Holland HD: The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1470): 903-915. 10.1098/rstb.2006.1838.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kasting JF: Earth's early atmosphere. Science. 1993, 259 (5097): 920-926. 10.1126/science.11536547.
Article
PubMed
CAS
Google Scholar
Massey V, Strickland S, Mayhew SG, Howell LG, Engel PC, Matthews RG, Schuman M, Sullivan PA: The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem Biophys Res Commun. 1969, 36 (6): 891-897. 10.1016/0006-291X(69)90287-3.
Article
PubMed
CAS
Google Scholar
Imlay JA: Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008, 77: 755-776. 10.1146/annurev.biochem.77.061606.161055.
Article
PubMed
CAS
PubMed Central
Google Scholar
Imlay JA: Pathways of oxidative damage. Annu Rev Microbiol. 2003, 57: 395-418. 10.1146/annurev.micro.57.030502.090938.
Article
PubMed
CAS
Google Scholar
Kuo CF, Mashino T, Fridovich I: alpha, beta-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J Biol Chem. 1987, 262 (10): 4724-4727.
PubMed
CAS
Google Scholar
Flint DH, Tuminello JF, Emptage MH: The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem. 1993, 268 (30): 22369-22376.
PubMed
CAS
Google Scholar
Adams MW, Holden JF, Menon AL, Schut GJ, Grunden AM, Hou C, Hutchins AM, Jenney FE, Kim C, Ma K, et al: Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2001, 183 (2): 716-724. 10.1128/JB.183.2.716-724.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
McCord JM, Fridovich I: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969, 244 (22): 6049-6055.
PubMed
CAS
Google Scholar
Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 2001, 276 (41): 38084-38089.
PubMed
CAS
Google Scholar
Landis GN, Tower J: Superoxide dismutase evolution and life span regulation. Mech Ageing Dev. 2005, 126 (3): 365-379. 10.1016/j.mad.2004.08.012.
Article
PubMed
CAS
Google Scholar
Abreu IA, Cabelli DE: Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim Biophys Acta. 2010, 1804 (2): 263-274.
Article
PubMed
CAS
Google Scholar
Pilon M, Ravet K, Tapken W: The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta. 2010
Google Scholar
Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K: A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell. 2008, 20 (11): 3148-3162. 10.1105/tpc.108.061341.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hassan HM: Microbial superoxide dismutases. Adv Genet. 1989, 26: 65-97.
Article
PubMed
CAS
Google Scholar
Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO: A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J. 1996, 318 (Pt 3): 889-896.
Article
PubMed
CAS
PubMed Central
Google Scholar
Youn HD, Youn H, Lee JW, Yim YI, Lee JK, Hah YC, Kang SO: Unique isozymes of superoxide dismutase in Streptomyces griseus. Arch Biochem Biophys. 1996, 334 (2): 341-348. 10.1006/abbi.1996.0463.
Article
PubMed
CAS
Google Scholar
Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, et al: The genome of a motile marine Synechococcus. Nature. 2003, 424 (6952): 1037-1042. 10.1038/nature01943.
Article
PubMed
CAS
Google Scholar
McCord JM, Keele BB, Fridovich I: An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA. 1971, 68 (5): 1024-1027. 10.1073/pnas.68.5.1024.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moura I, Tavares P, Moura JJ, Ravi N, Huynh BH, Liu MY, LeGall J: Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center. J Biol Chem. 1990, 265 (35): 21596-21602.
PubMed
CAS
Google Scholar
Lombard M, Fontecave M, Touati D, Niviere V: Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem. 2000, 275 (1): 115-121. 10.1074/jbc.275.1.115.
Article
PubMed
CAS
Google Scholar
Chen L, Sharma P, Le Gall J, Mariano AM, Teixeira M, Xavier AV: A blue non-heme iron protein from Desulfovibrio gigas. Eur J Biochem. 1994, 226 (2): 613-618. 10.1111/j.1432-1033.1994.tb20087.x.
