Schoonhoven LM, van Loon JJA, Dicke M: Insect-Plant Biology 2nd Edition. 2005, Oxford University Press, New York, USA
Google Scholar
Janson EM, Stireman JO, Singer MS, Abbot P: Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution. 2008, 62: 997-1012.
PubMed
Google Scholar
Feldhaar H: Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol. 2011, 36: 533-543.
Google Scholar
Dillon RJ, Dillon VM: The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004, 49: 71-92.
CAS
PubMed
Google Scholar
Douglas AE: The microbial dimension in insect nutritional ecology. Funct Ecol. 2009, 23: 38-47.
Google Scholar
Engel P, Moran NA: The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev. 2013, 37: 699-735.
CAS
PubMed
Google Scholar
Nakabachi A, Ishikawa H: Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol. 1999, 45: 1-6.
CAS
PubMed
Google Scholar
McCutcheon JP, Moran NA: Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci. 2007, 104: 19392-19397.
PubMed Central
CAS
PubMed
Google Scholar
Warnecke F, Luginbhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernndez M, Murillo C, Acosta LG: Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007, 450: 560-565.
CAS
PubMed
Google Scholar
Whitehead LF, Wilkinson TL, Douglas AE: Nitrogen recycling in the pea aphid (Acyrtosiphon pisum) symbiosis. Proc R Soc London B Biol Sci. 1992, 250: 115-117.
Google Scholar
Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF: Mountain pine beetles colonizing historical and nave host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol. 2013, 79: 3468-3475.
PubMed Central
CAS
PubMed
Google Scholar
Genta FA, Dillon RJ, Terra WR, Ferreira C: Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol. 2006, 52: 593-601.
CAS
PubMed
Google Scholar
Baumann P: Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005, 59: 155-189.
CAS
PubMed
Google Scholar
Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008, 42: 165-190.
CAS
PubMed
Google Scholar
Stouthamer R, Breeuwer JAJ, Hurst GDD:Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999, 53: 71-102.
CAS
PubMed
Google Scholar
Frago E, Dicke M, Godfray HCJ: Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol. 2012, 27: 705-711.
PubMed
Google Scholar
Oliver KM, Degnan PH, Burke GR, Moran NA: Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol. 2010, 55: 247-266.
CAS
PubMed
Google Scholar
Tsuchida T, Koga R, Fukatsu T: Host plant specialization governed by facultative symbiont.Science 2004, 303:1989.,
Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ: Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013, 23: 1-5.
Google Scholar
Breznak JA: Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol. 1982, 36: 323-343.
CAS
PubMed
Google Scholar
Bracke JW, Cruden DL, Markovetz AJ: Intestinal microbial flora of the of the American cockroach, Periplaneta americana L. Appl Environ Microbiol. 1979, 38: 945-955.
PubMed Central
CAS
PubMed
Google Scholar
Glasgow H: The gastric caeca and the caecal bacteria of the Heteroptera. Biol Bull. 1914, 26: 101-170.
Google Scholar
Jones KG, Dowd PF, Blackwell M: Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycol Res. 1999, 103: 542-546.
Google Scholar
Nalepa CA, Bignell DE, Bandi C: Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc. 2001, 48: 194-201.
Google Scholar
Hosokawa T, Kikuchi Y, Meng XY, Fukatsu T: The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima. FEMS Microbiol Ecol. 2005, 54: 471-477.
CAS
PubMed
Google Scholar
Shibata TF, Maeda T, Nikoh N, Yamaguchi K, Oshima K, Hattori M, Nishiyama T, Hasebe M, Fukatsu T, Kikuchi Y, Shigenobu S: Bacterial symbiont of the Bean bug Riptortus pedestris. Genome Announc. 2013, 1: 1-2.
Google Scholar
Olivier-Espejel AS, Sabree ZL, Noge K, Becerra JX: Gut microbiota in nymph and adults of the giant mesquite bug (Thasus neocalifornicus) (Heteroptera: Coreidae) is dominated by Burkholderia acquired de novo every generation. Environ Entomol. 2011, 40: 1102-1110.
PubMed
Google Scholar
Kikuchi Y, Hosokawa T, Fukatsu T: Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007, 73: 4308-4316.
PubMed Central
CAS
PubMed
Google Scholar
Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T: Obligate symbiont involved in pest status of host insect. Proc R Soc B Biol Sci. 2007, 274: 1979-1984.
CAS
Google Scholar
Kukor JJ, Martin MM: Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science. 1983, 220: 1161-1163.
