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Abstract 

Background:  The emergence of antimicrobial resistant bacteria in food producing animals is of growing concern 
to food safety and health. Staphylococci are common inhabitants of skin and mucous membranes in humans and 
animals. Infections involving antibiotic resistant staphylococci are associated with increased morbidity and mortal‑
ity, with notable economic consequences. Livestock farms may enable cross-species transfer of antibiotic resistant 
staphylococci. The aim of the study was to investigate antimicrobial resistance patterns of staphylococci isolated from 
livestock and farm attendants in Northern Ghana using phenotypic and genotypic methods. Antimicrobial suscepti‑
bility testing was performed on staphylococci recovered from livestock and farm attendants and isolates resistant to 
cefoxitin were investigated using whole genome sequencing.

Results:  One hundred and fifty-two staphylococci comprising S. sciuri (80%; n = 121), S. simulans (5%; n = 8), S. epi-
dermidis (4%; n = 6), S. chromogens (3%; n = 4), S. aureus (2%; n = 3), S. haemolyticus (1%; n = 2), S. xylosus (1%; n = 2), S. 
cohnii (1%; n = 2), S. condimenti (1%; n = 2), S. hominis (1%; n = 1) and S. arlettae (1%; n = 1) were identified. The isolates 
showed resistance to penicillin (89%; n = 135), clindamycin (67%; n = 102), cefoxitin (19%; n = 29), tetracycline (15%; 
n = 22) and erythromycin (11%; n = 16) but showed high susceptibility to gentamicin (96%; n = 146), sulphamethoxa‑
zole/trimethoprim (98%; n = 149) and rifampicin (99%; n = 151). All staphylococci were susceptible to linezolid and 
amikacin. Carriage of multiple resistance genes was common among the staphylococcal isolates. Genome sequenc‑
ing of methicillin (cefoxitin) resistant staphylococci (MRS) isolates revealed majority of S. sciuri (93%, n = 27) carrying 
mecA1 (which encodes for beta-lactam resistance) and the sal(A) gene, responsible for resistance to lincosamide and 
streptogramin. Most of the MRS isolates were recovered from livestock.

Conclusion:  The study provides insights into the genomic content of MRS from farm attendants and livestock in 
Ghana and highlights the importance of using whole-genome sequencing to investigate such opportunistic patho‑
gens. The finding of multi-drug resistant staphylococci such as S. sciuri carrying multiple resistant genes is of public 
health concern as they could pose a challenge for treatment of life-threatening infections that they may cause.
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Background
Staphylococci are the most common bacteria found on 
the skin and mucous membranes of mammals [1]. Bac-
teria of this genus are usually commensal organisms and 
can be divided into two groups based on their ability to 
produce the enzyme coagulase [2]. Pathogenic infections 
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may result from colonization with staphylococci if pri-
mary skin barriers are compromised due to trauma [3]. 
Among the species producing coagulase, Staphylococcus 
aureus is of primary importance to human and animal 
health. S. aureus is a notable cause of mastitis in livestock 
and has been associated with bacteremia, skin and soft 
tissue infections in humans [4, 5].

The less pathogenic group of coagulase negative 
staphylococci (CoNS) have garnered interest in recent 
times due to their increasing role in the occurrence of 
opportunistic infections [6]. CoNS-related infections in 
humans have been associated with the presence of for-
eign bodies and immunosuppressive states of patients 
[7]. Staphylococcus epidermidis falls within the category 
of CoNS and is the most common cause of foreign body 
related blood stream infections in humans [8]. S. epider-
midis and S. chromogens have been isolated in subclinical 
and clinical mastitis cases in cattle [9]. CoNS are known 
carriers of transferable genetic elements that contribute 
to the survival of some strains of S. aureus and are often 
cited as reservoirs of resistance genes [10].