Article
PubMed
CAS
Google Scholar
Jenney FE, Verhagen MF, Cui X, Adams MW: Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science. 1999, 286 (5438): 306-309. 10.1126/science.286.5438.306.
Article
PubMed
CAS
Google Scholar
Pianzzola MJ, Soubes M, Touati D: Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol. 1996, 178 (23): 6736-6742.
PubMed
CAS
PubMed Central
Google Scholar
Lombard M, Touati D, Fontecave M, Niviere V: Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum. J Biol Chem. 2000, 275 (35): 27021-27026.
PubMed
CAS
Google Scholar
Silva G, LeGall J, Xavier AV, Teixeira M, Rodrigues-Pousada C: Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J Bacteriol. 2001, 183 (15): 4413-4420. 10.1128/JB.183.4.4413-4420.2001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liochev SI, Fridovich I: A mechanism for complementation of the sodA sodB defect in Escherichia coli by overproduction of the rbo gene product (desulfoferrodoxin) from Desulfoarculus baarsii. J Biol Chem. 1997, 272 (41): 25573-25575. 10.1074/jbc.272.41.25573.
Article
PubMed
CAS
Google Scholar
Tulipan DJ, Eaton RG, Eberhart RE: The Darrach procedure defended: technique redefined and long-term follow-up. J Hand Surg Am. 1991, 16 (3): 438-444. 10.1016/0363-5023(91)90010-9.
Article
PubMed
CAS
Google Scholar
Clay MD, Jenney FE, Hagedoorn PL, George GN, Adams MW, Johnson MK: Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism. J Am Chem Soc. 2002, 124 (5): 788-805. 10.1021/ja016889g.
Article
PubMed
CAS
Google Scholar
Yeh AP, Hu Y, Jenney FE, Adams MW, Rees DC: Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states. Biochemistry. 2000, 39 (10): 2499-2508. 10.1021/bi992428k.
Article
PubMed
CAS
Google Scholar
Coelho AV, Matias PM, Fulop V, Thompson A, Gonzalez A, Carrondo MA: Desulfoferrodoxin structure determined by MAD phasing and refinement to 1.9-Å resolution reveals a unique combination of a tetrahedral FeS4 centre with a square pyramidal FeSN4 centre. J Biol Inorg Chem. 1997, 2 (6): 680-689. 10.1007/s007750050184.
Article
CAS
Google Scholar
Archer M, Huber R, Tavares P, Moura I, Moura JJ, Carrondo MA, Sieker LC, LeGall J, Romao MJ: Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure. J Mol Biol. 1995, 251 (5): 690-702. 10.1006/jmbi.1995.0465.
Article
PubMed
CAS
Google Scholar
Kurtz DM, Coulter ED: The mechanism(s) of superoxide reduction by superoxide reductases in vitro and in vivo. J Biol Inorg Chem. 2002, 7 (6): 653-658. 10.1007/s00775-002-0360-4.
Article
PubMed
CAS
Google Scholar
Pereira SA, Tavares P, Folgosa F, Almeida RM, Moura I, Moura JJG: European Journal of Inorganic Chemistry. European Journal of Inorganic Chemistry. 2007, 2007 (18): 2569-2581. 10.1002/ejic.200700008.
Article
Google Scholar
Jovanovic T, Ascenso C, Hazlett KR, Sikkink R, Krebs C, Litwiller R, Benson LM, Moura I, Moura JJ, Radolf JD, et al: Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. J Biol Chem. 2000, 275 (37): 28439-28448.
Article
PubMed
CAS
Google Scholar
Thybert D, Avner S, Lucchetti-Miganeh C, Cheron A, Barloy-Hubler F: OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes. BMC Genomics. 2008, 9: 637-10.1186/1471-2164-9-637.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brioukhanov AL, Netrusov AI: Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc). 2004, 69 (9): 949-962.