CAS
PubMed
Google Scholar
r?tka P, Paoutov S, Kola?k M:Daldinia decipiens and Entonaema cinnabarina as fungal symbionts of Xiphydria wood wasps. Mycol Res. 2007, 111 (Pt 2): 224-231.
Google Scholar
Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF: Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 2011, 5: 1323-1331.
PubMed Central
CAS
PubMed
Google Scholar
Weber NA: Fungus-growing ants. Science. 1966, 153: 587-604.
CAS
PubMed
Google Scholar
Martinson VG, Moy J, Moran NA: Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol. 2012, 78: 2830-2840.
PubMed Central
CAS
PubMed
Google Scholar
Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA: A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol. 2011, 20: 619-628.
PubMed
Google Scholar
Jeyaprakash A, Hoy MA, Allsopp MH: Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol. 2003, 84: 96-103.
CAS
PubMed
Google Scholar
Mohr KI, Tebbe CC: Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol. 2006, 8: 258-272.
CAS
PubMed
Google Scholar
Olofsson TC, Vsquez A: Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol. 2008, 57: 356-363.
CAS
PubMed
Google Scholar
Moran NA, Hansen AK, Powell JE, Sabree ZL: Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees.PLoS One 2012, 7:e36393.,
Van Borm S, Buschinger A, Boomsma JJ, Billen J:Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc R Soc London B Biol Sci. 2002, 269: 2023-2027.
CAS
Google Scholar
Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE, Hu Y, Basinger U, Mott BM, Buck N, Wheeler DE: Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol. 2012, 21: 2282-2296.
PubMed
Google Scholar
Russell JA, Moreau CS, Goldman-huertas B, Fujiwara M, Lohman DJ, Pierce NE: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci. 2009, 106: 21236-21241.
PubMed Central
CAS
PubMed
Google Scholar
Degnan P, Lazarus A, Brock C, Wernegreen J: Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol. 2004, 53: 95-110.
PubMed
Google Scholar
Gil R, Silva FJ, Zientz E, Delmotte F, Gonzlez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Hlldobler B, van Ham RCHJ, Gross R, Moya A: The genome sequence of blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci. 2003, 100: 9388-9393.
PubMed Central
CAS
PubMed
Google Scholar
Degnan PH, Lazarus AB, Wernegreen JJ: Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res. 2005, 15: 1023-1033.
PubMed Central
CAS
PubMed
Google Scholar
Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, Gross R: Nutritional upgrading for omnivorous carpenter ants by the endosymbiontBlochmannia.BMC Biol 2007, 5:48.,
Giron D, Kaiser W, Imbault N, Casas J: Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol Lett. 2007, 3: 340-343.
PubMed Central
CAS
PubMed
Google Scholar
Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M: Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol. 2013, 27: 599-609.
Google Scholar
Stone GN, Schnrogge K: The adaptive significance of insect gall morphology. Trends Ecol Evol. 2003, 18: 512-522.
Google Scholar
Schwachtje J, Baldwin IT: Why does herbivore attack reconfigure primary metabolism?. Plant Physiol. 2008, 146: 845-851.
PubMed Central
CAS
PubMed
Google Scholar
Kaiser W, Huguet E, Casas J, Commin C, Giron D: Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B Biol Sci. 2010, 277: 2311-2319.
CAS
Google Scholar
Jameson P: Cytokinins and auxins in plant-pathogen interactions An overview. Plant Growth Regul. 2000, 32: 369-380.
CAS
Google Scholar
Sakakibara H: Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006, 57: 431-449.
CAS
PubMed
Google Scholar
Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K: Cytokinin: secret agent of symbiosis. Trends Plant Sci. 2008, 13: 115-120.
CAS
PubMed
Google Scholar
Body M, Kaiser W, Dubreuil G, Casas J, Giron D: Leaf-miners co-opt microorganisms to enhance their nutritional environment. J Chem Ecol. 2013, 39: 969-977.
CAS
PubMed
Google Scholar
Auger-Rozenberg M-A, Roques A: Seed wasp invasions promoted by unregulated seed trade affect vegetal and animal biodiversity. Integr Zool. 2012, 7: 228-246.
PubMed
Google Scholar
Grissell EE: An annotated catalog of world Megastigminae (Hymenoptera: Chalcidoidea: Torymidae). Contrib Am Entomol Inst. 1999, 31: 1-92.
