Buse HY, Schoen ME, Ashbolt NJ: Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012, 46: 921-933. 10.1016/j.watres.2011.12.022.
CAS
PubMed
Google Scholar
Taylor M, Ross K, Bentham R: Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol. 2009, 58: 538-547. 10.1007/s00248-009-9514-z.
PubMed
Google Scholar
Stoodley P, Sauer K, Davies DG, Costerton JW: Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002, 56: 187-209. 10.1146/annurev.micro.56.012302.160705.
CAS
PubMed
Google Scholar
Ndiongue S, Huck PM, Slawson RM: Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Res. 2005, 39: 953-964. 10.1016/j.watres.2004.12.019.
CAS
PubMed
Google Scholar
Moritz MM, Flemming H-C, Wingender J: Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health. 2010, 213: 190-197. 10.1016/j.ijheh.2010.05.003.
CAS
PubMed
Google Scholar
Miettinen IT, Vartiainen T, Martikainen PJ: Phosphorus and bacterial growth in drinking water. Appl Environ Microbiol. 1997, 63: 3242-3245.
PubMed Central
CAS
PubMed
Google Scholar
Fang W, Hu JY, Ong SL: Influence of phosphorus on biofilm formation in model drinking water distribution systems. J Appl Microbiol. 2009, 106: 1328-1335. 10.1111/j.1365-2672.2008.04099.x.
CAS
PubMed
Google Scholar
Chu C, Lu C, Lee C: Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J Environ Manage. 2005, 74: 255-263. 10.1016/j.jenvman.2004.09.007.
CAS
PubMed
Google Scholar
Kim BR, Anderson JE, Mueller S, Gaines W, Kendall M: Literature review-efficacy of various disinfectants against Legionella in water systems. Water Res. 2002, 36: 4433-4444. 10.1016/S0043-1354(02)00188-4.
CAS
PubMed
Google Scholar
Butterfield PW, Camper AK, Ellis BD, Jones WL: Chlorination of model drinking water biofilm: implications for growth and organic carbon removal. Water Res. 2002, 36: 4391-4405. 10.1016/S0043-1354(02)00148-3.
CAS
PubMed
Google Scholar
Percival SL, Knapp JS, Wales DS, Edyvean RGJ: The effect of turbulent flow and surface roughness on biofilm formation in drinking water. J Ind Microbiol Biotechnol. 1999, 22: 152-159. 10.1038/sj.jim.2900622.
CAS
Google Scholar
Douterelo I, Sharpe RL, Boxall JB: Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res. 2013, 47: 503-516. 10.1016/j.watres.2012.09.053.
CAS
PubMed
Google Scholar
States SJ, Conley LF, Ceraso M, Stephenson TE, Randy S, Wadowsky RM, Mcnamara ANNM, Yee RB: Effects of metals on legionella pneumophila growth in drinking water plumbing systems. Appl Environ Microbiol. 1985, 50: 1149-1154.
PubMed Central
CAS
PubMed
Google Scholar
Zheng H, Chatfield CH, Liles MR, Cianciotto NP: Secreted pyomelanin of legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect Immun. 2013, 81: 4182-4191. 10.1128/IAI.00858-13.
PubMed Central
CAS
PubMed
Google Scholar
Cianciotto NP: Iron acquisition by Legionella pneumophila. BioMetals. 2007, 20: 323-331. 10.1007/s10534-006-9057-4.
CAS
PubMed
Google Scholar
Rakić A, Perić J, Foglar L: Influence of temperature, chlorine residual and heavy metals on the presence of Legionella pneumophila in hot water distribution systems. Ann Agric Environ Med. 2012, 19: 431-436.
PubMed
Google Scholar
Declerck P: Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol. 2010, 12: 557-566. 10.1111/j.1462-2920.2009.02025.x.
CAS
PubMed
Google Scholar
Berry D, Xi C, Raskin L: Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol. 2006, 17: 297-302. 10.1016/j.copbio.2006.05.007.
CAS
PubMed
Google Scholar
Szewzyk U, Szewzyk R, Manz WSK-H: Microbiological safety of drinking water. Annu Rev Microbiol. 2000, 54: 81-127. 10.1146/annurev.micro.54.1.81.
CAS
PubMed
Google Scholar
Mekkour M, Khalil E, Driss B, Tai J, Cohen N, De Microbiologie D, Environnement D, Pasteur I: Legionella pneumophila: an environmental organism and accidental pathogen. Int J Sci Technol. 2013, 2: 187-196.
Google Scholar
Yamamoto H, Sugiura M, Kusunoki S: Factors stimulating propagation of legionellae in cooling tower water. Appl Environ Microbiol. 1992, 58: 1394-1397.
PubMed Central
CAS
PubMed
Google Scholar
Bargellini A, Marchesi I, Righi E, Ferrari A, Cencetti S, Borella P, Rovesti S: Parameters predictive of Legionella contamination in hot water systems: association with trace elements and heterotrophic plate counts. Water Res. 2011, 45: 2315-2321. 10.1016/j.watres.2011.01.009.
CAS
PubMed
Google Scholar
Stout JE, Yu VL, Best MG: Ecology of Legionella pneumophila within water distribution systems. Appl Environ Microbiol. 1985, 49: 221-228.