Article
CAS
Google Scholar
Tally FP, Goldin BR, Jacobus NV, Gorbach SL: Superoxide dismutase in anaerobic bacteria of clinical significance. Infect Immun. 1977, 16 (1): 20-25.
PubMed
CAS
PubMed Central
Google Scholar
Rusnak F, Ascenso C, Moura I, Moura JJ: Superoxide reductase activities of neelaredoxin and desulfoferrodoxin metalloproteins. Methods Enzymol. 2002, 349: 243-258.
Article
PubMed
CAS
Google Scholar
Niviere V, Fontecave M: Discovery of superoxide reductase: an historical perspective. J Biol Inorg Chem. 2004, 9 (2): 119-123. 10.1007/s00775-003-0519-7.
Article
PubMed
CAS
Google Scholar
Pinto AF, Rodrigues JV, Teixeira M: Reductive elimination of superoxide: Structure and mechanism of superoxide reductases. Biochim Biophys Acta. 2010, 1804 (2): 285-297.
Article
PubMed
CAS
Google Scholar
Skovgaard M, Jensen LJ, Brunak S, Ussery D, Krogh A: On the total number of genes and their length distribution in complete microbial genomes. Trends Genet. 2001, 17 (8): 425-428. 10.1016/S0168-9525(01)02372-1.
Article
PubMed
CAS
Google Scholar
Dolla A, Fournier M, Dermoun Z: Oxygen defense in sulfate-reducing bacteria. J Biotechnol. 2006, 126 (1): 87-100. 10.1016/j.jbiotec.2006.03.041.
Article
PubMed
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410.
Article
PubMed
CAS
Google Scholar
Gertz EM, Yu YK, Agarwala R, Schaffer AA, Altschul SF: Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 2006, 4: 41-10.1186/1741-7007-4-41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed
CAS
PubMed Central
Google Scholar
Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996, 266: 383-402.
Article
PubMed
CAS
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004, 5: 113-10.1186/1471-2105-5-113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koonin EV, Wolf YI, Karev GP: The structure of the protein universe and genome evolution. Nature. 2002, 420 (6912): 218-223. 10.1038/nature01256.
Article
PubMed
CAS
Google Scholar
Ponting CP, Russell RR: The natural history of protein domains. Annu Rev Biophys Biomol Struct. 2002, 31: 45-71. 10.1146/annurev.biophys.31.082901.134314.
Article
PubMed
CAS
Google Scholar
Abreu IA, Saraiva LM, Carita J, Huber H, Stetter KO, Cabelli D, Teixeira M: Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin. Mol Microbiol. 2000, 38 (2): 322-334. 10.1046/j.1365-2958.2000.02121.x.
Article
PubMed
CAS
Google Scholar
Mathe C, Niviere V, Houee-Levin C, Mattioli TA: Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii. Biophys Chem. 2006, 119 (1): 38-48. 10.1016/j.bpc.2005.06.013.
Article
PubMed
CAS
Google Scholar
Kratzer C, Welte C, Dorner K, Friedrich T, Deppenmeier U: Methanoferrodoxin represents a new class of superoxide reductase containing an iron-sulfur cluster. FEBS J. 2011, 278 (3): 442-451. 10.1111/j.1742-4658.2010.07964.x.
Article
PubMed
CAS
Google Scholar
Coulter ED, Kurtz DM: A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys. 2001, 394 (1): 76-86. 10.1006/abbi.2001.2531.
Article
PubMed
CAS
Google Scholar
Rodrigues JV, Saraiva LM, Abreu IA, Teixeira M, Cabelli DE: Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin. J Biol Inorg Chem. 2007, 12 (2): 248-256. 10.1007/s00775-006-0182-x.
