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Abstract 

Background  Undernutrition (UN) is a critical public health issue that threatens the lives of children under five 
in developing countries. While evidence indicates the crucial role of the gut microbiome (GM) in UN pathogenesis, 
the strain-level inspection and bacterial co-occurrence network investigation in the GM of UN children are lacking.

Results  This study examines the strain compositions of the GM in 61 undernutrition patients (UN group) and 36 
healthy children (HC group) and explores the topological features of GM co-occurrence networks using a complex 
network strategy. The strain-level annotation reveals that the differentially enriched species between the UN and HC 
groups are due to discriminated strain compositions. For example, Prevotella copri is mainly composed of P. copri 
ASM1680343v1 and P. copri ASM345920v1 in the HC group, but it is composed of P. copri ASM346549v1 and P. copri 
ASM347465v1 in the UN group. In addition, the UN-risk model constructed at the strain level demonstrates higher 
accuracy (AUC = 0.810) than that at the species level (AUC = 0.743). With complex network analysis, we further dis-
covered that the UN group had a more complex GM co-occurrence network, with more hub bacteria and a higher 
clustering coefficient but lower information transfer efficiencies. Moreover, the results at the strain level suggested 
the inaccurate and even false conclusions obtained from species level analysis.

Conclusions  Overall, this study highlights the importance of examining the GM at the strain level and investigating 
bacterial co-occurrence networks to advance our knowledge of UN pathogenesis.
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Background
Childhood undernutrition is a significant global public 
health issue contributing to approximately 45% of deaths 
in children under five years of age [1]. Undernutrition not 
only poses a high risk of mortality but also causes growth 
stunting, immune dysfunction, neurocognitive deficits, 
and endocrine system disorders [2, 3]. Although provid-
ing nutrient supplementation and antibiotics is the cur-
rent therapeutic approach for undernutrition [4, 5], the 
long-term use of antibiotics is controversial, and alterna-
tive therapeutic strategies are necessary [6, 7].

In recent years, the gut microbiome (GM) has emerged 
as a promising target for the treatment of undernutri-
tion due to its crucial role in nutrient metabolism and 
immune regulation. Previous studies have identified the 
association between GM composition and undernu-
trition. By studying a large child cohort in Bangladesh 
for two years, Subramanian et  al. found the persistent 
immature GM in undernutrition (UN) children [7]; and 
the immature GM led to the mouse growth deficit after 
transferring to a mouse [6, 8]. Yan et  al. reported that 
GM participated in the secretion of insulin-like growth 
factor 1 (IGF-1), promoting bone formation and growth 
[9]. Also, acetate, a short-chain fatty acid, released by the 
microbiome fermentation, affects the body’s adiposity 
[10]. However, these investigations have largely been con-
ducted at the species or functional level, and the specific 
contributions of individual GM strains remain unclear.

To address this knowledge gap, we present a novel 
strategy to detect GM compositions at the strain level 
in undernourished children. Our approach leverages 
metagenomic sequencing and machine learning algo-
rithms to identify specific GM strains associated with 
undernutrition. By examining the GM at the strain level, 
we aim to gain a more comprehensive understanding of 
the complex relationship between GM and undernutri-
tion, potentially identifying new avenues for developing 
GM-based therapies for undernutrition.

Methods
Data preparation
The metagenomic sequencing data from 61 undernu-
trition patients (UN group) and 36 healthy children 
(HC group) was obtained from our previous study (the 
NCBI Sequence Read Archive Database under the acces-
sion number PRJNA543967) [11]. DNA libraries were 
sequenced with the 150 bp paired-end mode on the 
HiSeq platform (Illumina, San Diego, CA, United States). 
The concentrations of hemoglobin, albumin, total pro-
tein, white blood cells, and lymphocytes were meas-
ured by the automatic blood analyzer (Beckman Coulter 
AU5800, Brea, CA, USA) using peripheral blood. All 
recruited children were under three years old. The UN 

children had moderate or severe undernutrition, which 
was defined as having a weight-for-age z-score two stand-
ard deviations below the WHO reference value. The HC 
children were selected from those who passed physical 
examinations with no diarrhea in the past two weeks. 
Moreover, our previous study excluded participants who 
had been exposed to antibiotics, probiotics, or proton 
pump inhibitors the month before fecal sample collec-
tion, had a known history of allergies or hereditary dis-
eases, suffered from metabolic or autoimmune diseases, 
or had parasitic eggs in their stool. The sequencing reads 
were filtered with the following criteria: 1) The raw reads 
containing more than 10 low-quality (<Q20) bases or 
15 bases of adapter sequences were filtered out; 2) The 
raw reads which can be aligned to human genome hg19 
by BWA-MEM were filtered out. After the filtration, 
the remaining reads were applied for the downstream 
analysis.