The emergence of antimicrobial resistance (AMR) in 
staphylococci, though partly dependent on innate micro-
bial characteristics, is mainly driven by antimicrobial use 
[11, 12] S. aureus are known to adapt and gain resistance 
to nearly all antibiotics used to treat it. Concurrent resist-
ance to non-β-lactam agents such as quinolones, tetracy-
clines, aminoglycosides, macrolides and lincosamides are 
increasingly reported among methicillin resistant strains 
of staphylococci, further diminishing the treatment 
options available for infected humans or animals [13]. 
Methicillin resistance is attributed to the production of 
a transpeptidase (PBP2a), encoded by the mecA gene 
within the staphylococcal cassette chromosome [14]. 
Methicillin resistant S. aureus (MRSA) infections often 
result in increased morbidity and an increase in health 
care associated costs [15].

Mounting evidence suggests that the development of 
resistance in commensal pathogens of livestock origin 
contribute to the persistence of carriage of these resistant 
organisms in humans. Antimicrobials are used routinely 
in livestock production and its misuse in livestock farm-
ing often leads to emergence of resistance due to selec-
tive pressure on microbes like staphylococci exposed to 
antibiotics [16]. Colonized livestock may spread resist-
ant strains directly to humans or indirectly through the 
food chain [17]. The detection of MRSA in humans that 
have been linked to animals has heightened concerns 
of its ability to be transferred among species [18]. Live-
stock farmers, veterinarians, wool sorters, meat hygiene 
inspectors and people who frequently visit livestock 
farms have been found to be at increased risk for MRSA 
colonization [19].

The presence of multidrug resistant strains of staphy-
lococci in livestock have implications for food safety and 
contribute to the global challenge of AMR [20]. Knowl-
edge on carriage rates of resistant strains of CoNS in live-
stock is scarce in Ghana; such information is necessary 
to inform antimicrobial policies and improve integrated 
surveillance on antimicrobial resistance. Findings from 
antimicrobial susceptibility testing of bacteria species 
such as CoNS offer vital information for surveillance but 
are limited when it comes detection of clones, resistance 
and virulence of bacteria pathogens. Genomic sequenc-
ing on the other hand, provides massive information for 
characterizing bacteria species [21] including staphylo-
cocci. This study therefore sought to characterize staphy-
lococci recovered from livestock and farm attendants in 
the Northern part of Ghana using phenotypic and geno-
typic methods.

Results
Farm attendant characteristics
Majority of the farm attendants were male (89%). The 
age of farm attendants ranged from 14 to 58 years. Daily 
participation in livestock rearing activities such as feed-
ing, grazing and handling was reported by all 19 respond-
ents. Most of the livestock attendants worked primarily 
on only one type of livestock (84%). Three attendants 
worked with more than one livestock type. Most of the 
farm attendants lived on the farm (83%) and had been 
working on the farm for at least eight years (78%).

Nasal carriage of staphylococci
Of the 311 nasal swabs collected from livestock and 19 
samples collected from farm attendants, 152 staphylococ-
cal isolates were recovered. Staphylococci were obtained 
in close to half of livestock samples (45%; n = 141) and in 
most farm attendant samples (58%; n = 11). Most of the 
isolates (98%; n = 149) were CoNS, with three isolates 
(2%) identified as S. aureus. Ten different CoNS species 
were confirmed, with S. sciuri being the most prevalent 
(80%; n = 121). Others include S. simulans (5%; n = 8), 
S. epidermidis (4%; n = 6), S. chromogens (3%; n = 4), S. 
haemolyticus (1%; n = 2), S. xylosus (1%; n = 2) S. cohnii 
(1%; n = 2), S. condimenti (1%; n = 2), S. hominis (1%; n

 = 1) and S. arlettae (1%; n = 1).
S. sciuri was found in nasal swabs from all livestock 