PubMed Central
CAS
PubMed
Google Scholar
Wadowsky R, Yee R: Effect of non-Legionel- laceae bacteria on the multiplication of Legionella pneumophila in potable water. Appl Environ Microbiol. 1985, 49: 1206-1210.
PubMed Central
CAS
PubMed
Google Scholar
Edagawa A, Kimura A, Doi H, Tanaka H, Tomioka K, Sakabe K, Nakajima C, Suzuki Y: Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J Appl Microbiol. 2008, 105: 2104-2114. 10.1111/j.1365-2672.2008.03932.x.
CAS
PubMed
Google Scholar
Stewart CR, Muthye V, Cianciotto NP: Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS One. 2012, 7: e50560-10.1371/journal.pone.0050560.
PubMed Central
CAS
PubMed
Google Scholar
Gião MS, Azevedo NF, Wilks S, Vieira MJ, Keevil CW: Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol. 2011, 11: 57-10.1186/1471-2180-11-57.
PubMed Central
PubMed
Google Scholar
Guerrieri E, Bondi M, Sabia C, De Niederhäusern S, Borella P, Messi P: Effect of bacterial interference on biofilm development by Legionella pneumophila. Curr Microbiol. 2008, 57: 532-536. 10.1007/s00284-008-9237-2.
CAS
PubMed
Google Scholar
Toze S, Sly L, MacRae I, Fuerst J: Inhibition of growth of legionella species by heterotrophic plate count bacteria isolated from chlorinated drinking water. Curr Microbiol. 1990, 21: 139-143. 10.1007/BF02091832.
Google Scholar
Kimura S, Tateda K, Ishii Y, Horikawa M, Miyairi S, Gotoh N, Ishiguro M, Yamaguchi K: Pseudomonas aeruginosa Las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species. Microbiology. 2009, 155 (Pt 6): 1934-1939. 10.1099/mic.0.026641-0.
CAS
PubMed
Google Scholar
Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W: Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol. 2006, 72: 4323-4328. 10.1128/AEM.00070-06.
PubMed Central
CAS
PubMed
Google Scholar
Mampel J, Spirig T, Weber SS, Janus AJ, Molin S, Hilbi H: Planktonic replication is essential for biofilm formation by legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol. 2006, 72: 2885-2895. 10.1128/AEM.72.4.2885-2895.2006.
PubMed Central
CAS
PubMed
Google Scholar
Orsi GB, Vitali M, Marinelli L, Ciorba V, Tufi D, Del Cimmuto A, Ursillo P, Fabiani M, De Santis S, Protano C, Marzuillo C, De Giusti M: Legionella control in the water system of antiquated hospital buildings by shock and continuous hyperchlorination: 5 years experience. BMC Infect Dis. 2014, 14: 394-10.1186/1471-2334-14-394.
PubMed Central
PubMed
Google Scholar
Gałecki A, Burzykowski T: Linear Mixed-Effects Models Using R. 2013, Springer New York, New York, NY
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team: nlme: Linear and Nonlinear Mixed Effects Models. 2014. Available at (Accessed 19/09/2014)., [http://CRAN.R-project.org/web/packages/nlme]
Lenth RV: lsmeans: Least-Squares Means. 2014. Available at (Accessed 19/09/2014)., [http://CRAN.R-project.org/lsmeans]
Lau HY, Ashbolt NJ: The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol. 2009, 107: 368-378. 10.1111/j.1365-2672.2009.04208.x.
CAS
PubMed
Google Scholar
Declerck P, Behets J, Margineanu A, Van Hoef V, De Keersmaecker B, Ollevier F: Replication of Legionella pneumophila in biofilms of water distribution pipes. Microbiol Res. 2009, 164: 593-603. 10.1016/j.micres.2007.06.001.
CAS
PubMed
Google Scholar
Cooper IR, Hanlon GW: Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection. J Hosp Infect. 2010, 74: 152-159. 10.1016/j.jhin.2009.07.005.
CAS
PubMed
Google Scholar
Morton SC, Zhang Y, Edwards M: Implications of nutrient release from iron metal for microbial regrowth in water distribution systems. Water Res. 2005, 39: 2883-2892. 10.1016/j.watres.2005.05.024.
CAS
PubMed
Google Scholar
Lehtola MJ, Miettinen IT, Keinänen MM, Kekki TK, Laine O, Hirvonen A, Vartiainen T, Martikainen PJ: Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004, 38: 3769-3779. 10.1016/j.watres.2004.06.024.
CAS
PubMed
Google Scholar
Lehtola MJ, Miettinen IT, Lampola T, Hirvonen A, Vartiainen T, Martikainen PJ: Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 2005, 39: 1962-1971. 10.1016/j.watres.2005.03.009.
CAS
PubMed
Google Scholar
Hallam NB, West JR, Forster CF, Powell JC, Spencer I: The decay of chlorine associated with the pipe wall in water distribution systems. Water Res. 2002, 36: 3479-3488. 10.1016/S0043-1354(02)00056-8.
CAS
PubMed
Google Scholar
Wingender J, Flemming H-C: Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health. 2011, 214: 417-423. 10.1016/j.ijheh.2011.05.009.
PubMed
Google Scholar