Stanley NR, Lazazzera BA: Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol Microbiol. 2005, 57: 1143-1158. 10.1111/j.1365-2958.2005.04746.x.
Article
CAS
PubMed
Google Scholar
Kearns DB, Losick R: Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol. 2003, 49: 581-590.
Article
CAS
PubMed
Google Scholar
Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R: Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A. 2001, 98: 11621-11626. 10.1073/pnas.191384198.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eisenstark A: Genetic diversity among offspring from archived Salmonella enterica ssp. enterica Serovar Typhimurium (Demerec Collection): In search of survival strategies. Annu Rev Microbiol. 2010, 64: 277-292. 10.1146/annurev.micro.091208.073614.
Article
CAS
PubMed
Google Scholar
Liu G-R, Edwards K, Eisenstark A, Fu Y-M, Liu W-Q, Sanderson KE, Johnston RN, Liu S-L: Genomic diversification among archival strains of Salmonella enterica serovar typhimurium LT7. J Bacteriol. 2003, 185: 2131-2142. 10.1128/JB.185.7.2131-2142.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faure D, Frederick R, Wloch D, Portier P, Blot M, Adams J: Genomic changes arising in long-term stab cultures of Escherichia coli. J Bacteriol. 2004, 186: 6437-6442. 10.1128/JB.186.19.6437-6442.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Naas T, Blot M, Fitch WM, Arber W: Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics. 1994, 136: 721-730.
PubMed Central
CAS
PubMed
Google Scholar
Naas T, Blot M, Fitch WM, Arber W: Dynamics of IS-related genetic rearrangements in resting Escherichia coli K-12. Mol Biol Evol. 1995, 12: 198-207.
CAS
PubMed
Google Scholar
Davidson CJ, White AP, Surette MG: Evolutionary loss of the rdar morphotype in Salmonella as a result of high mutation rates during laboratory passage. ISME J. 2008, 2: 293-307. 10.1038/ismej.2008.4.
Article
CAS
PubMed
Google Scholar
Spira B, de Almeida Toledo R, Maharjan RP, Ferenci T: The uncertain consequences of transferring bacterial strains between laboratories - rpoS instability as an example. BMC Microbiol. 2011, 11: 248-10.1186/1471-2180-11-248.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eydallin G, Ryall B, Maharjan R, Ferenci T: The nature of laboratory domestication changes in freshly isolated Escherichia coli strains. Environ Microbiol. 2013, doi:10.1111/1462-2920.12208
Google Scholar
Bachmann H, Starrenburg MJC, Molenaar D, Kleerebezem M, van Hylckama Vlieg JET: Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Res. 2012, 22: 115-124. 10.1101/gr.121285.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuthan M, Devaux F, Janderová B, Slaninová I, Jacq C, Palková Z: Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003, 47: 745-754. 10.1046/j.1365-2958.2003.03332.x.
Article
CAS
PubMed
Google Scholar
Weber KP, De S, Kozarewa I, Turner DJ, Babu MM, de Bono M: Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans. PLoS One. 2010, 5: e13922-10.1371/journal.pone.0013922.
Article
PubMed Central
PubMed
Google Scholar
McGrath PT, Xu Y, Ailion M, Garrison JL, Butcher RA, Bargmann CI: Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature. 2011, 477: 321-325. 10.1038/nature10378.
Article
PubMed Central
CAS
PubMed
Google Scholar
Egan CM, Sridhar S, Wigler M, Hall IM: Recurrent DNA copy number variation in the laboratory mouse. Nat Genet. 2007, 39: 1384-1389. 10.1038/ng.2007.19.
Article
CAS
PubMed
Google Scholar
Wiltshire T: Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci U S A. 2003, 100: 3380-3385. 10.1073/pnas.0130101100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peel D, Quayle JR: Microbial growth on C1 compounds. 1. Isolation and characterization of Pseudomonas AM1. Biochem J. 1961, 81: 465-
Article
PubMed Central
CAS
PubMed
Google Scholar
Salem AR, Wagner C, Hacking AJ, Quayle JR: The metabolism of lactate and pyruvate by Pseudomonas AM1. J Gen Microbiol. 1973, 76: 375-388. 10.1099/00221287-76-2-375.