types in this study. S. epidermidis was isolated only from 
nasal swabs obtained from farm attendants. S. haemolyti-
cus was isolated from human and sheep samples. S. con-
dimenti was found only in pigs, whilst S. hominis and S. 
arlettae were isolated only in sheep. Six different species 
of staphylococci were found in samples from goats and 
consisted of S. sciuri, S. simulans, S. aureus, S. xylosus, S. 
chromogens and S. cohnii (Table 1).
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Antimicrobial resistance in staphylococcal isolates
Isolates from farm attendants were mainly resistant to 
penicillin (100%; n = 11), tetracycline (55%; n = 6), cefoxi-
tin (27%; n = 3), clindamycin (36%; n = 4), sulphameth-
oxazole/trimethoprim (27%; n = 3), erythromycin (18%; 
n = 2) and gentamycin (18%; n = 2). All staphylococ-
cal isolates from farm attendants were susceptible to 
linezolid, amikacin and rifampicin. Isolates obtained 
from livestock were mainly resistant to penicillin (88%; 
n = 124), clindamycin (70%; n = 98), cefoxitin (18%; 
n = 26), tetracycline (11%; n = 16) and erythromycin 
(10%; n = 14) (Table  2). Among isolates from livestock, 
resistance to gentamicin and rifampicin was less preva-
lent (3%; n = 4 and 1%; n = 1). All cefoxitin resistant iso-
lates (19%; n = 29) were susceptible to vancomycin.

The predominant isolates detected, S. sciuri were resist-
ant to 6 out of 10 antimicrobials agents tested in all: peni-
cillin (94%; n = 114), clindamycin (80%; n = 97), cefoxitin 
(22%; n = 27), tetracycline (8%; n = 10), erythromycin 
(8%; n = 10) and gentamicin (2%; n = 3). S. epidermidis 

isolates were resistant to seven out of 10 antimicrobials 
with a single isolate exhibiting resistance to six antibiotic 
agents. Half (50%; n = 3) of S. epidermidis isolates were 
resistant to sulphamethoxazole/trimethoprim. Although 
low numbers of S. xylosus isolates were identified, resist-
ance was detected to five out of 10 antibiotics (penicillin, 
clindamycin, tetracycline, erythromycin and rifampicin). 
S. aureus isolates recovered were resistant to penicillin, 
tetracycline and erythromycin. S. chromogens and S. coh-
nii were susceptible to all tested antibiotic agents except 
penicillin (Table 3).

Of the 152 staphylococci isolated, 49 (32%) were MDR. 
Overall, MDR rates were higher in farm attendants (45%; 
n = 5) than in livestock (31%; n = 44).

Genomic analysis of cefoxitin resistant staphylococci
Whole-genome sequencing of the cefoxitin-resistant 
isolates revealed that all S. sciuri possessed mecA1 
gene, while S. epidermidis and S. haemolyticus har-
bored mecA gene. Tetracycline resistance genes 

Table 1  Nasal carriage of Staphylococci among farm attendants and livestock, 2018

Parameter Humans Cattle Sheep Goat Pig Total

No. of isolates 11 19 71 32 19 152

Staphylococcal species

  S. epidermidis 6 - - - - 6

  S. haemolyticus 1 - 1 - - 2

  S. xylosus 1 - - 1 - 2

  S. sciuri 3 18 65 21 14 121

  S. aureus - - - 3 - 3

  S. simulans - - 2 3 3 8

  S. chromogens - 1 1 2 - 4

  S. cohnii - - - 2 - 2

  S. hominis - - 1 - - 1

  S. arlettae - - 1 - - 1

  S. condimenti - - - - 2 2

Table 2  Antimicrobial resistance of staphylococci isolated from livestock and farm attendants, 2018

Antimicrobial agent Livestock n = 141 (%) Farm attendants n = 11 (%) Total N = 152(%)

Penicillin 124 (88) 11 (100) 135 (89)

Clindamycin 98 (70) 4 (36) 102 (67)

Cefoxitin 26 (18) 3 (27) 29 (19)

Tetracycline 16 (11) 6 (55) 22 (15)

Erythromycin 14 (10) 2 (18) 16 (11)

Gentamicin 4 (3) 2 (18) 6 (4)

Rifampicin 1 (1) 0 (0) 1 (1)

Sulphamethoxazole-Trimethoprim 0 (0) 3 (27) 3 (2)

Amikacin 0 (0) 0 (0) 0 (0)