Species taxonomic annotation
To obtain the taxonomic information for the samples, we 
applied the MetaPhlan3 software to align the clean data 
to the marker gene database (Version: mpa_v30_CHO- 
COPhlAn_201901) [12] and combine the taxonomical 
annotation files. We removed the species absent in 70% 
of the samples. At last, a total of 453 species remained for 
further analysis.

Strain‑level identification
We applied PStrain [13] to identify strains and infer 
strain abundances for each sample. Strains with a 
sequence similarity of more than 90% clustered together, 
and the identified strains were named by their cluster 
name. PStrain identified a total of 1,932 strain clusters. 
To annotate these strain clusters, we used PStrain-tracer 
[14] to obtain NCBI reference sequences for the species 
the strains belong to and construct the phylogenetic trees 
for the strain clusters and NCBI reference sequences [15]. 
Then, we used an in-house Python script to annotate the 
strain clusters with the closest NCBI known strains in 
the phylogenetic tree. With the strain profiling and iden-
tified strains, we completed the subsequential statistical 
analysis.

Bacterial co‑occurrence network and inner bacterial 
interactions
Based on the taxonomical profiling at the strain level, we 
calculated the Spearman correlation coefficient among 
strains by using the R software package “psych” [16]. The 
relations whose Spearman correlation coefficient <-0.6 or 
> 0.6 (adjusted P < 0.05) were kept as the edges for the 
co-occurrence network. In addition, we calculated the 
network topology information such as average degree, 



Page 3 of 12Chang et al. BMC Microbiology           (2024) 24:73 	

average path length, and cluster coefficient for each 
group. At last, the bacterial co-occurrence networks were 
visualized by Gephi (Version 0.9.2), with the nodes rep-
resenting strains and edges representing the correlation 
between strains [17]. The species are colored by their cor-
responding phylum, and the red and pink edges stand for 
the positive and negative correlations, respectively. We 
further measured the network topological structure with 
the R package “igraph” on the constructed co-occurrence 
networks [18].

Construction of Random Forest classifiers
Applying the Random Forest in machine learning (pack-
age “random-Forest” in R), we constructed classification 
models for the prediction of the UN and HC participants 
at the species and strain levels, respectively [19]. For the 
construction of the model, we randomly divided the total 
of 97 samples into five groups, with three groups contain-
ing 19 samples each and the other two groups containing 
20 samples each. Then, we used the five-fold cross-valida-
tion method during the model construction. Four groups 
were selected as the training dataset, and one group was 
taken as the validation dataset randomly. Third, the Ran-
dom Forest model was trained with the training data-
set, and the performance of the constructed models was 
assessed with the validation dataset. At last, we plotted 
the Receiver Operating Characteristic (ROC) curves and 
calculated the AUC values to visualize the performance 
of the classifier (package “pROC” in R). In addition, the 
species and strains were recognized as candidate bio-
markers for the UN prediction according to their Gini 
values and the optimal variation numbers in the Random 
Forest models.

Statistical analysis
We evaluated the bacterial diversity using Shannon and 
Chao1 index at species and strain levels with R package 
“vegan” [20]. Then, we adopted the Wilcoxon rank sum 
test to explore the differentially enriched species and 
strains between different groups. The results were plot-
ted with package “ggplot2” in R. In addition, we used 
Benjamini and Hochberg method (“p.adjust” in R) for 
the adjustment of the multiple Wilcoxon rank sum tests 
and Spearman correlation analysis (FDR<0.05) [21]. The 

Spearman correlation analysis results were visualized by 
the R package “pheatmap”. We denoted the nutrition-
related clinical factors as nutrition indicators. Then we 
calculated the pairwise Pearson correlation between 
nutrition indicators, and the contribution of GM, short-
chain fatty acids (SCFAs), and Weight to Age by the 
Mantel test [22]. The calculation and visualization were 
performed by the R package “linkET” [23].