Google Scholar
Roques A, Skrzypczyμska M: Seed-infesting chalcids of the genus Megastigmus Dalman, 1820 (Hymenoptera: Torymidae) native and introduced to the West Palearctic region: Taxonomy, host specificity and distribution. J Nat Hist. 2003, 37: 127-238.
Google Scholar
von Aderkas P, Rouault G, Wagner R, Rohr R, Roques A: Seed parasitism redirects ovule development in Douglas fir. Proc R Soc B Biol Sci. 2005, 272: 1491-1496.
Google Scholar
von Aderkas P, Rouault G, Wagner R, Chiwocha S, Roques A: Multinucleate storage cells in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) and the effect of seed parasitism by the chalcid Megastigmus spermotrophus Wachtl. Heredity. 2005, 94: 616-622.
CAS
PubMed
Google Scholar
Chiwocha S, Rouault G, Abrams S, von Aderkas P: Parasitism of seed of Douglas fir (Pseudotsuga menziesii) by the seed chalcid, Megastigmus spermotrophus, and its influence on seed hormone physiology. Sex Plant Reprod. 2007, 20: 19-25.
CAS
Google Scholar
Rouault G, Turgeon J, Candau J-N, Roques A, von Aderkas P: Oviposition strategies of conifer seed chalcids in relation to host phenology. Naturwissenschaften. 2004, 91: 472-480.
CAS
PubMed
Google Scholar
Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstdter J, Hurst GD: The diversity of reproductive parasites among arthropods:Wolbachiado not walk alone.BMC Biol 2008, 6:27.,
Boivin T, Henri H, Vaver F, Gidoin C, Candau J-N, Magnoux E, Roques A, Auger-Rozenbert M-A: Epidemiology of thelytoky induced by the endosymbiotic Wolbachia across seed-specialized wasp species: host plant specialization matters. Mol Ecol. 2014, 23: 2362-2375.
CAS
PubMed
Google Scholar
Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM: Evolution and diversity ofRickettsiabacteria.BMC Biol 2009, 7:6.,
Ludwig W, Schleifer K-H, Whitman WB: Revised road map to the phylum Firmicutes. Bergeys Manual of Systematic Bacteriology Vol 3. 2008, Springer, New York
Google Scholar
Zug R, Hammerstein P: Still a host of hosts forWolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected.PLoS One 2012, 7:e38544.,
Werren JH, Baldo L, Clark ME:Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008, 6: 741-751.
CAS
PubMed
Google Scholar
Stouthamer R:Wolbachia-induced parthenogenesis. Influential Passengers. Edited by: ONeill SL, Werren JH. 1997, Oxford University Press, New York, USA, 102-124.
Google Scholar
Rokas A, Atkinson RJ, Nieves-Aldrey J-L, West SA, Stone GN: The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Mol Ecol. 2002, 11: 1815-1829.
CAS
PubMed
Google Scholar
Plantard O, Rasplus J, Clainche Le I, Solignac M:Wolbachia-induced thelytoky in the rose gallwasp Diplolepis spinosissimae (Giraud) (Hymenoptera: Cynipidae), and its consequences on the genetic structure of its host. Proc R Soc London B Biol Sci. 1998, 265: 1075-1080.
Google Scholar
Perlman SJ, Hunter MS, Zchori-Fein E: The emerging diversity of Rickettsia. Proc R Soc B Biol Sci. 2006, 273: 2097-2106.
Google Scholar
Werren JH, Hurst GD, Zhang W, Breeuwer JA, Stouthamer R, Majerus ME: Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol. 1994, 176: 388-394.
PubMed Central
CAS
PubMed
Google Scholar
Hagimori T, Abe Y, Date S, Miura K: The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr Microbiol. 2006, 52: 97-101.
CAS
PubMed
Google Scholar
Teixeira L, Ferreira A, Ashburner M: The bacterial symbiontWolbachiainduces resistance to RNA viral infections inDrosophila melanogaster.PLoS Biol 2008, 6:e2.,
?ukasik P, van Asch M, Guo H, Ferrari J, Godfray HCJ: Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013, 16: 214-218.
PubMed
Google Scholar
Gehrer L, Vorburger C: Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett. 2012, 8: 613-615.
PubMed Central
PubMed
Google Scholar
Duron O, Wilkes TE, Hurst GDD: Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett. 2010, 13: 1139-1148.
PubMed
Google Scholar
Bressan A, Smtey O, Arneodo J, Lherminier J, Boudon-Padieu E: Vector transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathology. 2009, 99: 1289-1296.