Linezolid 0 (0) 0 (0) 0 (0)
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detected were: tet(K) (10%, n = 3), tet(L) (3%, n = 1) and 
tet(M) (3%, n = 1). The tet(K) genes detected were from 
two goats and one sheep while tet(M) and tet(L) were 
detected in an isolate from one farm attendant. Chlo-
ramphenicol resistance gene cat(pC221) was observed 
in one S. sciuri isolate. sal(A) gene responsible for 
resistance to lincosamide and streptogramin antibiotics 
was observed in 93% (n = 27) of S. sciuri isolates. Genes 
responsible for aminoglycoside (aadD), folate pathway 
(dfrK; dfrG), lincosamide and macrolide (erm(B)), fos-
fomycin (fosB) and tetracycline (tet(K), tet(M), tet(L)) 
resistance were detected in one S. epidermidis. Amino-
glycoside-resistance gene aac(6’)-aph(2’’), folate path-
way antagonistic gene dfrG, and beta-lactam gene blaZ 
were detected in the S. haemolyticus.

In this study, seven plasmid sequences (rep13, rep7a, 
rep16, rep22, repUS76, rep19, and rep20) were observed in 
24% (n = 7) of the isolates with rep7a (n = 4) predominat-
ing. Three of these plasmids (rep16, rep22, repUS76) were 
detected in an S. epidermidis isolate which also harbored 
the insertion sequence ISSep2. The S. epidermidis and 
S. haemolyticus isolates belonged to sequence types 226 
and 30 respectively. All S. sciuri isolates appear to be 
novel with unknown sequence types. Core single nucle-
otide polymorphism (SNP) maximum likelihood tree 
of the 29 cefoxitin resistant isolates revealed 2 distinct 
clades. Both clades showed clustering of isolates from all 
sources. Comparative genomic analysis of the S. sciuri 
isolates obtained from the farm attendants and livestock 
demonstrated clustering and high-level genetic homoge-
neity (> 95%), suggesting possible transmissions between 
hosts (Fig. 1). The complete genome sequences have been 
deposited at Gene Bank with the following accession 
numbers: JALGXD000000000-JALGPD000000000.

Discussion
The findings of this study show that multidrug-resistant 
staphylococci are prevalent in livestock and farm attend-
ants on the farms sampled. The detection of S. sciuri, S. 
aureus, S. xylosus, S. simulans, S. chromogens, S. cohnii, 
S. hominis, S. arlettae and S. condimenti are consistent 
with previous reports on prevalence of CoNS in livestock 
[22, 23]. S. sciuri was the most prevalent staphylococci 
identified in this study (80%) and was isolated in both 
livestock and farm attendants. Primarily considered a 
livestock-associated bacterium, S. sciuri can be found in 
large numbers in the farm environment [22]. Though the 
colonizing population may be low outside the farm envi-
ronment, they are found to readily adapt and persist in 
health care settings and thus may pose a threat to human 
health [23]. S. sciuri has been associated with pneumonia 
and septicemic shock in Grasscutter (Thryonomys swin-
derianus) in Ghana [24]. This pathogen was detected in 
China as the causative organism for endocarditis [25] and 
in Thailand, as the agent in a food poisoning outbreak 
investigation [26].

S. aureus was detected in samples from three goats 
and none contained the mecA gene (MRSA). This is 
in sharp contrast with reports from other geographic 
areas [9]. Of note, the CoNS that were resistant to 
cefoxitin and also positive for mecA1 in this study 
originated from livestock. Previous studies in Ghana 
however, found MRSA among farm attendants and 
none from livestock [27]. MRSA may be more preva-
lent in intensive farming systems where antimicrobials 
are used in the production chain more frequently, and 
in hospital settings due to selective pressure of bacte-
ria in these environments and their presence in colo-
nized inpatients [28]. S. epidermidis, S. haemolyticus, 

