956;98(5):325–51.
CAS
PubMed
Google Scholar
Picken RN, Beacham IR. Bacteriophage-resistant mutants of Escherichia coli K12. Location of receptors within the lipopolysaccharide. J Gen Microbiol. 1977;102(2):305–18.
Article
CAS
PubMed
Google Scholar
Rivera M, et al. Common antigen lipopolysaccharide from Pseudomonas aeruginosa AK1401 as a receptor for bacteriophage A7. J Bacteriol. 1992;174(7):2407–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silby MW, et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009;10(5):R51.
Article
PubMed
PubMed Central
Google Scholar
Senchenkova SN, et al. Structures of the O-polysaccharide chains of the lipopolysaccharides of Xanthomonas campestris pv phaseoli var fuscans GSPB 271 and X campestris pv malvacearum GSPB 1386 and GSPB 2388. Carbohydr Res. 2002;337(19):1723–8.
Article
CAS
PubMed
Google Scholar
Winn AM, Wilkinson SG. The O7 antigen of Stenotrophomonas maltophilia is a linear D-rhamnan with a trisaccharide repeating unit that is also present in polymers for some Pseudomonas and Burkholderia species. FEMS Microbiol Lett. 1998;166(1):57–61.
CAS
PubMed
Google Scholar
Ovod V, et al. Immunochemical characterization of O polysaccharides composing the alpha-D-rhamnose backbone of lipopolysaccharide of Pseudomonas syringae and classification of bacteria into serogroups O1 and O2 with monoclonal antibodies. J Bacteriol. 1996;178(22):6459–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerantola S, Montrozier H. Structural elucidation of two polysaccharides present in the lipopolysaccharide of a clinical isolate of Burkholderia cepacia. Eur J Biochem. 1997;246(2):360–6.
Article
CAS
PubMed
Google Scholar
Garcillan-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid. 2008;60(1):1–18.
Article
CAS
PubMed
Google Scholar
Kiewitz C, et al. Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology. 2000;146(Pt 10):2365–73.
Article
CAS
PubMed
Google Scholar
Klockgether J, et al. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol. 2004;186(2):518–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hochhut B, et al. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 2001;183(4):1124–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowe-Magnus DA, Mazel D. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol. 2001;4(5):565–9.
Article
CAS
PubMed
Google Scholar
Marrero J, Waldor MK. Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev Cell. 2005;8(6):963–70.
Article
CAS
PubMed
Google Scholar
Tripathi VN, et al. Conjugal transfer of a virulence plasmid in the opportunistic intracellular actinomycete Rhodococcus equi. J Bacteriol. 2012;194(24):6790–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gunton JE, et al. Entry exclusion in the IncHI1 plasmid R27 is mediated by EexA and EexB. Plasmid. 2008;59(2):86–101.
Article
CAS
PubMed
Google Scholar
Haase J, Kalkum M, Lanka E. TrbK, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the IncP alpha plasmid RP4. J Bacteriol. 1996;178(23):6720–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao Y, et al. Single-nucleotide polymorphisms found in the migA and wbpX glycosyltransferase genes account for the intrinsic lipopolysaccharide defects exhibited by pseudomonas aeruginosa PA14. J Bacteriol. 2015;197(17):2780–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sukupolvi S, O'Connor CD. TraT lipoprotein, a plasmid-specified mediator of interactions between gram-negative bacteria and their environment. Microbiol Rev. 1990;54(4):331–41.
CAS
PubMed
PubMed Central
Google Scholar
Achtman M, Kennedy N, Skurray R. Cell--cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc Natl Acad Sci U S A. 1977;74(11):5104–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riede I, Eschbach ML. Evidence that TraT interacts with OmpA of Escherichia coli. FEBS Lett. 1986;205(2):241–5.
Article
CAS
PubMed
Google Scholar