Results
UN and HC children have similar strain diversity
To obtain the subtle bacterial signals related to the UN 
pathogenesis, we applied the PStrain software and 
detected the GM differences between the UN and HC 
children at the strain level [13]. The PCoA, Shannon 
and Chao1 diversity exhibited the overall GM differ-
ences between the UN and HC groups (Fig.  1a and b). 
The bacterial diversity in UN children was lower than 
that of HC children, although only Chao1 showed statis-
tical differences (P = 0.01), while Shannon did not (P = 
0.41, Fig. 1b). Then, we performed the abundance com-
parisons for the bacteria between the two groups at the 
species and strain levels, respectively. At the species 
level, we found six of the top ten abundant species were 
differentially enriched between UN and HC children 
(Fig. 1c). Among them, Bacteroides fragilis (Padj = 0.005), 
Bacteroides uniformis (Padj < 0.001), Bifidobacterium 
pseudocatenulatum (Padj < 0.001), Faecalibacterium 
prausnitzii (Padj < 0.001), and Bacteroides vulgatus (Padj 
= 0.008) were enriched in the HC group, while Prevo-
tella copri (Padj < 0.001) was enriched in the UN group. 
Subsequently, we compared the differences of the top ten 
abundant strains between the UN and HC groups. We 
discovered that B. fragilis ASM181622v2 (Padj = 0.008) 
and F. prausnitzii (Padj = 0.012) were enriched in the HC 
group (Fig.  1d), indicating that the strain-level analysis 
would provide us with more comprehensive information 
for UN pathogenesis investigation.

Strain compositional differences explain discriminated 
species in the UN children
With the NR database and PStrain-tracer software, we 
obtained the strain-level profiling and discovered the 
specific strain compositional characteristics for the 

(See figure on next page.)
Fig. 1  GM features in the UN patients. a PCoA with Bray-Curtis distances among samples. Each spot stands for a sample, and the circles contain 
samples with a 90% confidence interval for the groups. Red and blue colors stand for the UN and HC children, respectively. b Shannon diversity 
in the UN and HC children. The red and blue violins stand for the distributions of Shannon indices in the UN and HC groups, respectively. c 
Comparison of the top 5 abundant species between the UN and HC children. Each plot contained a species; the red and blue boxes stand 
for the UN and HC groups, respectively. d Comparison of the top 10 abundant strains between the UN and HC children. The red and blue columns 
stand for the UN and HC groups, respectively. *, Padj < 0.05; **, Padj < 0.01; ***, Padj < 0.001
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Fig. 1  (See legend on previous page.)
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Fig. 2  Strain components of the differentially enriched species in the UN patients. The plots a, b, c, d, and e exhibited the components 
and abundances of Bacteroides fragilis, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium pseudocatenulatum, and Prevotella copri 
in the UN and HC groups, respectively. The number of the identified strains for each species was labeled below the plots for each group, and their 
abundances were represented by the height of the columns
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differentially enriched species between the UN and HC 
children (Fig. 2, Supplementary Figs. 1, 2, 3, 4, and 5, and 
Supplementary Table 1). First, the strain composition of 
the same species in the UN patients was completely dif-
ferent from the HC children. For example, P. copri was 
mainly composed of P. copri ASM1680343v1 and P. copri 
ASM345920v1 in the HC group, while it was composed 
of P. copri ASM346549v1 and P. copri ASM347465v1 
in the UN group (Fig.  2e). Second, the common strains 
between the UN and HC groups had different abun-
dances, leading to species-level differences. For example, 
the enriched B. fragilis ASM181622v2 in the HC group 
was responsible for the B. fragilis discrimination between 
the UN and HC groups (Fig.  2a), while B. vulgatus sp. 
contributed to the B. vulgatus difference between the 
UN and HC groups (Fig.  2c). Meanwhile, highly abun-
dant B. pseudocatenulatum BPSEU7765_v1, B. pseudo-
catenulatum ASM168596v1, and B. pseudocatenulatum 
ASM346751v1 in the HC group laid the basis for the 
enrichment of B. pseudocatenulatum in the HC group 
(Fig. 2d). Finally, the strain diversity for the same species 
might be different between the UN and HC groups. For 
example, the strain diversity of B. uniformis in the HC 
group (Si = 13) was higher than that in the UN group 
(Si=9, Fig.  2b). Based on these findings, we concluded 
that the strain-level annotation results can not only help 
us obtain subtle information on the GM compositions 
but also provide an important basis for further accurate 
GM intervention in diseases.

