Li Z, Zhang Q, Fang Y, Yang X, Yuan Q. Examining social-economic factors in spatial and temporal change of water quality in red soil hilly region of South China: a case study in Hunan Province. Int J Environ Pollut. 2010;42:184–198.
Article
CAS
Google Scholar
Zhang Z, Tao F, Du J, Shi P, Yu D, Meng Y, et al. Surface water quality and its control in a river with intensive human impacts–a case study of the Xiangjiang River, China. J Environ Manage. 2010;91(12):2483–90.
Article
CAS
PubMed
Google Scholar
Zhang Q, Li Z, Zeng G, Li J, Fang Y, Yuan Q, et al. Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environ Monit Assess. 2009;152(1–4):123–31.
Article
CAS
PubMed
Google Scholar
Wang L, Guo Z, Xiao X, Chen T, Liao X. Song, et al. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province. J Geogr Sci. 2008;18:353–62.
Article
Google Scholar
Zhang C, Yu Z, Zeng G, Jiang M, Yang Z, Cui F, et al. Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int. 2014;73:270–81.
Article
CAS
PubMed
Google Scholar
Kwon M, Yang J, Lee S, Lee J, Ham B, Boyanov M, et al. Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au–Ag mine tailings. J Hazard Mater. 2015;15(296):147–57.
Article
Google Scholar
Gough H, Dahl A, Nolan M, Gaillard J, Stahl D. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake. J Geophys Res. 2008;113:17.
Google Scholar
Gough H, Dahl A, Tribou E, Noble P, Gaillard J, Stahl D. Elevated sulfate reduction in metal-contaminated freshwater lake sediments. J Geophys Res. 2008;113:37.
Google Scholar
Marcin C, Marcin G, Justyna M, Katarzyna K, Maria M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol. 2013;64:7–14.
Article
Google Scholar
Awasthi A, Singh M, Soni S, Singh R, Kalra A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 2014;8(12):2445–52.
Article
PubMed
PubMed Central
Google Scholar
Reich P, Tilman D, Isbell F, Mueller K, Hobbie S, Flynn D, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science. 2012;336(6081):589–92.
Article
CAS
PubMed
Google Scholar
Boutin C, Aya K, Carpenter D, Thomas P, Rowland O. Phytotoxicity testing for herbicide regulation: shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Sci Total Environ. 2012;415:79–92.
Article
CAS
PubMed
Google Scholar
Cardinale B, Srivastava D, Duffy J, Wright J, Downing A, Sankaran M, et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature. 2006;443(7114):989–92.
Article
CAS
PubMed
Google Scholar
Tang B, Zhang Z, Chen X, Bin L, Huang S, Fu F, et al. Biodiversity and succession of microbial community in a multi-habitat membrane bioreactor. Bioresource Technol. 2014;164:354–61.
Article
CAS
Google Scholar
Konstantinidis K, Isaacs N, Fett J, Simpson S, Long D, Marsh T. Microbial diversity and resistance to copper in metal-contaminated lake sediment. Microbial Ecol. 2003;45(2):191–202.
Article
CAS
Google Scholar
DellAnno A, Beolchini F, Rocchetti L, Luna G, Danovaro R. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environ Pollut. 2012;167:85–92.
Article
CAS
Google Scholar
Zhang J, Zhang Y, Quan X, Chen S. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)–anaerobic reactor. Water Res. 2013;47(15):5719–28.
Article
CAS
PubMed
Google Scholar
Wu L, Wen C, Qin Y, Tu Q, Nostrand V, Yuan T, et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 2015;15(1):125.
Article
PubMed
PubMed Central
Google Scholar
Korehi H, Blöthe M, Schippers A. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage. Res Microbiol. 2014;165(9):713–8.
Article
CAS
PubMed
Google Scholar
Zhou J, Wu L, Deng Y, Yang Y, Zhi X, Jiang Y, et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 2011;5(8):1303–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J. 2014;8:2045–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
White C, Shaman A, Gadd G. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol. 1998;16(6):572–5.
Article
CAS
PubMed
Google Scholar
Giller K, Witter E, McGrath S. Heavy metals and soil microbes. Soil Biol Biochem. 2009;41(10):2031–7.
Article
CAS
Google Scholar
Zhang J, Wang L, Yang J, Liu H, Dai J. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci Total Environ. 2015;508:29–36.
Article
CAS
PubMed
Google Scholar
Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safe. 2007;67(1):75–81.
Article
CAS
Google Scholar
Ancion P, Lear G, Dopheide A, Lewis G. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environ Pollut. 2013;173:117–24.