Article
CAS
PubMed
Google Scholar
Chistoserdova L, Chen S-W, Lapidus A, Lidstrom ME: Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol. 2003, 185: 2980-2987. 10.1128/JB.185.10.2980-2987.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vuilleumier S, Chistoserdova L, Lee M-C, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, et al.: Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One. 2009, 4: e5584-10.1371/journal.pone.0005584.
Article
PubMed Central
PubMed
Google Scholar
Marx CJ, Lidstrom ME: Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques. 2002, 33: 1062-1067.
CAS
PubMed
Google Scholar
Marx CJ: Development of a broad-host-range sacB-based vector for unmarked allelic exchange. BMC Research Notes. 2008, 1: 1-10.1186/1756-0500-1-1.
Article
PubMed Central
PubMed
Google Scholar
Marx CJ, Lidstrom ME: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology. 2001, 147: 2065-2075.
Article
CAS
PubMed
Google Scholar
Marx CJ, Lidstrom ME: Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology. 2004, 150: 9-19. 10.1099/mic.0.26587-0.
Article
CAS
PubMed
Google Scholar
Chubiz LM, Purswani J, Carroll SM, Marx CJ: A novel pair of inducible expression vectors for use in Methylobacterium extorquens. BMC Res Notes. 2013, 6: 183-10.1186/1756-0500-6-183.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delaney NF, Kaczmarek ME, Ward LM, Swanson PK, Lee M-C, Marx CJ: Development of an optimized medium, strain and high-throughput culturing methods for Methylobacterium extorquens. PLoS One. 2013, 8: e62957-10.1371/journal.pone.0062957.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais J-C: Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol. 2011, 5: 189-10.1186/1752-0509-5-189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME: A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One. 2010, 5: e14091-10.1371/journal.pone.0014091.
Article
PubMed Central
PubMed
Google Scholar
Lee M-C, Chou H-H, Marx CJ: Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution. 2009, 63: 2816-2830. 10.1111/j.1558-5646.2009.00757.x.
Article
CAS
PubMed
Google Scholar
Chou H-H, Chiu H-C, Delaney NF, Segrè D, Marx CJ: Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science. 2011, 332: 1190-1192. 10.1126/science.1203799.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee M-C, Marx CJ: Repeated, selection-driven genome reduction of accessory genes in experimental populations. PLoS Genet. 2012, 8: e1002651-10.1371/journal.pgen.1002651.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carroll SM, Marx CJ: Evolution after introduction of a novel metabolic pathway consistently leads to restoration of wild-type physiology. PLoS Genet. 2013, 9: e1003427-10.1371/journal.pgen.1003427.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Mering Von C, Vorholt JA: Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A. 2009, 106: 16428-16433. 10.1073/pnas.0905240106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Knief C, Frances L, Vorholt JA: Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol. 2010, 60: 440-452. 10.1007/s00248-010-9725-3.
Article
PubMed
Google Scholar
Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P: Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol. 2004, 54: 2269-2273. 10.1099/ijs.0.02902-0.
Article
CAS
PubMed
Google Scholar
Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL: Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int J Syst Evol Microbiol. 2004, 54: 1191-1196. 10.1099/ijs.0.02796-0.
Article
CAS
PubMed
Google Scholar
Doronina NV, Sokolov AP, Trotsenko YA: Isolation and initial characterization of aerobic chloromethane-utilizing bacteria. FEMS Microbiol Lett. 1996, 142: 179-183. 10.1111/j.1574-6968.1996.tb08427.x.
Article
CAS
Google Scholar
Gälli R, Leisinger T: Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conservation & Recycling. 1985, 8: 91-100. 10.1016/0361-3658(85)90028-1.
Article
Google Scholar
Alber BE: Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol. 2011, 89: 17-25. 10.1007/s00253-010-2873-z.