Table 3  Pattern of antimicrobial resistance of staphylococcal isolates, 2018

No.(%) of resistant isolates

No. of isolates Pen Clin Cef Tet Ery Gen Rif STX-

S. sciuri 121 114 (94) 97 (80) 27 (22) 10 (8) 10 (8) 3 (2) - -

S. epidermidis 6 6 (100) 1 (17) 1 (17) 5 (83) 2 (33) 1 (17) - 3 (50)

S. haemolyticus 2 2 (100) 1 (50) 1 (50) 1 (50) 1 (50) - -

S. xylosus 2 2 (100) 2 (100) - 1 (50) 1 (50) - 1 (50) -

S. simulans 8 1 (12.5) - - 3 (38) - - - -

S. chromogens 4 3 (75) - - - - - - -

S. cohnii 2 2 (100) - - - - - - -

S. hominis 1 1 (100) - - - - 1 (100) - -

S. arlettae 1 1 (100) 1 (100) - - 1 (100) - - -

S. condimenti 2 - - - 1 (50) - - - -

S. aureus 3 3 (100) - - 2 (67) 1 (33) - - -

Total (N, %) 152 135 (89) 102 (67) 29 (19) 22 (15) 16 (11) 6 (4) 1 (0.7) 3 (2)
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and S. xylosus were frequently detected in samples 
from farm attendants. This concurs with previous 
reports that identified S. epidermidis as the most fre-
quently occurring CoNS found on skin and mucosae 
in humans [1]. S. epidermidis and S. haemolyticus have 
increasingly been associated with nosocomial infec-
tions and are described to be highly adaptable to med-
ical devices hence the need to monitor carriage rates 
in humans [29].

The level of resistance of staphylococci to critically 
needed antimicrobial agents is a growing public health 
concern. The overall prevalence of MDR was 32%, with 
higher rates observed for farm attendants. The high 
rate of resistance to penicillin observed in this study is 
consistent with previous reports on staphylococci from 
both clinical and non-clinical samples in Ghana [27, 
30–34] and elsewhere [35, 36] thus, was expected.

The proportion of isolates resistant to tetracycline 
was higher in isolates from farm attendants (55%) as 
compared to livestock (11%), and this is in concordance 
with the rates of tetracycline resistance in staphylo-
cocci. More than half of CoNS from livestock attend-
ants (S. epidermidis, S. haemolyticus) were tetracycline 
resistant. Tetracycline resistance in all livestock in this 
study was lower (11%) than was reported in S. aureus 
isolates recovered from livestock (47%) in a previous 
study in Ghana [27] and from chicken droppings (74%) 
elsewhere [37]. This observation can be attributed to 
the frequency of its use in the various farming systems. 

Tetracycline and its derivatives are often used as part of 
feed for growth promotion and prophylaxis in intensive 
poultry farming. Though its use in livestock is wide-
spread, oral preparations are not common.

Resistance to sulphamethoxazole/trimethoprim 
(STX) was found in S. epidermidis, from three farm 
attendants. STX has been used in the treatment of 
infections caused by community-acquired S. aureus; 
resistance to this agent among methicillin resistance 
strains may point to a reduction in its efficacy due to 
exposure [38]. High susceptibility of isolates to vanco-
mycin, linezolid, amikacin, rifampicin and gentamicin 
is crucial for the treatment of severe infections in 
humans. A notable example is the use of vancomycin 
for the treatment of MRSA infections [39].

Phylogenetic analysis of MRS isolates showed close 
genetic relatedness between isolates recovered from 
humans and livestock, suggesting that these patho-
gens may not be host-specific. The observation could 
also reflect possible transmission between the differ-
ent hosts.

The mec variants (mecA and mecA1) found in the MRS 
have been linked to resistance to beta-lactam antibiot-
ics in staphylococci [40]. Several studies have pointed to 
mecA1 detected in S. sciuri as an evolutionary ancestor of 
the mecA gene found in MRSA [40–42]. mecA1 gene is 
naturally adapted to S. sciuri; resistance to beta-lactams 
due to changes in the promoter region of this gene have 
been reported [40, 43].