The UN children exhibited a more complex but lower 
efficient GM co‑occurrence network
To further detect the hub bacteria that manipulate the 
GM, we constructed the GM co-occurrence networks for 
the UN and HC children and compared their topologi-
cal features with a complex network approach. We dis-
covered that the UN children had a larger network than 
the HC children, including more nodes and edges (Fig. 3a 
and b). In addition, the degree distributions of nodes in 
both UN and HC were confronted with the power-law 
distribution, implying that they are both scale-free net-
works (Fig. 3c and d). The GM network in HC children 
contained 19 hub nodes, including Bacteroides sterco-
ris ASM343802v1, Alistipes putredinis ASM1913202v1, 
Butyricicoccus pullicaecorum, etc. (Fig.  3a, Supplemen-
tary Table 2). In UN children, the GM network contained 
21 hub nodes, including A. putredinis, Ruminococcus 
bromii ASM346616v1, Barnesiella intestinihominis, etc. 
(Fig. 3b, Supplementary Table 3). The topological struc-
ture analysis indicated that the GM network in UN chil-
dren has a higher clustering coefficient (0.7780 vs. 0.7700) 
and modularity (0.7780 vs. 0.7638), indicating their more 
complex network. However, the graph density (Fig.  3h) 

and the average degree of each bacterium (Fig. 3e) in the 
UN patients were lower than those in the HC children, 
and the average path length was longer in the UN chil-
dren (Fig.  3f ), suggesting the connectivity and informa-
tion transferring efficiency was lower in UN patients than 
that of HC children. The finding suggested that the UN 
children had a discriminated GM network, providing us 
with bacterial candidates for further GM interventions in 
these patients.

Improved predictive power of UN‑risk model at the strain 
level
With the random forest algorithm, we constructed the 
UN-risk models at species and strain levels, respectively, 
and identified microbial markers for the UN patients 
(Fig. 4). After constructing the UN-risk models, we rec-
ognized the top five variables with significant contribu-
tions as the potential biomarkers for the UN patient 
screening. At the species level, B. uniformis, B. vulga-
tus, and P. copri were the potential biomarkers (Fig. 4a). 
Whilst, B. fragilis ASM181622v2, Ruthenibacterium 
lactatiformans, and Clostridium neonatale sp. were the 
potential biomarkers at the strain level (Fig.  4b). The 
findings suggested that the potential biomarkers were 
uncoordinated at species and strain levels. In addition, 
the UN-risk model constructed from the strain composi-
tions exhibited higher accuracy (area under curve, AUC 
= 0.833) than that from the specie compositions (AUC = 
0.743), implying the higher accuracy UN-risk model con-
structed with strain profiling.

Intimated correlations existed between GM, intestinal 
SCFAs, and nutritional indicators
Based on Mentel analysis, we explored the general 
impacts of GM, weight to age, and short-chain fatty acids 
(SCFAs) on nutritional indicators in children, includ-
ing leukocytes, lymphocytes, vitamin D, Ca, Fe, Zn, etc. 
(Fig. 5a). We first discovered that the GM was positively 
correlated with the age (Rpearson = 0.120, Padj = 0.027) 
and hemoglobin (Rpearson = 0.166, Padj = 0.001). Sec-
ond, SCFAs were positively associated with the levels of 
Fe (Rpearson = 0.260, Padj = 0.014) and Zn (Rpearson 
= 0.155, Padj = 0.042). Third, weight to age, which is an 
important indicator for malnutrition clinical diagnosis, 
was positively correlated with other physical indicators, 
including the white cell number (Rpearson = 0.232, Padj 
= 0.001), the hemoglobin level (Rpearson = 0.502, Padj 
= 0.001), the lymphocyte number (Rpearson = 0.266, 
Padj = 0.001), the serum total protein (TP) level (Rpear-
son = 0.243, Padj = 0.001), the albumin level (Rpearson = 
0.235, Padj = 0.001) and the Ca level (Rpearson = 0.186, 
Padj = 0.001, Fig. 5a). These findings implied the essen-
tial impact of GM and its derived SCFAs on nutrient 
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absorption in humans and disclosed the intimate rela-
tionships between nutritional status and various physical 
indicators.

