Akiyama H, Hamada T, Huh WK, Yamasaki O, Oono T, Fujimoto W, Iwatsuki K: Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in skin lesions of bullous impetigo, atopic dermatitis and pemphigus foliaceus. Br J Dermatol. 2003, 148: 526-532. 10.1046/j.1365-2133.2003.05162.x.
Article
PubMed
Google Scholar
Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA: Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001, 80: 903-908. 10.1177/00220345010800031101.
Article
PubMed
Google Scholar
Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H: Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005, 43: 3380-3389. 10.1128/JCM.43.7.3380-3389.2005.
Article
PubMed
PubMed Central
Google Scholar
Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J: Characterization of Mucosal Candida albicans Biofilms. PLoS ONE. 2009, 4:
Google Scholar
Mukherjee P, Zhou G, Munyon R, Ghannoum MA: Candida biofilm: a well-designed protected environment. Med Mycol. 2005, 43: 191-208. 10.1080/13693780500107554.
Article
PubMed
Google Scholar
Ramage G, Martinez JP, Lopez-Ribot JL: Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 2006, 6: 979-986. 10.1111/j.1567-1364.2006.00117.x.
Article
PubMed
Google Scholar
Dongari-Bagtzoglou A, Villar CC, Kashleva H: Candida albicans-infected oral epithelial cells augment the anti-fungal activity of human neutrophils in vitro. Med Mycol. 2005, 43: 545-549. 10.1080/13693780500064557.
Article
PubMed
Google Scholar
Freimoser F, Jakob CA, Aebi M, Tuor U: The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol. 1999, 65: 3727-3729.
PubMed
PubMed Central
Google Scholar
Hawser S, Jessup C, Vitullo J, Ghannoum MA: Utility of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl-amino)carbonyl]-2H-tetrazolium hydroxide (XTT) and minimum effective concentration assays in the determination of antifungal susceptibility of Aspergillus fumigatus to the lipopeptide class compounds. J Clin Microbiol. 2001, 39: 2738-2741. 10.1128/JCM.39.7.2738-2741.2001.
Article
PubMed
PubMed Central
Google Scholar
Hawser S, Norris H, Jessup CJ, Ghannoum MA: Comparison of a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) colorimetric method with the standardized National Committee for Clinical Laboratory Standards method of testing clinical yeast isolates for susceptibility to antifungal agents. J Clin Microbiol. 1998, 36: 1450-1452.
PubMed
PubMed Central
Google Scholar
Hayden K, Rizzo D, Tse J, Garbelotto M: Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology. 2004, 94: 1075-1083. 10.1094/PHYTO.2004.94.10.1075.
Article
PubMed
Google Scholar
Kuhn D, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA: Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol. 2003, 41: 506-508. 10.1128/JCM.41.1.506-508.2003.
Article
PubMed
PubMed Central
Google Scholar
Meletiadis J, Mouton JW, Meis JF, Bouman BA, Donnelly JP, Verweij PE: Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2001, 39: 3402-3408. 10.1128/JCM.39.9.3402-3408.2001.
Article
PubMed
PubMed Central
Google Scholar
Meletiadis J, Mouton JW, Meis JF, Bouman BA, Donnelly JP, Verweij PE: Comparison of spectrophotometric and visual readings of NCCLS method and evaluation of a colorimetric method based on reduction of a soluble tetrazolium salt, 2,3-bis [2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide], for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2001, 39: 4256-4263. 10.1128/JCM.39.12.4256-4263.2001.
Article
PubMed
PubMed Central
Google Scholar
Meshulam T, Levitz SM, Christin L, Diamond RD: A simplified new assay for assessment of fungal cell damage with the tetrazolium dye, (2,3)-bis-(2-methoxy-4-nitro-5-sulphenyl)-(2H)-tetrazolium-5-carboxanilide (XTT). J Infect Dis. 1995, 172: 1153-1156. 10.1093/infdis/172.4.1153.
Article
PubMed
Google Scholar
Tellier R, Krajden M, Grigoriew GA, Campbell I: Innovative endpoint determination system for antifungal susceptibility testing of yeasts. Antimicrob Agents Chemother. 1992, 36: 1619-1625.
Article
PubMed
PubMed Central
Google Scholar
Goodwin C, Holt SJ, Downes S, Marshall NJ: Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. J Immunol Methods. 1995, 179: 95-103. 10.1016/0022-1759(94)00277-4.
Article
PubMed
Google Scholar
Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL: Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother. 2001, 45: 2475-2479. 10.1128/AAC.45.9.2475-2479.2001.
Article
PubMed
PubMed Central
Google Scholar
Scudiero D, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR: Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48: 4827-4833.
PubMed
Google Scholar
Stevens M, Olsen SC: Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J Immunol Methods. 1993, 157: 225-231. 10.1016/0022-1759(93)90091-K.
Article
PubMed
Google Scholar
Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.
Article
PubMed
Google Scholar
Roehm N, Rodgers GH, Hatfield SM, Glasebrook AL: An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991, 142: 257-265. 10.1016/0022-1759(91)90114-U.
