Skip to main content
Fig. 6 | BMC Microbiology

Fig. 6

From: Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance

Fig. 6

Dynamic regulation of methylation modification in lysine (K) residue of EF-Tu in nutrient-deprived organisms. Percentage abundances of K-methylated modified and unmodified peptides in the Elongation factor Tu proteins of (A) Pantoea sp. YR343 and (B) Rhizobium sp. CF142 in R2A media. (C) Multiple sequence alignment was performed for all Elongation Factor Tu proteins identified by metaproteomics in this study. The lysine amino acid position where the modification occurs in this study is highlighted with a red arrow. Unlike other organisms, Bacillus sp. BC15 and Sphingobium sp. AP49 have an arginine (R) residue at this position and no methylation modifications were observed for these protein sequences. For reference, the Elongation factor TU sequence of E. coli (strain K12) was added for comparison

Back to article page