Jenssen H, Hamill P, Hancock RE: Peptide antimicrobial agents. Clin Microbiol Rev. 2006, 19: 491-511. 10.1128/CMR.00056-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown KL, Hancock RE: Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006, 18: 24-30. 10.1016/j.coi.2005.11.004.
Article
CAS
PubMed
Google Scholar
Yeaman MR, Yount NY: Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003, 55: 27-55. 10.1124/pr.55.1.2.
Article
CAS
PubMed
Google Scholar
Powers JP, Hancock RE: The relationship between peptide structure and antibacterial activity. Peptides. 2003, 24: 1681-1691. 10.1016/j.peptides.2003.08.023.
Article
CAS
PubMed
Google Scholar
Lohner K, Blondelle SE: Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High Throughput Screen. 2005, 8: 241-256. 10.2174/1386207053764576.
Article
CAS
PubMed
Google Scholar
Andrä J, Gutsmann T, Garidel P, Brandenburg K: Mechanisms of endotoxin neutralization by synthetic compounds. J Endotoxin Res. 2006, 12: 261-277.
PubMed
Google Scholar
Savage PB: Multidrug-resistant bacteria: overcoming antibiotic permeability barriers of Gram-negative bacteria. Ann Med. 2001, 33: 167-171. 10.3109/07853890109002073.
Article
CAS
PubMed
Google Scholar
Vaara M: Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992, 56: 395-411.
PubMed Central
CAS
PubMed
Google Scholar
Morassutti C, De Amicis F, Bandiera A, Marchetti S: Expression of SMAP-29 cathelicidin-like peptide in bacterial cells by intein-mediated system. Protein Expr Purif. 2005, 39: 160-168. 10.1016/j.pep.2004.11.006.
Article
CAS
PubMed
Google Scholar
Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ, Ouellette AJ: Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem. 2004, 279: 44188-44196. 10.1074/jbc.M406154200.
Article
CAS
PubMed
Google Scholar
Tanaka D, Miyasaki KT, Lehrer RI: Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium. Oral Microbiol Immunol. 2000, 15: 226-231. 10.1034/j.1399-302x.2000.150403.x.
Article
CAS
PubMed
Google Scholar
Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M: Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, beta-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother. 2005, 55: 888-896. 10.1093/jac/dki103.
Article
CAS
PubMed
Google Scholar
Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, Yamazaki K, Sayama K, Taubman MA, Kurihara H, Hashimoto K, Sugai M: Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun. 2003, 71: 3730-3739. 10.1128/IAI.71.7.3730-3739.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martinez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I: The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun. 1995, 63: 3054-3061.
PubMed Central
CAS
PubMed
Google Scholar
Riley LK, Robertson DC: Brucellacidal activity of human and bovine polymorphonuclear leukocyte granule extracts against smooth and rough strains of Brucella abortus. Infect Immun. 1984, 46: 231-236.
PubMed Central
CAS
PubMed
Google Scholar
Andrä J, Monreal D, Martinez de Tejada G, Olak C, Brezesinski G, Sánchez-Gómez S, Goldmann T, Bartels R, Brandenburg K, Moriyon I: Rationale for the design of shortened derivatives of the NK-lysin-derived antimicrobial peptide NK-2 with improved activity against Gram-negative pathogens. J Biol Chem. 2007, 282: 14719-14728. 10.1074/jbc.M608920200.
Article
PubMed
Google Scholar
Cudic M, Lockatell CV, Johnson DE, Otvos L: In vitro and in vivo activity of an antibacterial peptide analog against uropathogens. Peptides. 2003, 24: 807-820. 10.1016/S0196-9781(03)00172-4.
Article
CAS
PubMed
Google Scholar
Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ: Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides. 2006, 27: 649-660. 10.1016/j.peptides.2005.09.016.
Article
CAS
PubMed
Google Scholar
Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Fortuna M, Caselli F, Scalise G: In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically. Antimicrob Agents Chemother. 2000, 44: 1694-1696. 10.1128/AAC.44.6.1694-1696.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu M, Hancock RE: Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biol Chem. 1999, 274: 29-35. 10.1074/jbc.274.1.29.
Article
CAS
PubMed
Google Scholar
Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A: Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol. 2003, 37: 448-451. 10.1046/j.1472-765X.2003.01427.x.
Article
CAS
PubMed
Google Scholar
Lambert RJ, Johnston MD, Simons EA: Disinfectant testing: use of the Bioscreen Microbiological Growth Analyser for laboratory biocide screening. Lett Appl Microbiol. 1998, 26: 288-292. 10.1046/j.1472-765X.1998.00334.x.
Article
CAS
PubMed
Google Scholar
Lowdin E, Odenholt I, Cars O: In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1998, 42: 2739-2744.
PubMed Central
CAS
PubMed
Google Scholar
O'Neill AJ, Miller K, Oliva B, Chopra I: Comparison of assays for detection of agents causing membrane damage in Staphylococcus aureus. J Antimicrob Chemother. 2004, 54: 1127-1129. 10.1093/jac/dkh476.
Article
PubMed
Google Scholar
Loh B, Grant C, Hancock RE: Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984, 26: 546-551.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hancock REW, Wong PGW: Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother. 1984, 26: 48-52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Warren GH, Cray J, Yurchenko J: Effect of polymyxin on the lysis of Neisseria catarrhalis by lysozyme. J Bacteriol. 1957, 74: 788-793.
PubMed Central
CAS
PubMed
Google Scholar
Leive L: Actinomycin sensitivity in Escherichia coli produced by EDTA. Biochem Biophys Res Commun. 1965, 18: 13-17. 10.1016/0006-291X(65)90874-0.