Article
CAS
PubMed
Google Scholar
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA: Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 2009, 27: 107-115. 10.1016/j.tibtech.2008.10.009.
Article
CAS
PubMed
Google Scholar
Quayle J, Peel D: Methanol and carbon dioxide incorporation by Pseudomonas sp. AM1. Biochem J. 1960, 76: 3P-
Google Scholar
Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee M-C, Muller EEL, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Médigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S: Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol. 2012, 194: 4746-4748. 10.1128/JB.01009-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delaney NF, Rojas Echenique JI, Marx CJ: Clarity: an open-source manager for laboratory automation. J Lab Autom. 2013, 18: 171-177. 10.1177/2211068212460237.
Article
PubMed
Google Scholar
Fulton GL, Nunn DN, Lidstrom ME: Molecular cloning of a malyl coenzyme A lyase gene from Pseudomonas sp. strain AM1, a facultative methylotroph. J Bacteriol. 1984, 160: 718-723.
PubMed Central
CAS
PubMed
Google Scholar
Andersson DI: The biological cost of mutational antibiotic resistance: any practical conclusions?. Curr Opin Microbiol. 2006, 9: 461-465. 10.1016/j.mib.2006.07.002.
Article
CAS
PubMed
Google Scholar
Floss HG, Yu T-W: Rifamycin: mode of action, resistance, and biosynthesis. Chem Rev. 2005, 105: 621-632. 10.1021/cr030112j.
Article
CAS
PubMed
Google Scholar
Goodwin PM, Piercy R, Stone S: The increased sensitivity of rifamycin-resistant mutants of Methylobacterium AM1 to a variety of antimicrobial agents. Lett Appl Microbiol. 1988, 7: 99-101. 10.1111/j.1472-765X.1988.tb01262.x.
Article
CAS
Google Scholar
Schrag SJ, Perrot V, Levin BR: Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc Biol Sci. 1997, 264: 1287-1291. 10.1098/rspb.1997.0178.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stieglitz B, Mateles RI: Methanol metabolism in pseudomonad C. J Bacteriol. 1973, 114: 390-398.
PubMed Central
CAS
PubMed
Google Scholar
Finkel SE: Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Micro. 2006, 4: 113-120. 10.1038/nrmicro1340.
Article
CAS
Google Scholar
Chou H-H, Berthet J, Marx CJ: Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation. PLoS Genet. 2009, 5: e1000652-10.1371/journal.pgen.1000652.
Article
PubMed Central
PubMed
Google Scholar
Leiby N, Harcombe WR, Marx CJ: Multiple long-term, experimentally-evolved populations of Escherichia coli acquire dependence upon citrate as an iron chelator for optimal growth on glucose. BMC Evol Biol. 2012, 12: 1-1. 10.1186/1471-2148-12-1.
Article
Google Scholar
O’Keefe KJ, Morales NM, Ernstberger H, Benoit G, Turner PE: Laboratory-dependent bacterial ecology: a cautionary tale. Appl Environ Microbiol. 2006, 72: 3032-3035. 10.1128/AEM.72.4.3032-3035.2006.
Article
PubMed Central
PubMed
Google Scholar
Agashe D, Martinez-Gomez NC, Drummond DA, Marx CJ: Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol. 2013, 30: 549-560. 10.1093/molbev/mss273.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chou H-H, Marx CJ: Optimization of gene expression through divergent mutational paths. Cell Reports. 2012, 1: 133-140. 10.1016/j.celrep.2011.12.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson K: Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001, 00:2.4.1–2.4.5
Google Scholar
Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF: Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 2009, 461: 1243-1247. 10.1038/nature08480.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Meth. 2012, 9: 357-359. 10.1038/nmeth.1923.
Article
CAS
Google Scholar
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res. 2009, 19: 1117-1123. 10.1101/gr.089532.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Geneious version 6.1.6, created by Biomatters.http://www.geneious.com,
Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fèvre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Médigue C: MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 2013, 41 (Database issue): D636-D647.
Article
PubMed Central
CAS
PubMed
Google Scholar