Then, we further investigated the detailed associations 
between GM, SCFAs, physical indicators, and trace ele-
ments in the children (Fig. 5b-d). We found that the lev-
els of SCFAs were closely related to GM, e.g., propionic 
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at the species level. B. uniformis, B. vulgatus, P. copri, B. plebeius, and V. parvula posed essential contributions to the construction of the model. b The 
ROC curves and Gini values for the UN-risk model constructed at the strain level. B. fragilis ASM181622v2, R. lactatiformans, C. neonatale, F. prausnitzii, 
and C. aerofaciens ASM987593v1 posed essential contributions to the con-struction of the model

(See figure on next page.)
Fig. 5  Correlations among the GM strains, fecal SCFAs, and the UN clinical indicators. a Contributions of SCFAs, Weight to age, and GM 
on the physiological indicators of UN. The thicker lines represent the higher contributions of variables on the physiological indicators. The oranges, 
green, and grey lines represent the adjusted P-value < 0.01, 0.01-0.05, and ≥ 0.05 , respectively. The blue and red boxes represent the positive 
and negative correlations among the clinical indicators, respectively. b Corre-lation heatmap between the SCFAs and GM strains. c Correlation 
heatmap between the SCFAs and the physiological indicators of UN. d Correlation heatmap between GM strains and the physiological indicators 
of UN. The blue and red boxes represent the positive and negative correlations, respectively. *, Padj < 0.05; **, Padj < 0.01; ***, Padj < 0.001
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acid was positively correlated with Ruthenibacterium 
lactatiformans (Rspearman = 0.244, Padj = 0.024), Fla-
vonifractor plautii (Rspearman = 0.222, Padj = 0.041), 
Eggerthella lenta (Rspearman = 0.230, Padj = 0.034), and 
Faecalibacterium prausnitzii (Rspearman = 0.273, Padj 
= 0.012, Fig.  5b). In addition, the associations between 
different SCFAs and the physical indicators varied in the 
children (Fig.  5c). Isovaleric acid was significantly posi-
tively correlated with the levels of hemoglobin (Rspear-
man = 0.291, Padj = 0.007) and Fe (Rspearman = 0.238, 
Padj = 0.028); Valeric acid was positively correlated with 
the levels of albumin (Rspearman = 0.230, Padj = 0.034) 
and TP (Rspearman = 0.237, Padj = 0.029); Isobutyric 
acid was negatively correlated with the numbers of lym-
phocyte (Rspearman = -0.261, Padj = 0.016) and white 
cell (Rspearman = -0.229, Padj = 0.035, Fig. 5c). Further-
more, GM is also closely related to physical indicators 
(Fig. 5d). Among them, Veillonella parvula was positively 
correlated with vitamin D (Rspearman = 0.230, Padj = 
0.034); Clostridium neonatale was negatively correlated 
with the levels of Zn (Rspearman = -0.214, Padj = 0.050) 
and Ca (Rspearman = -0.280, Padj = 0.009); and Fae-
calibacterium prausnitzii was negatively correlated with 
albumin (Rspearman = -0.341, Padj = 0.001), TP (Rspear-
man = -0.324, Padj = 0.003), hemoglobin (Rspearman = 
-0.284, Padj = 0.010), lymphocyte (Rspearman = -0.305, 
Padj = 0.005), and white cell (Rspearman = -0.267, Padj = 
0.014, Fig. 5d). The discoveries provided us with clinical 
references for the intervention of malnutrition through 
modulating GM or SCFAs modulations.

Discussion
Numerous studies have investigated the gut microbi-
ome in undernourished children to gain insight into the 
potential links between gut microbiota and undernutri-
tion. However, these studies often overlook the strain-
level diversity within bacterial species, which could 
provide additional information on the functional roles of 
specific bacterial strains in the pathogenesis of undernu-
trition [24, 25]. Our study addresses this gap in knowl-
edge by analyzing the strain-level diversity of the gut 
microbiome in undernourished children and identifying 
specific strains that are differentially enriched between 
undernourished and healthy control children.