Article
PubMed
CAS
Google Scholar
Coelho AV, Matias PM, Carrondo MA, Tavares P, Moura JJ, Moura I, Fulop V, Hajdu J, Le Gall J: Preliminary crystallographic analysis of the oxidized form of a two mono-nuclear iron centres protein from Desulfovibrio desulfuricans ATCC 27774. Protein Sci. 1996, 5 (6): 1189-1191.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stothard P, Wishart DS: Circular genome visualization and exploration using CGView. Bioinformatics. 2005, 21 (4): 537-539. 10.1093/bioinformatics/bti054.
Article
PubMed
CAS
Google Scholar
Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G: Interactive Microbial Genome Visualization with GView. Bioinformatics. 2010
Google Scholar
Goudenege D, Avner S, Lucchetti-Miganeh C, Barloy-Hubler F: CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources. BMC Microbiol. 2010, 10: 88-10.1186/1471-2180-10-88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35 (21): 7188-7196. 10.1093/nar/gkm864.
Article
PubMed
CAS
PubMed Central
Google Scholar
Barns SM, Delwiche CF, Palmer JD, Dawson SC, Hershberger KL, Pace NR: Phylogenetic perspective on microbial life in hydrothermal ecosystems, past and present. Ciba Found Symp. 1996, 202: 24-32. discussion 32-29.
PubMed
CAS
Google Scholar
Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO: A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature. 2002, 417 (6884): 63-67. 10.1038/417063a.
Article
PubMed
CAS
Google Scholar
Paper W, Jahn U, Hohn MJ, Kronner M, Nather DJ, Burghardt T, Rachel R, Stetter KO, Huber H: Ignicoccus hospitalis sp. nov., the host of 'Nanoarchaeum equitans'. Int J Syst Evol Microbiol. 2007, 57 (Pt 4): 803-808.
Article
PubMed
CAS
Google Scholar
Burggraf S, Huber H, Stetter KO: Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol. 1997, 47 (3): 657-660. 10.1099/00207713-47-3-657.
Article
PubMed
CAS
Google Scholar
Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, et al: Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 1999, 6 (2): 83-101. 10.1093/dnares/6.2.83. 145-152
Article
PubMed
CAS
Google Scholar
Lee HJ, Kwon HW, Koh JU, Lee DK, Moon JY, Kong KH: An efficient method for the expression and reconstitution of thermostable Mn/Fe superoxide dismutase from Aeropyrum pernix K1. J Microbiol Biotechnol. 2010, 20 (4): 727-731.
PubMed
CAS
Google Scholar
Niederberger TD, Gotz DK, McDonald IR, Ronimus RS, Morgan HW: Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol. 2006, 56 (Pt 5): 965-971.
Article
PubMed
CAS
Google Scholar
Rose RW, Bruser T, Kissinger JC, Pohlschroder M: Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol. 2002, 45 (4): 943-950. 10.1046/j.1365-2958.2002.03090.x.
Article
PubMed
CAS
Google Scholar
Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S: Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005, 6: 167-10.1186/1471-2105-6-167.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO: Ferroglobus placidus gen. nov., sp. nov., A novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol. 1996, 166 (5): 308-314. 10.1007/s002030050388.
Article
PubMed
CAS
Google Scholar
Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, et al: The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997, 390 (6658): 364-370. 10.1038/37052.
Article
PubMed
CAS
Google Scholar
Burggraf S, Jannasch HW, Nicolaus B, Stetter KO: Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol. 1990, 13: 24-28.
Article
Google Scholar
Fomenko DE, Gladyshev VN: Identity and functions of CxxC-derived motifs. Biochemistry. 2003, 42 (38): 11214-11225. 10.1021/bi034459s.
Article
PubMed
CAS
Google Scholar
Ladenstein R, Ren B: Reconsideration of an early dogma, saying "there is no evidence for disulfide bonds in proteins from archaea". Extremophiles. 2008, 12 (1): 29-38. 10.1007/s00792-007-0076-z.