Fig. 1  Core Maximum likelihood phylogeny of the Methicillin-Resistant Staphylococci (MRS) isolates (2018). The phylogenetic tree was constructed 
using CSI-Phylogeny based on core genome SNPs extracted from alignment to reference strain LS483305.1 and visualised using Interactive Tree of 
Life (iTOL). SS: Staphylococcus sciuri, SE: Staphylococcus epidermidis SH: Staphylococcus haemolyticus 



Page 6 of 10Egyir et al. BMC Microbiology          (2022) 22:180 

The high levels of resistance to clindamycin among 
the isolates can be linked to the sal(A) gene detected in 
majority of the S. sciuri (93%) isolates. sal(A) is located 
between two housekeeping genes of the core genome of 
S. sciuri subspecies; it encodes for resistance to lincosa-
mide and streptogramin antibiotics [44].

The plasmids detected in this study harbored antibi-
otic resistance genes. Many resistance determinants are 
plasmid-mediated, and this has been demonstrated in 
previous studies on staphylococci [45]. Horizontal trans-
fer of plasmids can occur among staphylococcal strains 
of different species although data on plasmid distribu-
tion in staphylococci are scarce [10, 46]. In this study, 
seven different plasmid sequences were detected based 
on the sequences of their rep genes. The most prevalent 
sequence was rep7a, which is similar to studies conducted 
by Strasheim et al., in which rep7a was detected as one of 
the most dominant rep genes in S. aureus isolates [47].

Co-occurrence of rep7a plasmid with tet(K) gene was 
observed in three isolates. Similarly, the occurrence of 
rep7a plasmid with cat(pC221) was observed in one iso-
late. This is consistent with reports of strong association 
between this plasmid, tetracycline and chloramphenicol 
resistance [48, 49]. Tetracycline resistance genes: tet(K), 
(M) and (L) have been reported among staphylococci 
recovered from clinical and non-clinical samples in Afri-
can countries including Ghana [27, 33, 35, 50] suggesting 
that these genes are widely disseminated in these regions.

The potential risks of transfer of plasmid-borne  AMR 
genes from S. sciuri  to other Staphylococcus species was 
previously reported by Li et al., [51] pointing to the need 
to routinely monitor AMR gene carriage on plasmids in 
coagulase negative staphylococci. The presence of AMR 
genes borne on plasmids in CoNS isolated supports 
the evidence that CoNS may serve as reservoirs for the 
spread of AMR [10]. Dissemination of plasmids carrying 
multiple resistance genes will substantially limit the effi-
cacy of antibiotic agents and urgently warrants surveil-
lance of staphylococci from animal and human sources. 
Previous studies have shown that plasmid sequence 
associated with rep16 and rep20 was prevalent in clini-
cal S. aureus and S. haemolyticus isolates [52]. rep13, 
rep16, rep19 rep22 and rep20 have also been detected in S. 
aureus isolates from different geographic regions with 
rep16 carrying multiple resistance genes [53, 54]. To the 
best of our knowledge, the co-occurrence of erm(B), dfrK, 
aadD resistance genes and replicon plasmids rep16, rep22, 
repUS76 in ST 226 S. epidermidis has not been reported 
from farm attendants in previous studies in Ghana. Inter-
estingly, ST 226 S. epidermidis was detected in a blood 
sample of a neonate in Ghana and from hospital and 
community settings in China [55, 56]; on the other hand, 
ST30 S. haemolyticus found in this study, has also been 

detected in blood stream and catheter related infections 
from India, often showing vancomycin heteroresistance 
[57, 58] thus, confirming invasive characteristics of these 
CoNS clones.

Conclusion
The study provides insights into the genomic con-
tent of MRS from farm attendants and livestock in 
Ghana and therefore highlights the importance of using 
whole-genome sequencing to investigate such oppor-
tunistic pathogens. CoNS may serve as reservoirs for 
transmission of resistant genes to S. aureus at the farm 
level among livestock and farm attendants. The finding 
of multi-drug resistant CoNS including S. sciuri carry-
ing multiple resistant genes is of public health concern as 
they could pose a challenge for treatment of life-threat-
ening infections that they may cause.

