Mamiya Y: Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annu Rev Plant Physiol Plant Mol Biol. 1983, 21: 201-220.
CAS
Google Scholar
Mota MM, Vieira P: Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems. 2008, Netherlands: Springer
Book
Google Scholar
Zhao B, Futai K, Sutherland JR, Takeuchi Y: Pine Wilt Disease. 2008, Kato Bunmeisha: Springer
Book
Google Scholar
Zhu LH, Ye J, Negi S, Xu XL, Wang ZL: Pathogenicity of aseptic Bursaphelenchus xylophilus. PLoS One. 2012, 7: e38095-10.1371/journal.pone.0038095.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao BG, Liu Y, Lin F: Effects of bacteria associated with pine wood nematode (Bursaphelenchus xylophilus) on development and egg production of the nematode. J Phytopathol. 2007, 155: 26-30. 10.1111/j.1439-0434.2006.01188.x.
Article
Google Scholar
Kawazu K, Zhang H, Yamashita H, Kanzaki H: Relationship between the pathogenecity of pine wood nematode, Bursaphelenchus xylophilus, and phenylacetic acid production. Biosci Biotech Biochem. 1996, 60: 1413-1415. 10.1271/bbb.60.1413.
Article
CAS
Google Scholar
Zhao BGZ, Ang HLW, An SFH, An ZMH: Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China. Nematology. 2003, 5: 899-906. 10.1163/156854103773040817.
Article
Google Scholar
Vicente CSL, Nascimento F, Espada M, Barbosa P, Mota M, Glick BR, Oliveira S: Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. PloS one. 2012, 7: e46661-10.1371/journal.pone.0046661.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cheng XY, Tian XL, Wang YS, Lin RM, Mao ZC, Chen N, Xie BY: Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Scientific reports. 1869, 2013: 3-
Google Scholar
Mehdy MC: Active oxygen species in plant defense against pathogens. Plant Physiol. 1994, 105: 467-472.
PubMed
CAS
PubMed Central
Google Scholar
Bolwell GP, Butt VS, Davies DR, Zimmerlin A: The origin of the oxidative burst in plants. Free radical Res. 1995, 23: 517-532. 10.3109/10715769509065273.
Article
CAS
Google Scholar
Torres MA, Jones JDG, Dangl JL: Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006, 141: 373-378. 10.1104/pp.106.079467.
Article
PubMed
CAS
PubMed Central
Google Scholar
Torres MA: ROS in biotic interactions. Physiol plantarum. 2010, 138: 414-429. 10.1111/j.1399-3054.2009.01326.x.
Article
CAS
Google Scholar
Quan LJ, Zhang B, Shi WS, Li HY: Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integrative Plant Biol. 2008, 50: 2-18. 10.1111/j.1744-7909.2007.00599.x.
Article
CAS
Google Scholar
Dubreuil G, Deleury E, Magliano M, Jaouannet M, Abad P, Rosso MN: Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita, are required for successful development within the host. Int J Parasitol. 2011, 41: 385-396. 10.1016/j.ijpara.2010.10.008.
Article
PubMed
CAS
Google Scholar
Lamb C, Dixon R: The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol. 1997, 48: 251-275. 10.1146/annurev.arplant.48.1.251.
Article
PubMed
CAS
Google Scholar
Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS: Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol. 2008, 121: 267-280. 10.1007/s10658-008-9302-5.
Article
CAS
Google Scholar
Fones H, Preston GM: Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS microbiology letters. 2012, 327: 1-8. 10.1111/j.1574-6968.2011.02449.x.
Article
PubMed
CAS
Google Scholar
Guo M, Block A, Bryan CD, Becker DF, Alfano JR: Pseudomonas syringae catalases are collectively required for plant pathogenesis. J Bacteriol. 2012, 194: 5054-5064. 10.1128/JB.00999-12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, Bender CL: Involvement of coronatine-inducible reactive oxygen species in bacterial speck disease of tomato. Plant Signaling and Behavior. 2009, 4: 237-239. 10.4161/psb.4.3.7915.
Article
PubMed
CAS
PubMed Central
Google Scholar
Henkle-Dührsen K, Kampkötter A: Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol. 2001, 114: 129-142. 10.1016/S0166-6851(01)00252-3.
Article
PubMed
Google Scholar
Molinari S: Changes of catalase and SOD activities in the early response of tomato to Meloidogyne attack. Nematol Mediterr. 1998, 26: 167-172.
Google Scholar
Robertson L, Robertson WM, Sobczak M, Helder J, Tetaud E, Ariyanayagam MR, Ferguson MAJ, Fairlamb A, Jones JT: Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol. 2000, 111: 41-49. 10.1016/S0166-6851(00)00295-4.
Article
PubMed
CAS
Google Scholar
Jones J, Reavy B, Smant G, Prior A: Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. Gene. 2004, 324: 47-54.
Article
PubMed
CAS
Google Scholar
Bellafiore S, Shen Z, Rosso MN, Abad P, Shih P, Briggs SP: Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS pathogens. 2008, 4: e1000192-10.1371/journal.ppat.1000192.
Article
PubMed
PubMed Central
Google Scholar
Hirao T, Fukatsu E, Watanabe A: Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC plant biology. 2012, 12: 13-10.1186/1471-2229-12-13.
Article
PubMed
CAS
PubMed Central
Google Scholar
Santos CSS, Vascocelos MW: Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with pine wood nematode. Eur J Plant Pathol. 2012, 132: 407-418. 10.1007/s10658-011-9886-z.