Our strain-level analysis revealed that undernourished 
children had enriched Prevotella copri strains, which 
have been linked to adverse conditions such as chronic 
inflammation [26], fat accumulation [27], insulin resist-
ance [28], and glucose intolerance [28]. However, con-
flicting reports also associate P. copri with improved 
glucose and reduced visceral fat [29]. Our findings 
showed that the strains in undernourished and healthy 
children were from different clades, potentially having 

different metabolic roles. Higher taxonomic levels can 
obscure candidate bacteria that contribute to human dis-
eases, and enriched pathogens at the strain level provide 
new clues to the pathogenesis of undernutrition.

We also highlighted the identified differences in GM 
composition between the UN and HC group, particularly 
the absence of certain beneficial bacterial strains in the 
UN group, highlighting potential associations between 
specific bacteria and undernutrition status. For instance, 
Bacteroides fragilis and Bacteroides uniformis strains are 
known to be involved in the fermentation of complex 
polysaccharides and the production of SCFAs [30–32]. 
Polysaccharide and oligosaccharide metabolism provides 
nutrition and vitamins to the host and other intestinal 
microbial residents [33]. SCFAs, such as butyrate, ace-
tate, and propionate, serve as important energy sources 
for colonocytes, maintain intestinal homeostasis, and 
contribute significantly to host nutrition [33, 34]. Other-
wise, Faecalibacterium prausnitzii is also one of the most 
important butyrate-producing bacteria [30]. The absence 
of B. fragilis, B. uniformis, and F. prausnitzii in under-
nourished children might result in inadequate produc-
tion of SCFAs and reduced efficiency in polysaccharide 
metabolism. B. fragilis ASM181622v2 might be one of the 
key strains. Our results also showed that F. prausnitzii 
was positively correlated with propionic and negatively 
correlated with albumin, TP, hemoglobin, lymphocyte, 
and white cells. This bacterium has potential roles in 
maintaining gut health. Moreover, the presence of lower 
levels of Bifidobacterium pseudocatenulatum strains, 
which are well-known for their beneficial effects on host 
health, in the UN group might suggest that undernour-
ished children experienced impaired fermentation of die-
tary fibers, reduced production of short-chain fatty acids, 
and compromised immune function [30, 35–37]. These 
findings have significant implications for addressing the 
increasing rise of malnutrition. Understanding the spe-
cific roles of these bacteria in nutrient metabolism and 
gut health can potentially lead to interventions targeting 
the gut microbiome to alleviate undernutrition. Strate-
gies such as dietary modifications (e.g., increasing dietary 
fiber and complex carbohydrates), probiotic supplemen-
tation with specific beneficial bacteria, or fecal microbi-
ota transplantation may be explored to rebalance the gut 
microbiota and improve nutritional outcomes.

Co-occurrence network analysis revealed that different 
topological characteristics between UN and HC groups 
might be linked to different inter-species interactions or 
system efficiency [38]. Although the gut microbiota net-
works in both groups had scale-free properties, the hub 
nodes, which play a critical role in preserving the over-
all functionality of the network, were different [39–41]. 
Notably, the gut microbiota network of undernourished 
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children exhibited higher clustering coefficient and 
modularity, along with lower graph density, lower aver-
age degree, and longer average path length. These char-
acteristics are associated with lower community stability, 
worse microbial cooperation, and decreased communica-
tion [38, 40, 42].

Moreover, we constructed a UN risk model based on 
the strain compositions, demonstrating a better predic-
tive effect than the model based on species compositions. 
At the species level, Bacteroides vulgatus, Bacteroides 
uniformis, and Prevotella copri were critical contributors 
to the risk prediction model and differentially enriched 
between undernourished and healthy children. How-
ever, at the strain level, their high intraspecific diversity 
resulted in no differentially enriched strains between 
the two groups. Critical strain biomarkers with signifi-
cantly different abundances were Bacteroides fragilis 
ASM181622v2, Ruthenibacterium lactatiformans, and 
Clostridium neonatale sp., with critical biological func-
tions in intestinal infection or homeostasis maintenance 
[43]. Our strain-level analysis provided a more precise 
UN risk model, enhancing our understanding of the asso-
ciations between childhood undernutrition and GM.

Conclusions
In conclusion, our study explored the characteristics of 
GM and its co-occurrence networks in undernourished 
children from the strain level perspective, supplement-
ing the understanding of the GM’s roles in the pathogen-
esis of undernutrition, providing a more precise UN risk 
model, and laying the groundwork for undernutrition 
interventions.
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