Article
PubMed
CAS
Google Scholar
Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, et al: The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol. 2006, 188 (22): 7922-7931. 10.1128/JB.00810-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devreese B, Tavares P, Lampreia J, Van Damme N, Le Gall J, Moura JJ, Van Beeumen J, Moura I: Primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a new class of non-heme iron proteins. FEBS Lett. 1996, 385 (3): 138-142. 10.1016/0014-5793(96)00364-X.
Article
PubMed
CAS
Google Scholar
Tavares P, Ravi N, Moura JJ, LeGall J, Huang YH, Crouse BR, Johnson MK, Huynh BH, Moura I: Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774). J Biol Chem. 1994, 269 (14): 10504-10510.
PubMed
CAS
Google Scholar
Romao CV, Liu MY, Le Gall J, Gomes CM, Braga V, Pacheco I, Xavier AV, Teixeira M: The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774. Eur J Biochem. 1999, 261 (2): 438-443. 10.1046/j.1432-1327.1999.00278.x.
Article
PubMed
CAS
Google Scholar
Adam V, Royant A, Niviere V, Molina-Heredia FP, Bourgeois D: Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction. Structure. 2004, 12 (9): 1729-1740. 10.1016/j.str.2004.07.013.
Article
PubMed
CAS
Google Scholar
Katona G, Carpentier P, Niviere V, Amara P, Adam V, Ohana J, Tsanov N, Bourgeois D: Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme. Science. 2007, 316 (5823): 449-453. 10.1126/science.1138885.
Article
PubMed
CAS
Google Scholar
Niviere V, Asso M, Weill CO, Lombard M, Guigliarelli B, Favaudon V, Houee-Levin C: Superoxide reductase from Desulfoarculus baarsii: identification of protonation steps in the enzymatic mechanism. Biochemistry. 2004, 43 (3): 808-818. 10.1021/bi035698i.
Article
PubMed
CAS
Google Scholar
Mathe C, Mattioli TA, Horner O, Lombard M, Latour JM, Fontecave M, Niviere V: Identification of iron(III) peroxo species in the active site of the superoxide reductase SOR from Desulfoarculus baarsii. J Am Chem Soc. 2002, 124 (18): 4966-4967. 10.1021/ja025707v.
Article
PubMed
CAS
Google Scholar
Mathe C, Weill CO, Mattioli TA, Berthomieu C, Houee-Levin C, Tremey E, Niviere V: Assessing the role of the active-site cysteine ligand in the superoxide reductase from Desulfoarculus baarsii. J Biol Chem. 2007, 282 (30): 22207-22216. 10.1074/jbc.M700279200.
Article
PubMed
CAS
Google Scholar
Mathe C, Niviere V, Mattioli TA: Fe3+-hydroxide ligation in the superoxide reductase from Desulfoarculus baarsii is associated with pH dependent spectral changes. J Am Chem Soc. 2005, 127 (47): 16436-16441. 10.1021/ja053808y.
Article
PubMed
CAS
Google Scholar
Horner O, Mouesca JM, Oddou JL, Jeandey C, Niviere V, Mattioli TA, Mathe C, Fontecave M, Maldivi P, Bonville P, et al: Mossbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models. Biochemistry. 2004, 43 (27): 8815-8825. 10.1021/bi0498151.
Article
PubMed
CAS
Google Scholar
Berthomieu C, Dupeyrat F, Fontecave M, Vermeglio A, Niviere V: Redox-dependent structural changes in the superoxide reductase from Desulfoarculus baarsii and Treponema pallidum: a FTIR study. Biochemistry. 2002, 41 (32): 10360-10368. 10.1021/bi020344x.
Article
PubMed
CAS
Google Scholar
Bonnot F, Houee-Levin C, Favaudon V, Niviere V: Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide: re-evaluation of the reaction mechanism. Biochim Biophys Acta. 2010, 1804 (4): 762-767.
Article
PubMed
CAS
Google Scholar
Clay MD, Jenney FE, Noh HJ, Hagedoorn PL, Adams MW, Johnson MK: Resonance Raman characterization of the mononuclear iron active-site vibrations and putative electron transport pathways in Pyrococcus furiosus superoxide reductase. Biochemistry. 2002, 41 (31): 9833-9841. 10.1021/bi025833b.