Article
CAS
Google Scholar
Shinya R, Morisaka H, Takeuchi Y, Futai K, Ueda M: Making headway in understanding pine wilt disease: What do we perceive in the postgenomic era?. J Biosci Bioeng. 2013, 116: 1-8. 10.1016/j.jbiosc.2013.01.003.
Article
PubMed
CAS
Google Scholar
Molinari S: Antioxidant enzymes in (a)virulent populations of root-knot nematodes. Nematology. 2009, 11: 689-697. 10.1163/156854108X399317.
Article
CAS
Google Scholar
Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai IJ, Aseffa SA, Cock PJA, Otto TD, Hunt M, Reid AJ, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson MC, Miwa J, Maule AG, Sahashi N, Jones JT, Berriman M: Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 2011, 7: e1002219-10.1371/journal.ppat.1002219.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K: Secretome analysis of pine wood nematode Bursaphelenchus xylophilus reveals the tangled roots of parasitism and its potential for molecular mimicry. PloS one. 2013, 8: e67377-10.1371/journal.pone.0067377.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D: Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe In. 2003, 16: 217-225. 10.1094/MPMI.2003.16.3.217.
Article
CAS
Google Scholar
Sykiotis GP, Bohmann D: Stress-activated Cap’n’collar transcription factors in 43. aging and human disease. Sci Signal. 2010, 3: re3-
Article
PubMed
PubMed Central
Google Scholar
Bowerman B, Eaton BA, Priess JR: skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell. 1992, 68: 1061-1075. 10.1016/0092-8674(92)90078-Q.
Article
PubMed
CAS
Google Scholar
Park SK, Tedesco PM, Johnson TE: Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell. 2009, 8: 258-269. 10.1111/j.1474-9726.2009.00473.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shinya R, Morisaka H, Takeuchi Y, Ueda M, Futai K: Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach. Phytopathol. 2010, 100: 1289-1297. 10.1094/PHYTO-04-10-0109.
Article
CAS
Google Scholar
Li Z, Liu X, Chu Y, Wang Y, Zhang Q, Zhou X: Cloning and characterization of a 2-Cys peroxiredoxin in the pine wood nematode, Bursaphelenchus xylophilus, a putative genetic factor facilitating the infestation. Int J Biol Scie. 2011, 7: 823-836.
Article
CAS
Google Scholar
Wu XQ, Yuan WM, Tian XJ, Fan B, Fang X, Ye JR, Ding XL: Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus xylophilus with different virulence. Int J Biol Sci. 2013, 9: 34-44.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grimont F, Grimont PAD: The Genus Serratia. Proc Natl Acad Sci USA. 2006, 6: 219-244.
Google Scholar
Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, Lelie D: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. App Environ Microbiol. 2009, 75: 748-757. 10.1128/AEM.02239-08.
Article
CAS
Google Scholar
Zhang Q, Weyant R, Steigerwalt AG, White LA, Melcher U, Bruton BD, Pair SD, Mitchell FL, Fletcher J: Genotyping of Serratia marcescens strains associated with cucurbit yellow vine disease by repetitive elements-based polymerase chain reaction and DNA-DNA hybridization. Phytopathol. 2003, 93: 1240-1246. 10.1094/PHYTO.2003.93.10.1240.
Article
CAS
Google Scholar
Schulz B, Boyle C: The endophytic continuum. Mycol Res. 2005, 109: 661-686. 10.1017/S095375620500273X.
Article
PubMed
Google Scholar
Aikawa T, Kikuchi T: Estimation of virulence of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) based on its reproductive ability. Nematology. 2007, 9: 371-377. 10.1163/156854107781352007.
Article
Google Scholar
Takemoto S: Pine Wilt Disease. Population ecology of Bursaphelenchus xylophilus. 2008, Kato Bunmeisha: Springer, Volume 108
Chapter
Google Scholar
Vicente CSL, Nascimento F, Espada M, Mota M, Oliveira S: Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. A van Leeuw J Microb. 2011, 2011 (100): 477-481.
Article
Google Scholar
Kock B, Jensen LE, Nybroe O: A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Meth. 2001, 45: 187-195. 10.1016/S0167-7012(01)00246-9.
Article
Google Scholar
Højberg O, Schnider U, Winterler HV, Sørensen J, Haas D: Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. App Environ Microbiol. 1999, 65: 4085-4093.
Google Scholar
Bao Y, Lies DP, Fu H, Roberts GP: An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene. 1991, 109: 167-168. 10.1016/0378-1119(91)90604-A.
Article
PubMed
CAS
Google Scholar
Lambertsen L, Sternberg C, Molin S: Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol. 2004, 6: 726-732. 10.1111/j.1462-2920.2004.00605.x.
Article
PubMed
CAS
Google Scholar
Han ZM, Hong YD, Zhao BG: A study on pathogenicity of bacteria carried by pine wood nematodes. J Phytopathol. 2003, 151: 683-689. 10.1046/j.1439-0434.2003.00790.x.
Article
Google Scholar
Shaham S: WormBook. Methods in cell biology. 2006, The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Rozen S, Skaletzki H: Bioinformatics Methods and Protocols: Methods in Molecular Biology Totowa. Primer3 on the www for general users and for biologist programmers. 2000, Humana PressKrawetz S, Misener S, 365-386.
Google Scholar