Ronson C, Lyttleton P, Robertson J: C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci USA. 1981, 78: 4284-4288. 10.1073/pnas.78.7.4284.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salminen S, Streeter J: Labeling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae bacteroids following incubation of intact nodules with C14. Plant Physiol. 1992, 100: 597-604. 10.1104/pp.100.2.597.
Article
PubMed Central
CAS
PubMed
Google Scholar
Finan T, Wood J, Jordan D: Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol. 1983, 154: 1403-1413.
PubMed Central
CAS
PubMed
Google Scholar
Trainer MA, Charles TC: The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol. 2006, 71 (4): 377-86. 10.1007/s00253-006-0354-1. [0175-7598 (Print) Journal Article Review]
Article
CAS
PubMed
Google Scholar
Craig A, Williamson K: Three inclusions of rhizobial bacteroids and their cytochemical character. Arch Microbiol. 1972, 87: 165-171.
Google Scholar
Goodchild D, Bergerson F: Electron microscopy of the infection and subsequent development of soybean nodule cells. J Bacteriol. 1966, 92: 204-213.
PubMed Central
CAS
PubMed
Google Scholar
Zevenhuizen L: Cellular glycogen, B-1,2-glucan-poly-B-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie van Leeuwenhoek. 1981, 47: 481-497. 10.1007/BF00443236.
Article
CAS
PubMed
Google Scholar
Hirsch AM, Long S, Bang M, Haskins N, Ausubel F: Structural studies of alfalfa roots infected with nodulation mutants of Rhizobium meliloti. J Bacteriol. 1982, 151: 411-419.
PubMed Central
CAS
PubMed
Google Scholar
Hirsch AM, Bang M, Ausubel FM: Ultrastructural analysis of ineffective alfalfa nodules formed by nif::Tn 5 mutants of Rhizobium meliloti. J Bacteriol. 1983, 155: 367-380.
PubMed Central
CAS
PubMed
Google Scholar
Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E: Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci USA. 2006, 103 (13): 5230-5235. 10.1073/pnas.0600912103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lodwig E, Hosie A, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie J, Poole P: Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature. 2003, 422: 722-726. 10.1038/nature01527.
Article
CAS
PubMed
Google Scholar
Abe T, Kobayashi T, Saito T: Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol. 2005, 187 (20): 6982-6990. 10.1128/JB.187.20.6982-6990.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saegusa H, Shiraki M, Kanai C, Saito T: Cloning of an intracellular Poly-3-Hydroxybutyrate depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol. 2001, 183: 94-100. 10.1128/JB.183.1.94-100.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tseng CL, Chen HJ, Shaw GC: Identification and characterization of the Bacillus thuringiensis phaZ gene, encoding new intracellular poly-3-hydroxybutyrate depolymerase. J Bacteriol. 2006, 188 (21): 7592-7599. 10.1128/JB.00729-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao D, Maehara A, Yamane T, Ueda S: Identification of the intracellular polyhydroxyalkanoate depolymerase gene of Paracoccus denitrificans and some properties of the gene product. FEMS Microbiol Lett. 2001, 196 (2): 159-164. 10.1111/j.1574-6968.2001.tb10558.x.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Nishikori K, Saito T: Properties of an intracellular poly(3-hydroxybutyrate) depolymerase (PhaZ1) from Rhodobacter spheroides. Curr Microbiol. 2004, 49 (3): 199-202. 10.1007/s00284-004-4339-y.
Article
CAS
PubMed
Google Scholar
Kadouri D, Jurkevitch E, Okon Y: Poly beta-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol. 2003, 180 (5): 309-318. 10.1007/s00203-003-0590-z.
Article
CAS
PubMed
Google Scholar
Dixon R: The origin of the membrane surrounding the bacteria and bacteroids and the presence of glycogen in clover root nodules. Arch Microbiol. 1967, 56: 156-166.
CAS
Google Scholar
Layzell D, Hunt S, Palmer G: Mechanism of nitrogenase inhibition in soybean nodules. Pulse-modulated spectroscopy indicates that nitrogenase acitivity as limited by O2. Plant Physiol. 1990, 92: 1101-1107. 10.1104/pp.92.4.1101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J: The composite genome of the legume symbiont Sinorhizobium meliloti. Science. 2001, 293 (5530): 668-72. 10.1126/science.1060966.
Article
CAS
PubMed
Google Scholar
Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O: Bacterial lipases. FEMS Microbiol Rev. 1994, 15: 29-63. 10.1111/j.1574-6976.1994.tb00121.x.
Article
CAS
PubMed
Google Scholar
Finan TM, Hartwieg E, LeMieux K, Bergman K, Walker G, Signer E: General transduction in Rhizobium meliloti. J Bacteriol. 1984, 159: 120-124.
PubMed Central
CAS
PubMed
Google Scholar
Charles TC, Cai GQ, Aneja P: Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti. Genetics. 1997, 146 (4): 1211-20. [0016-6731 (Print) Journal Article]
PubMed Central
CAS
PubMed
Google Scholar
Aneja P, Dai M, Lacorre DA, Pillon B, Charles TC: Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett. 2004, 239 (2): 277-83. 10.1016/j.femsle.2004.08.045. [0378-1097 (Print) Journal Article]
Article
CAS
PubMed
Google Scholar
Reuber TL, Walker GC: Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell. 1993, 74 (2): 269-80. 10.1016/0092-8674(93)90418-P. [0092-8674 (Print) Comparative Study Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]
Article
CAS
PubMed
Google Scholar
Leigh JA, Signer ER, Walker GC: Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA. 1985, 82 (18): 6231-5. 10.1073/pnas.82.18.6231. [0027-8424 (Print) Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]
Article
PubMed Central
CAS
PubMed
Google Scholar
Long S, McCune S, Walker GC: Symbiotic loci of Rhizobium melilot identified by random Tn phoA mutagenesis. J Bacteriol. 1988, 170 (9): 4257-65.