Article
PubMed
CAS
Google Scholar
Grunden AM, Jenney FE, Ma K, Ji M, Weinberg MV, Adams MW: In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Appl Environ Microbiol. 2005, 71 (3): 1522-1530. 10.1128/AEM.71.3.1522-1530.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clay MD, Cosper CA, Jenney FE, Adams MW, Johnson MK: Nitric oxide binding at the mononuclear active site of reduced Pyrococcus furiosus superoxide reductase. Proc Natl Acad Sci USA. 2003, 100 (7): 3796-3801. 10.1073/pnas.0636858100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Im YJ, Ji M, Lee A, Killens R, Grunden AM, Boss WF: Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol. 2009, 151 (2): 893-904. 10.1104/pp.109.145409.
Article
PubMed
CAS
PubMed Central
Google Scholar
Santos-Silva T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Raleiras P, Moura I, Moura JJ, Romao MJ: The first crystal structure of class III superoxide reductase from Treponema pallidum. J Biol Inorg Chem. 2006, 11 (5): 548-558. 10.1007/s00775-006-0104-y.
Article
PubMed
CAS
Google Scholar
Santos-Silva T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Moura I, Moura JJ, Romao MJ: Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005, 61 (Pt 11): 967-970.
Article
PubMed
CAS
PubMed Central
Google Scholar
Niviere V, Lombard M, Fontecave M, Houee-Levin C: Pulse radiolysis studies on superoxide reductase from Treponema pallidum. FEBS Lett. 2001, 497 (2-3): 171-173. 10.1016/S0014-5793(01)02468-1.
Article
PubMed
CAS
Google Scholar
Auchere F, Sikkink R, Cordas C, Raleiras P, Tavares P, Moura I, Moura JJ: Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin. J Biol Inorg Chem. 2004, 9 (7): 839-849. 10.1007/s00775-004-0584-6.
Article
PubMed
CAS
Google Scholar
Hazlett KR, Cox DL, Sikkink RA, Auch'ere F, Rusnak F, Radolf JD: Contribution of neelaredoxin to oxygen tolerance by Treponema pallidum. Methods Enzymol. 2002, 353: 140-156.
Article
PubMed
CAS
Google Scholar
Auchere F, Raleiras P, Benson L, Venyaminov SY, Tavares P, Moura JJ, Moura I, Rusnak F: Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6). Inorg Chem. 2003, 42 (4): 938-940. 10.1021/ic0262886.
Article
PubMed
CAS
Google Scholar
Lombard M, Houee-Levin C, Touati D, Fontecave M, Niviere V: Superoxide reductase from Desulfoarculus baarsii: reaction mechanism and role of glutamate 47 and lysine 48 in catalysis. Biochemistry. 2001, 40 (16): 5032-5040. 10.1021/bi0023908.
Article
PubMed
CAS
Google Scholar
Niviere V, Lombard M: Superoxide reductase from Desulfoarculus baarsii. Methods Enzymol. 2002, 349: 123-129.
Article
PubMed
CAS
Google Scholar
Bandeiras TM, Romao CV, Rodrigues JV, Teixeira M, Matias PM: Purification, crystallization and X-ray crystallographic analysis of Archaeoglobus fulgidus neelaredoxin. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010, 66 (Pt 3): 316-319.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rodrigues JV, Abreu IA, Cabelli D, Teixeira M: Superoxide reduction mechanism of Archaeoglobus fulgidus one-iron superoxide reductase. Biochemistry. 2006, 45 (30): 9266-9278. 10.1021/bi052489k.
Article
PubMed
CAS
Google Scholar
Todorovic S, Rodrigues JV, Pinto AF, Thomsen C, Hildebrandt P, Teixeira M, Murgida DH: Resonance Raman study of the superoxide reductase from Archaeoglobus fulgidus, E12 mutants and a 'natural variant'. Phys Chem Chem Phys. 2009, 11 (11): 1809-1815.