Article
CAS
PubMed
Google Scholar
Andrä J, Lohner K, Blondelle SE, Jerala R, Moriyon I, Koch MH, Garidel P, Brandenburg K: Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide. Biochem J. 2005, 385: 135-143. 10.1042/BJ20041270.
Article
PubMed Central
PubMed
Google Scholar
Eliopoulos GM, Moellering RC: Antimicrobial combinations. Antibiotics in Laboratory Medicine. Edited by: Lorian V. 1996, Baltimore: The Williams and Wilkins Co, 330-396. 4
Google Scholar
Lambert PA: Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002, 95 (Suppl 41): 22-26.
PubMed Central
CAS
PubMed
Google Scholar
Schweizer HP: Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res. 2003, 2: 48-62.
PubMed
Google Scholar
Wilkinson SG: Cell Walls of Pseudomonas Species Sensitive to Ethylenediaminetetraacetic Acid. J Bacteriol. 1970, 104: 1035-1044.
PubMed Central
CAS
PubMed
Google Scholar
Helander IM, Mattila-Sandholm T: Fluorometric assessment of Gram-negative bacterial permeabilization. J Appl Microbiol. 2000, 88 (2): 213-9. 10.1046/j.1365-2672.2000.00971.x.
Article
CAS
PubMed
Google Scholar
Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE: Impact of LL-37 on anti-infective immunity. J Leukoc Biol. 2005, 77: 451-459. 10.1189/jlb.0704380.
Article
CAS
PubMed
Google Scholar
Bengoechea JA, Skurnik M: Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol. 2000, 37: 67-80. 10.1046/j.1365-2958.2000.01956.x.
Article
CAS
PubMed
Google Scholar
Schwab U, Gilligan P, Jaynes J, Henke D: In vitro activities of designed antimicrobial peptides against multidrug-resistant cystic fibrosis pathogens. Antimicrob Agents Chemother. 1999, 43: 1435-1440.
PubMed Central
CAS
PubMed
Google Scholar
Joosten HM, Nunez M: Adsorption of nisin and enterocin 4 to polypropylene and glass surfaces and its prevention by Tween 80. Lett Appl Microbiol. 1995, 21: 389-392. 10.1111/j.1472-765X.1995.tb01089.x.
Article
CAS
Google Scholar
Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC: Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother. 1997, 41: 1738-1742.
PubMed Central
CAS
PubMed
Google Scholar
Scotti R, Dulworth JK, Kenny MT, Goldstein BP: Effect of protein on ramnoplainin broth microdilution minimum inhibitory concentrations. Diagn Microbiol Infect Dis. 1993, 17: 209-211. 10.1016/0732-8893(93)90098-R.
Article
CAS
PubMed
Google Scholar
Vaara M, Vaara T: Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature. 1983, 303: 526-528. 10.1038/303526a0.
Article
CAS
PubMed
Google Scholar
Kwon DH, Lu CD: Polyamines increase antibiotic susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006, 50: 1623-1627. 10.1128/AAC.50.5.1623-1627.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Modha J, Barrett-Bee KJ, Rowbury RJ: Enhancement by cationic compounds of the growth inhibitory effect of novobiocin on Escherichia coli. Lett Appl Microbiol. 1989, 8: 219-222. 10.1111/j.1472-765X.1989.tb00252.x.
Article
CAS
Google Scholar
Li C, Lewis MR, Gilbert AB, Noel MD, Scoville DH, Allman GW, Savage PB: Antimicrobial activities of amine- and guanidine-functionalized cholic acid derivatives. Antimicrob Agents Chemother. 1999, 43: 1347-1349.
PubMed Central
CAS
PubMed
Google Scholar
Savage PB, Li C, Taotafa U, Ding B, Guan Q: Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett. 2002, 217: 1-7. 10.1111/j.1574-6968.2002.tb11448.x.
Article
CAS
PubMed
Google Scholar
Piddock LJ: Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006, 19: 382-402. 10.1128/CMR.19.2.382-402.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaara M, Jaakkola J: Sodium hexametaphosphate sensitizes Pseudomonas aeruginosa, several other species of Pseudomonas, and Escherichia coli to hydrophobic drugs. Antimicrob Agents Chemother. 1989, 33: 1741-1747.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ofek I, Cohen S, Rahmani R, Kabha K, Tamarkin D, Herzig Y, Rubinstein E: Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice. Antimicrob Agents Chemother. 1994, 38: 374-377.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaara M, Porro M: Group of peptides that act synergistically with hydrophobic antibiotics against gram-negative enteric bacteria. Antimicrob Agents Chemother. 1996, 40: 1801-1805.
PubMed Central
CAS
PubMed
Google Scholar
Giacometti A, Cirioni O, Barchiesi F, Fortuna M, Scalise G: In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. J Antimicrob Chemother. 1999, 44: 641-645. 10.1093/jac/44.5.641.
Article
CAS
PubMed
Google Scholar
Conejo MC, Martínez-Martínez L, García I, Picabea L, Pascual A: Effect of siliconized latex urinary catheters on the activity of carbapenems against Pseudomonas aeruginosa strains with defined mutations in ampC, oprD, and genes coding for efflux systems. Int J Antimicrob Agents. 2003, 22: 122-127. 10.1016/S0924-8579(03)00119-5.
Article
CAS
PubMed
Google Scholar
National Committee for Clinical Laboratory Standards: Approved Standard: M7-A6. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 2003, Wayne, PA, USA
Google Scholar