Article
CAS
PubMed
Google Scholar
Zhu J, Zhang J, Li Q, Han T, Xie J, Hu Y, Chai L. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar Pollut Bull. 2013;70(1):134–9.
Article
CAS
PubMed
Google Scholar
Kang S, Van N, Gough H, He Z, Hazen T, Stahl D, et al. Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiol Ecol. 2013;86:200–14.
Article
CAS
PubMed
Google Scholar
Bouskill N, Finkel J, Galloway T, Handy R, Ford T. Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology. 2010;19:317–28.
Article
CAS
PubMed
Google Scholar
Chai L, Wang Z, Wang Y, Yang Z, Wang H, Wu X. Ingestion risks of metals in groundwater based on TIN model and dose–response assessment - a case study in the Xiangjiang watershed, central-south China. Sci Total Environ. 2010;408:3118–24.
Article
CAS
PubMed
Google Scholar
Tilman D, Reich P, Knops J. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature. 2006;441(7093):629–32.
Article
CAS
PubMed
Google Scholar
Weigelt A, Schumacher J, Roscher C, Schmid B. Does biodiversity increase spatial stability in plant community biomass? Ecol Lett. 2008;11(4):338–47.
Article
PubMed
Google Scholar
Mulder C, Uliassi D, Doak D. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc Natl Acad Sci. 2001;98(12):6704–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27(1):282–8.
Article
Google Scholar
Maqbool Z, Asghar H, Shahzad T, Hussain S, Riaz M, Ali S, et al. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotox Environ Safe. 2014;7:114.
Google Scholar
Kumar K, Srivastava S, Singh N, Behl H. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater. 2009;170(1):51–7.
Article
CAS
PubMed
Google Scholar
Gorny J, Billon G, Lesven L, Dumoulin D, Madé B, Noiriel C. Arsenic behavior in river sediments under redox gradient: a review. Sci Total Environ. 2015;505:423–34.
Article
CAS
PubMed
Google Scholar
Scala D, Hacherl E, Cowan R, Young L, Kosson D. Characterization of Fe (III)-reducing enrichment cultures and isolation of Fe (III)-reducing bacteria from the Savannah River site, South Carolina. Res Microbiol. 2006;157(8):772–83.
Article
CAS
PubMed
Google Scholar
Jameson E, Rowe O, Hallberg K, Johnson D. Sulfidogenesis and selective precipitation of metals at low pH mediated by Acidithiobacillus spp. and acidophilic sulfate-reducing bacteria. Hydrometallurgy. 2010;104(3):488–93.
Article
CAS
Google Scholar
Kieu H, Mueller E, Horn H. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res. 2011;45(13):3863–70.
Article
CAS
PubMed
Google Scholar
Riefler R, Krohn J, Stuart B, Socotch C. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage. Sci Total Environ. 2008;394(2):222–9.
Article
PubMed
Google Scholar
Venceslau S, Stockdreher Y, Dahl C, Pereira I. The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. BBA-Bioenergetics. 2014;1837(7):1148–64.
Article
CAS
PubMed
Google Scholar
Nies D. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27(2–3):313–39.
Article
CAS
PubMed
Google Scholar
Zhang J, Wang L, Yang J, Liu H, Dai J. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci Total Environ. 2015;1(508):29–36.
Article
Google Scholar
Ramsey M, Thompson M. High-accuracy analysis by inductively coupled plasma atomic emission spectrometry using the parameter-related internal standard method. Anal At Spectrom. 1987;2:497–502.
Article
CAS
Google Scholar
Kejnovsky E, Kypr J. DNA extraction by zinc. Nucleic Acids Res. 1997;25(9):1870–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gough H, Stahl D. Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. ISME J. 2011;5(3):543–58.
Article
PubMed
Google Scholar
Wu L, Liu X, Schadt C, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microb. 2006;72(7):4931–41.
Article
CAS
Google Scholar
Cong J, Liu X, Lu H, Xu H, Li Y, Deng Y, et al. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiol. 2015;15:167.
Article
PubMed
PubMed Central
Google Scholar
Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J. Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. Appl Environ Microb. 2010;4(76):1088–94.
Article
Google Scholar
Wu L, Kellogg L, Devol A, Tiedje J, Zhou J. Microarray-Based Characterization of Microbial Community Functional Structure and Heterogeneity in Marine Sediments from the Gulf of Mexico. Appl Environ Microb. 2008;74(14):4516–29.
Article
CAS
Google Scholar