Article
PubMed
CAS
Google Scholar
Abreu IA, Saraiva LM, Soares CM, Teixeira M, Cabelli DE: The mechanism of superoxide scavenging by Archaeoglobus fulgidus neelaredoxin. J Biol Chem. 2001, 276 (42): 38995-39001. 10.1074/jbc.M103232200.
Article
PubMed
CAS
Google Scholar
Kitamura M, Koshino Y, Kamikawa Y, Kohno K, Kojima S, Miura K, Sagara T, Akutsu H, Kumagai I, Nakaya T: Cloning and expression of the rubredoxin gene from Desulfovibrio vulgaris (Miyazaki F)--comparison of the primary structure of desulfoferrodoxin. Biochim Biophys Acta. 1997, 1351 (1-2): 239-247.
Article
PubMed
CAS
Google Scholar
Huang VW, Emerson JP, Kurtz DM: Reaction of Desulfovibrio vulgaris two-iron superoxide reductase with superoxide: insights from stopped-flow spectrophotometry. Biochemistry. 2007, 46 (40): 11342-11351. 10.1021/bi700450u.
Article
PubMed
CAS
Google Scholar
Wildschut JD, Lang RM, Voordouw JK, Voordouw G: Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris hildenborough under microaerophilic conditions. J Bacteriol. 2006, 188 (17): 6253-6260. 10.1128/JB.00425-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clay MD, Emerson JP, Coulter ED, Kurtz DM, Johnson MK: Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris. J Biol Inorg Chem. 2003, 8 (6): 671-682. 10.1007/s00775-003-0465-4.
Article
PubMed
CAS
Google Scholar
Emerson JP, Coulter ED, Cabelli DE, Phillips RS, Kurtz DM: Kinetics and mechanism of superoxide reduction by two-iron superoxide reductase from Desulfovibrio vulgaris. Biochemistry. 2002, 41 (13): 4348-4357. 10.1021/bi0119159.
Article
PubMed
CAS
Google Scholar
Silva G, Oliveira S, Gomes CM, Pacheco I, Liu MY, Xavier AV, Teixeira M, Legall J, Rodrigues-pousada C: Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. Eur J Biochem. 1999, 259 (1-2): 235-243. 10.1046/j.1432-1327.1999.00025.x.
Article
PubMed
CAS
Google Scholar
Riebe O, Fischer RJ, Bahl H: Desulfoferrodoxin of Clostridium acetobutylicum functions as a superoxide reductase. FEBS Lett. 2007, 581 (29): 5605-5610. 10.1016/j.febslet.2007.11.008.
Article
PubMed
CAS
Google Scholar
Kawasaki S, Sakai Y, Takahashi T, Suzuki I, Niimura Y: O2 and reactive oxygen species detoxification complex, composed of O2-responsive NADH:rubredoxin oxidoreductase-flavoprotein A2-desulfoferrodoxin operon enzymes, rubperoxin, and rubredoxin, in Clostridium acetobutylicum. Appl Environ Microbiol. 2009, 75 (4): 1021-1029. 10.1128/AEM.01425-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rodrigues JV, Victor BL, Huber H, Saraiva LM, Soares CM, Cabelli DE, Teixeira M: Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand. J Biol Inorg Chem. 2008, 13 (2): 219-228. 10.1007/s00775-007-0313-z.
Article
PubMed
CAS
Google Scholar
Clamp M, Cuff J, Searle SM, Barton GJ: The Jalview Java alignment editor. Bioinformatics. 2004, 20 (3): 426-427. 10.1093/bioinformatics/btg430.
Article
PubMed
CAS
Google Scholar
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009, 25 (9): 1189-1191. 10.1093/bioinformatics/btp033.
Article
PubMed
CAS
PubMed Central
Google Scholar