CAS
PubMed
Google Scholar
Jaenike J, Polak M, Fiskin A, Helou M, Minhas M: Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett. 2007, 3: 23-25.
PubMed Central
CAS
PubMed
Google Scholar
Moran NA, Dunbar HE: Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci U S A. 2006, 103: 12803-12806.
PubMed Central
CAS
PubMed
Google Scholar
Gatineau F, Jacob N, Vautrin S, Larrue J, Lherminier J, Richard-Molard M, Boudon-Padieu E: Association with the syndrome Basses Richesses of sugar beet of a Phytoplasma and a bacterium-like organism transmitted by a Pentastiridius sp. Phytopathology. 2002, 92: 384-392.
CAS
PubMed
Google Scholar
Danet J, Foissac X, Zreik L, Salar P, Verdin E, Nourrisseau J, Garnier M: Candidatus Phlomobacter fragariae is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology. 2002, 93: 644-649.
Google Scholar
Colman DR, Toolson EC, Takacs-Vesbach CD: Do diet and taxonomy influence insect gut bacterial communities?. Mol Ecol. 2012, 20: 5124-5137.
Google Scholar
Brucker RM, Bordenstein SR: The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution. 2012, 66: 349-362.
PubMed
Google Scholar
Kautz S, Rubin BER, Russell JA, Moreau CS: Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl Environ Microbiol. 2013, 79: 525-534.
PubMed Central
CAS
PubMed
Google Scholar
Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG: Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol. 2011, 61: 821-831.
PubMed
Google Scholar
Janssen PH: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006, 72: 1719-1728.
PubMed Central
CAS
PubMed
Google Scholar
Da Rocha UN, van Overbeek L, van Elsas JD: Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol. 2009, 69: 313-328.
PubMed
Google Scholar
Mundt JO, Hinkle NF: Bacteria within ovules and seeds. Appl Environ Microbiol. 1976, 32: 694-698.
PubMed Central
CAS
PubMed
Google Scholar
Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N: Identification and characterization of bacterial endophytes of rice. Mycopathologia. 1996, 134: 151-159.
CAS
PubMed
Google Scholar
Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW: Bacterial endophytes in agricultural crops. Can J Microbiol. 1997, 43: 895-914.
CAS
Google Scholar
Sharkey MJ: Phylogeny and classification of Hymenoptera. Zootaxa. 2007, 1668: 521-548.
Google Scholar
Hakim RS, Baldwin K, Smagghe G: Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol. 2010, 55: 593-608.
CAS
PubMed
Google Scholar
Bution ML, Caetano FH: Symbiotic bacteria and the structural specializations in the ileum of Cephalotes ants. Micron. 2010, 41: 373-381.
PubMed
Google Scholar
Brenner DJ, Krieg NR, Staley JT: Volume 2, Part C, The Proteobacteria; the Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Bergeys Manual of Systematic Bacteriology. 2005, Springer, New York, 2
Google Scholar
Jones RT, McCormick KF, Martin AP: Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl Environ Microbiol. 2008, 74: 1667-1670.
PubMed Central
CAS
PubMed
Google Scholar
Lundgren JG, Lehman RM: Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle.PLoS One 2010, 5:e10831.,
Hail D, Dowd SE, Bextine B: Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) Lifestages. Environ Entomol. 2012, 41: 98-107.
PubMed
Google Scholar
Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP: Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013, 153: 1567-1578.
CAS
PubMed
Google Scholar
Vaneechoutte M, Kmpfer P, Thierry DB, Falsen E, Verschraegen G:Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol. 2004, 54: 317-327.
PubMed
Google Scholar
Kikuchi Y, Hosokawa T, Fukatsu T: An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011, 5: 446-460.
PubMed Central
PubMed
Google Scholar
Kikuchi Y, Meng X, Fukatsu T: Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol. 2005, 71: 4035-4043.
PubMed Central
CAS
PubMed
Google Scholar
Stone SL, Gifford DJ: Structural and biochemical changes in Loblolly Pine (Pinus taeda L.) seeds during germination and early seedling growth. II. Storage triacylglycerols and carbohydrates. Int J Plant Sci. 1999, 160: 663-671.
CAS
Google Scholar
King JE, Gifford DJ: Amino acid utilization in seeds of Loblolly pine during germination and early seedling growth. 1. Arginine and arginase activity. Plant Physiol. 1997, 113: 1125-1135.
