Pressler T, Bohmova C, Conway S, Dumcius S, Hjelte L, Høiby N, et al. Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report. J Cyst Fibros. 2011;10:S75–8.
Article
PubMed
Google Scholar
Hart CA, Winstanley C. Persistent and aggressive bacteria in the lungs of cystic fibrosis children. Br Med Bull. 2002;61:81–96.
Article
PubMed
Google Scholar
Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000;288:1251–4.
Article
CAS
PubMed
Google Scholar
Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24:327–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10:841–51.
Article
CAS
PubMed
Google Scholar
Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, et al. Genetic adaptation by pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006;103:8487–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid pseudomonas aeruginosa and burkholderia cepacia. Microbiol Rev. 1996;60:539–74.
CAS
PubMed
PubMed Central
Google Scholar
Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19:419–26.
Article
CAS
PubMed
Google Scholar
Mahenthiralingam E, Campbell ME, Speert DP. Nonmotility and phagocytic resistance of pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun. 1994;62:596–605.
CAS
PubMed
PubMed Central
Google Scholar
Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J. 2012;40:227–38.
Article
PubMed
Google Scholar
Al-Aloul M, Crawley J, Winstanley C, Hart CA, Ledson MJ, Walshaw MJ. Increased morbidity associated with chronic infection by an epidemic pseudomonas aeruginosa strain in CF patients. Thorax. 2004;59:334–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ. Spread of an epidemic pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax. 2002;57:559–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohan K, Fothergill JL, Storrar J, Ledson MJ, Winstanley C, Walshaw MJ. Transmission of pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosis to a pet cat. Thorax. 2008;63:839–40.
Article
CAS
PubMed
Google Scholar
Scott FW, Pitt TL. Identification and characterization of transmissible pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol. 2004;53:609–15.
Article
CAS
PubMed
Google Scholar
Edenborough FP, Stone HR, Kelly SJ, Zadik P, Doherty CJ, Govan JRW. Genotyping of pseudomonas aeruginosa in cystic fibrosis suggests need for segregation. J Cyst Fibros. 2004;3:37–44.
Article
CAS
PubMed
Google Scholar
Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E, Freitag A, et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA J Am Med Assoc. 2010;304:2145–53.
Article
CAS
Google Scholar
Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC, Parkins MD, et al. Phenotypic heterogeneity of pseudomonas aeruginosa populations in a cystic fibrosis patient. Plos One. 2013;8:e60225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darch SE, Mcnally A, Harrison F, Corander J, Barr HL, Paszkiewicz K, et al. Recombination is a key driver of genomic and phenotypic diversity in a pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep. 2015;5:7649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashish A, Paterson S, Mowat E, Fothergill JL, Walshaw MJ, Winstanley C. Extensive diversification is a common feature of pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. J Cyst Fibros. 2013;12:790–3.
Article
PubMed
PubMed Central
Google Scholar
Clark ST, Diaz Caballero J, Cheang M, Coburn B, Wang PW, Donaldson SL, et al. Phenotypic diversity within a pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci Rep. 2015;5:10932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun. 2009;77:5631–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, Walshaw MJ, et al. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med. 2011;183:1674–9.
Article
PubMed
Google Scholar
Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol. 2007;7:45.
Article
PubMed
PubMed Central
Google Scholar
Williams D, Evans B, Haldenby S, Walshaw MJ, Brockhurst MA, Winstanley C, et al. Divergent, coexisting pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med. 2015;191:775–85.
Article
PubMed
PubMed Central
Google Scholar
Nguyen D, Singh PK. Evolving stealth: genetic adaptation of pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A. 2006;103:8305–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen SB, Marvig RL, Molin S, Krogh H, Griffin AS. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc Natl Acad Sci U S A. 2015;112:10756–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros. 2009;8:66–70.
Article
CAS
PubMed
Google Scholar
Fothergill JL, Mowat E, Ledson MJ, Walshaw MJ, Winstanley C. Fluctuations in phenotypes and genotypes within populations of pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol. 2010;59:472–81.
Article
CAS
PubMed
Google Scholar
Kümmerli R, Santorelli L a, Granato ET, Dumas Z, Dobay a, Griffin a S, et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol. 2015;28:2264–74.
Article
PubMed
Google Scholar
Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3:541–8.
Article
CAS
PubMed
Google Scholar
Carter MEK, Fothergill JL, Walshaw MJ, Rajakumar K, Kadioglu A, Winstanley C. A subtype of a pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. J Infect Dis. 2010;202:935–42.
Article
PubMed
Google Scholar
Salunkhe P, Smart CHM, Morgan JAW, Panagea S, Walshaw MJ, Hart CA, et al. A cystic fibrosis epidemic strain of pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol. 2005;187:4908–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Granato ET, Harrison F, Kümmerli R, Ross-Gillespie A. Do Bacterial “Virulence Factors” Always Increase Virulence? A Meta-Analysis of Pyoverdine Production in Pseudomonas aeruginosa As a Test Case. Front. Microbiol. 2016;7:1952.
PubMed
Google Scholar
Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tummler B. Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol. 2011;2:150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the liverpool epidemic strain of pseudomonas aeruginosa. Genome Res. 2009;19:12–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007;15:22–30.
Article
CAS
PubMed
Google Scholar
Youard ZA, Wenner N, Reimmann C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in pseudomonas species. BioMetals. 2011;24:513–22.
Article
CAS
PubMed
Google Scholar
Dumas Z, Ross-Gillespie A, Kümmerli R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc Biol Sci. 2013;280:20131055.
Article
PubMed
PubMed Central
Google Scholar
Ankenbauer R, Sriyosachati S, Cox CD. Effects of siderophores on the growth of pseudomonas aeruginosa in human serum and transferrin. Infect Immun. 1985;49:132–40.
CAS
PubMed
PubMed Central
Google Scholar
Cox CD, Adams P. Siderophore activity of pyoverdin for pseudomonas aeruginosa. Infect Immun. 1985;48:130–8.
CAS
PubMed
PubMed Central
Google Scholar
Prince RW, Cox CD, Vasil ML. Coordinate regulation of siderophore and exotoxin a production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol. 1993;175:2589–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leoni L, Orsi N, De Lorenzo V, Visca P. Functional analysis of PvdS, an iron starvation sigma factor of pseudomonas aeruginosa. J Bacteriol. 2000;182:1481–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000;54:881–941.
Article
CAS
PubMed
Google Scholar
Jiricny N, Diggle SP, West SA, Evans BA, Ballantyne G, Ross-Gillespie A, et al. Fitness correlates with the extent of cheating in a bacterium. J Evol Biol. 2010;23:738–47.
Article
CAS
PubMed
Google Scholar
Harrison F. Dynamic social behaviour in a bacterium: pseudomonas aeruginosa partially compensates for siderophore loss to cheats. J Evol Biol. 2013;26:1370–8.
Article
CAS
PubMed
Google Scholar
Reszka KJ, O’Malley Y, McCormick ML, Denning GM, Britigan BE. Oxidation of pyocyanin, a cytotoxic product from pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free Radic Biol Med. 2004;36:1448–59.
Article
CAS
PubMed
Google Scholar
Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem. 1993;268:7503–8.
PubMed
Google Scholar
R Development Core Team 2012. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012. http://www.R-project.org.