Article
PubMed
Google Scholar
Winn R, Roilides E, Simitsopoulou M, Lyman CA, Maloukou A, Walsh TJ: Selective effects of interleukin (IL)-15 on antifungal activity and IL-8 release by polymorphonuclear leukocytes in response to hyphae of Aspergillus species. J Infect Dis. 2003, 188: 585-590. 10.1086/377099.
Article
PubMed
Google Scholar
McCluskey C, Quinn JP, McGrath JW: An evaluation of three new-generation tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms. Microb Ecol. 2005, 49: 379-387. 10.1007/s00248-004-0012-z.
Article
PubMed
Google Scholar
Maneu V, Cervera AM, Martinez JP, Gozalbo D: Molecular cloning and characterization of a Candida albicans gene (EFB1) coding for the elongation factor EF-1 beta. FEMS Microbiol Lett. 1996, 145: 157-162.
PubMed
Google Scholar
Brummer E, Sugar AM, Stevens DA: Enhanced oxidative burst in immunologically activated but not elicited polymorphonuclear leukocytes correlates with fungicidal activity. Infect Immun. 1985, 49: 396-401.
PubMed
PubMed Central
Google Scholar
Lyman C, Simons ER, Melnick DA, Diamond RD: Unopsonized Candida albicans hyphae stimulate a neutrophil respiratory burst and a cytosolic calcium flux without membrane depolarization. J Infect Dis. 1987, 156: 770-776. 10.1093/infdis/156.5.770.
Article
PubMed
Google Scholar
Katragkou A, Kruhlak MJ, Simitsopoulou M, Chatzimoschou A, Taparkou A, Cotten CJ, Paliogianni F, Diza-Mataftsi E, Tsantali C, Walsh TJ, et al: Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. J Infect Dis. 2010, 201: (12):1941-1949.
Article
PubMed
PubMed Central
Google Scholar
Chimento A, Cacciola SO, Garbelotto M: Detection of mRNA by Reverse Transcription PCR as an Indicator of Viability in Phytophthora ramorum. Proceedings of the Sudden Oak Death Third Science Symposium. 2007, Santa Rosa, California
Google Scholar
Martinez A, Lahiri R, Pittman TL: Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J Clin Microbiol. 2009, 47: 2124-2130. 10.1128/JCM.00512-09.
Article
PubMed
PubMed Central
Google Scholar
Varughese E, Wymer LJ, Haugland RA: An integrated culture and real-time PCR method to assess viability of disinfectant treated Bacillus spores using robotics and the MPN quantification method. J Microbiol Meth. 2007, 71: 66-70. 10.1016/j.mimet.2007.07.011.
Article
Google Scholar
Hao B, Clancy C, Cheng S, Raman S, Iczkowski K, Nguyen M: Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence. Eukaryot Cell. 2009, 8: 627-639. 10.1128/EC.00246-08.
Article
PubMed
PubMed Central
Google Scholar
Khot P, Suci PA, Miller RL, Nelson RD, Tyler BJ: A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and β-1,6-glucan pathway genes. Antimicrob Agents Chemother. 2006, 50: 3708-3716. 10.1128/AAC.00997-06.
Article
PubMed
PubMed Central
Google Scholar
Taylor B, Hannemann H, Sehnal M, Biesemeier A, Schweizer A, Rollinghoff M, Schroppel K: Induction of SAP7 correlates with virulence in an intravenous infection model of candidiasis but not in a vaginal infection model in mice. Infect Immun. 2005, 73: 7061-7063. 10.1128/IAI.73.10.7061-7063.2005.
Article
PubMed
PubMed Central
Google Scholar
Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, Hacker J, Nigam S, Agabian N, Kohler GA: Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol. 2006, 296: 405-420. 10.1016/j.ijmm.2006.03.003.
Article
PubMed
PubMed Central
Google Scholar
Uppuluri P, Chaturvedi AK, Lopez-Ribot JL: Design of a simplemodel of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug Resistance. Mycopathologia. 2009, 168: 101-109. 10.1007/s11046-009-9205-9.
Article
PubMed
PubMed Central
Google Scholar
Vogel M, Hartmann T, Köberle M, Treiber M, Autenrieth I, Schumacher U: Rifampicin induces MDR1 expression in Candida albicans. J Antimicrob Chemother. 2008, 61: 541-547. 10.1093/jac/dkm513.
Article
PubMed
Google Scholar
Fonzi WAMI: Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993, 134: 717-728.
PubMed
PubMed Central
Google Scholar
Dongari-Bagtzoglou A, Kashleva H: Development of a highly reproducible 3D organotypic model of the oral mucosa. Nature Protocols. 2006, 1 (4): 2012-2018. 10.1038/nprot.2006.323.
Article
PubMed
PubMed Central
Google Scholar
Nett J, Sanchez H, Cain MT, Andes DR: Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis. 2010, 202: 171-175. 10.1086/651200.
Article
PubMed
PubMed Central
Google Scholar
Nett JE, Crawford K, Marchillo K, Andes DR: Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother. 54 (8): 3505-3508.