PubMed Central
CAS
PubMed
Google Scholar
Todd CD, Gifford DJ: The role of the megagametophyte in maintaining loblolly pine (Pinus taeda L.) seedling arginase gene expression in vitro. Planta. 2002, 215: 110-118.
CAS
PubMed
Google Scholar
Pant R: Nitrogen excretion in insects. Proc Anim Sci. 1988, 97: 379-415.
CAS
Google Scholar
Rosenthal GA, Janzen DH, Dahlman DL, Url S, Carolina N, Hill C: Degradation and detoxification of canavanine by a specialized seed predator. Science. 1977, 196: 658-660.
CAS
PubMed
Google Scholar
Sabree ZL, Kambhampati S, Moran NA: Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci. 2009, 106: 19521-19526.
PubMed Central
CAS
PubMed
Google Scholar
Zientz E, Dandekar T, Gross R: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev. 2004, 68: 745-770.
PubMed Central
CAS
PubMed
Google Scholar
Kashima T, Nakamura T, Tojo S: Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. J Insect Physiol. 2006, 52: 816-825.
CAS
PubMed
Google Scholar
Chen W-M, James EK, Prescott AR, Kierans M, Sprent JI: Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact. 2003, 16: 1051-1061.
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739.
PubMed Central
CAS
PubMed
Google Scholar
Wang H-X, Geng Z-L, Zeng Y, Shen Y-M: Enriching plant microbiota for a metagenomic library construction. Environ Microbiol. 2008, 10: 2684-2691.
CAS
PubMed
Google Scholar
Aires T, Marb N, Serrao EA, Duarte CM, Arnaud-Haond S: Selective elimination of chloroplastidial DNA for metagenomics of bacteria associated with the green algae Caulerpa taxifolia (Bryopsidophyceae). J Phycol. 2012, 48: 483-490.
Google Scholar
Palavesam A, Guerrero FD, Heekin AM, Wang J, Dowd SE, Sun Y, Foil LD, de Prez Len AA: Pyrosequencing-based analysis of the microbiome associated with the Horn Fly,Haematobia irritans.PLoS One 2012, 7:e44390.,
Shange RS, Ankumah RO, Ibekwe AM, Zabawa R, Dowd SE: Distinct soil bacterial communities revealed under a diversely managed agroecosystem.PLoS One 2012, 7:e40338.,
Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS: Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP).BMC Microbiol 2008, 8:125.,
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009, 75: 7537-7541.
PubMed Central
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pea AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010, 7: 335-336.
PubMed Central
CAS
PubMed
Google Scholar
Reeder J, Knight R: Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods. 2010, 7: 668-669.
PubMed Central
CAS
PubMed
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R: UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011, 27: 2194-2200.
PubMed Central
CAS
PubMed
Google Scholar
Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010, 26: 2460-2461.
CAS
PubMed
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR: Nave bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007, 73: 5261-5267.
PubMed Central
CAS
PubMed
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6: 610-618.
PubMed Central
CAS
PubMed
Google Scholar
Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE: Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 2012, 6: 94-103.
PubMed Central
CAS
PubMed
Google Scholar
Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009, 25: 1335-1337.
PubMed Central
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP: FastTree 2 - Approximately maximum-likelihood trees for large alignments.PLoS One 2010, 5:e9490.,
Sourial N, Wolfson C, Zhu B, Quail J, Fletcher J, Karunananthan S, Bandeen-Roche K, Bland F, Bergman H: Correspondence analysis is a useful tool to uncover the relationships among categorical variables. J Clin Epidemiol. 2010, 63: 638-646.
PubMed Central
PubMed
Google Scholar
A language and environmnet for statistical computing. 2013, R Foundation for Statistical Computing, Vienna, Austria
Mcmurdie PJ, Holmes S: Phyloseq: A bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pacific Symp Biocomput. 2012, 17: 235-246.
Google Scholar
Dray S, Dufour A-B: The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw. 2007, 22: 1-20.
Google Scholar
Lozupone C, Knight R: UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005, 71: 8228-8235.
PubMed Central
CAS
PubMed
Google Scholar
Hamady M, Lozupone C, Knight R: Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010, 4: 17-27.
PubMed Central
CAS
PubMed
Google Scholar
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG: Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol. 1998, 64: 795-799.
PubMed Central
CAS
PubMed
Google Scholar
Schabereiter-Gurtner C, Lubitz W, Rlleke S: Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods. 2003, 52: 251-260.
CAS
PubMed
Google Scholar