PubMed Central
CAS
PubMed
Google Scholar
Aneja P, Zachertowska A, Charles TC: Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Can J Microbiol. 2005, 51 (7): 599-604. 10.1139/w05-042.
Article
CAS
PubMed
Google Scholar
Gonzalez JE, York GM, Walker GC: Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene. 1996, 179: 141-146. 10.1016/S0378-1119(96)00322-8.
Article
CAS
PubMed
Google Scholar
Miyake M, Kataoka K, Shirai M, Asada Y: Control of poly-β-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J Bacteriol. 1997, 179 (16): 5009-13. [0021-9193 (Print) Journal Article]
PubMed Central
CAS
PubMed
Google Scholar
McCleary WR, Stock JB, Ninfa AJ: Is acetyl phosphate a global signal in Escherichia coli?. J Bacteriol. 1993, 175 (10): 2793-2798.
PubMed Central
CAS
PubMed
Google Scholar
Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ: The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol. 2007, 189 (15): 5574-5581. 10.1128/JB.00564-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Elsas J, van Overbeek LS: Starvation in bacteria: Bacterial responses to soil stimuli. 1993, Plenum Press, New York
Google Scholar
Kadouri D, Jurkevitch E, Okon Y: Involvement of the Reserve Material Poly-b-Hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol. 2003, 69: 3244-3250. 10.1128/AEM.69.6.3244-3250.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lopez N, Floccari M, Garcia A, Steinbuchel A, Mendez B: Effect of poly(3-hydroxybutyrate) (PHB) content on the starvation survival of bacteria in natural waters. FEMS Microbiol Ecol. 1995, 16: 95-102.
Article
CAS
Google Scholar
Ruiz JA, Lopez NI, Fernandez RO, Mendez BS: Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol. 2001, 67: 225-30. 10.1128/AEM.67.1.225-230.2001. [0099-2240 (Print) Journal Article]
Article
PubMed Central
CAS
PubMed
Google Scholar
Tal S, Okon Y: Production of the reserve material poly-3-hydroxybutyrate and its function in Azospirillum brasilense. Can J Microbiol. 1985, 31: 608-613.
Article
CAS
Google Scholar
Dawes E: Microbial energy reserve compounds. 1986, Glasgow: Blackie and Son ltd, 145-165.
Google Scholar
Willis L, Walker G: The phbC (poly-b-hydroxybutyrate synthase) gene of Rhizobium (Sinorhizobium) meliloti and characterization of phbC mutants. Can J Microbiol. 1998, 44 (6): 554-564. 10.1139/cjm-44-6-554.
Article
CAS
PubMed
Google Scholar
Okon Y, Itzigsohn R: Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol Lett. 1992, 103: 131-139.
CAS
Google Scholar
Povolo S, Tombolini R, Morea A, Anderson A, Casella S, Nuti M: Isolation and characterization of mutants of Rhizobium meliloti unable to synthesize poly-3-hydroxybutyrate (PHB). Can J Microbiol. 1994, 40: 823-829. 10.1139/m94-131.
Article
CAS
Google Scholar
Cevallos M, Encarnacion S, Leija A, Mora Y, Mora J: Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol. 1996, 178 (6): 1646-1654.
PubMed Central
CAS
PubMed
Google Scholar
Hardason G: Methods for measuring biological nitrogen fixation in grain legumes. Plant and Soil. 1993, 152: 1-17. 10.1007/BF00016329.
Article
Google Scholar
Charles TC, Finan TM: Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics. 1991, 127: 5-20.
PubMed Central
CAS
PubMed
Google Scholar
Sambrook JRD: Molecular Cloning: a laboratory manual. 2001, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 3
Google Scholar
Brinkmann E, Beckwith J: Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and ϕ 80 transducing lysates. J Mol Biol. 1975, 96: 307-316. 10.1016/0022-2836(75)90350-2.
Article
Google Scholar
Law J, Slepecky R: Assay of poly-3-hydroxybutyric acid. J Bacteriol. 1961, 82: 33-36.
PubMed Central
CAS
PubMed
Google Scholar
Jensen H: Nitrogen fixation in leguminous plants. I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. Australia Proc Linn Soc NSW. 1942, 66: 98-108.
Google Scholar
Venable JH, Coggeshall R: A Simplified Lead Citrate Stain for Use in Electron Microscopy. J Cell Biol. 1965, 25: 407-8. 10.1083/jcb.25.2.407. [0021-9525 (Print) Journal Article]
Article
PubMed Central
CAS
PubMed
Google Scholar
Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM: Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol. 1982, 149: 114-22. [0021-9193 (Print) Journal Article]
PubMed Central
CAS
PubMed
Google Scholar
Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983, 166 (4): 557-80. 10.1016/S0022-2836(83)80284-8. [0022-2836 (Print) Journal Article]
Article
CAS
PubMed
Google Scholar
Finan TM, Kunkel B, De Vos GF, Signer ER: Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol. 1986, 167: 66-72. [0021-9193 (Print) Journal Article]
PubMed Central
CAS
PubMed
Google Scholar
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A: Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994, 145: 69-73. 10.1016/0378-1119(94)90324-7.
Article
CAS
PubMed
Google Scholar
Jones JD, Gutterson N: An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene. 1987, 61 (3): 299-306. 10.1016/0378-1119(87)90193-4.
Article
CAS
PubMed
Google Scholar