Materials and methods
Study sites and sample collection
The Northern region is a major hub for livestock produc-
tion in Ghana, consisting of numerous smallholder and 
pastoral farming systems [59]. Samples were collected 
in July 2018 from one multi-species livestock breeding 
station and four livestock farms in the Northern region 
of Ghana (Fig.  2). The Livestock breeding station was 
selected purposively due to its role in the livestock sup-
ply chain in the Northern region. The four farms were 
selected randomly from 2 districts in the region which 
were integrated with households in four communities. 
Nasal swabs were obtained from three hundred and 
eleven (311) livestock and nineteen (19) farm attend-
ants. Livestock on selected farms were selected randomly 
within their pens or sheds making sure to collect samples 
from at least five pens on farms with more than five pens. 
On farms with very few pens (≤ 5) samples were col-
lected from at least three pens.

All nasal swabs were placed in 10 ml of Mueller–Hin-
ton broth (Oxoid Ltd., Basingstoke, UK), supplemented 
with 6.5% NaCl in sterile tubes and labeled. Samples were 
immediately transported on ice to the laboratory for test-
ing. Data on demographic characteristics for each live-
stock attendant was collected using a semi-structured 
questionnaire.

Identification of S. aureus and Coagulase Negative 
Staphylococci
Pre-enrichment was carried out by incubating samples 
in Mueller–Hinton broth with 6.5% NaCl for 48  h at 
37 °C. A volume of 10 µl of each sample was then plated 
on Mannitol salt agar and incubated for 48  h at 37  °C. 
Based on the colony morphology and ability to ferment 
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mannitol, presumptive colonies were streaked on 5% 
sheep blood agar (Oxoid Ltd., Basingstoke, UK), and 
incubated for 24  h at 37  °C. Identification of staphylo-
cocci was achieved by using the matrix- assisted laser 
desorption ionization–time of flight mass spectrometry 
(MALDI-TOF MS) instrument. Briefly, the procedure for 
MALDI-TOF MS involved spreading well isolated colo-
nies from overnight cultures on a steel target plate. This 
film is then overlaid with 1 µl of formic acid and allowed 
to dry for 15 min. 1 µl of matrix preparation containing 
cyano-4- hydroxy-cinnamic acid in 50% acetonitrile with 
2.5% trifluoroacetic acid was placed on each sample and 
left to dry for a further 15  min. MALDI-TOF MS was 
then conducted and Ionization peaks generated were 
matched against the integrated reference library for spe-
ciation of the bacteria [60, 61].

Antimicrobial susceptibility testing of staphylococci
Antimicrobial susceptibility testing was performed using 
Kirby Bauer’s disk diffusion method with 10 antimicrobial 
agents: (cefoxitin (30 µg), amikacin (30 µg), penicillin (1 
unit), rifampicin (5 µg), clindamycin (2 µg), erythromycin 
(15 µg), gentamycin (10 µg), sulphamethoxazole/trimeth-
oprim (25 µg), tetracycline (30 µg), linezolid (10 µg). The 
measured diameters of the zones of inhibition were inter-
preted according to the European Committee on Anti-
microbial Susceptibility Testing (EUCAST) guidelines 

[62]. The minimum inhibitory concentration of cefoxitin-
resistant isolate was done using vancomycin using E- test 
strips (bioMerieux) and interpreted based on EUCAST 
guidelines. Multidrug resistance was defined as resist-
ance to three or more antimicrobial agents [63].

Whole‑genome sequencing and Analysis
Whole-genome sequencing was performed on all cefox-
itin-resistant isolates using the illumina Miseq platform. 
DNA of freshly cultured isolates was extracted using 
Qiagen DNA MiniAmp kit following the manufacturer’s 
instructions. Extracted DNA was quantified using Qubit 
4.0 Fluorometer assay kit (Thermo Fisher Scientific, MA), 
followed by library preparation with illumina DNA prep 
following the manufacturer’s instructions. The quality 
and concentration of fragmented DNA were assessed 
with the 2100 bioanalyzer system (Agilent) and qPCR 
(Kapa Sybr Fast qPCR kit) respectively. Libraries were 
then pooled and loaded on illumina 2 × 300 cycle car-
tridge for sequencing on Miseq platform (Illumina Inc., 
San Diego, CA).

Raw sequenced reads were quality filtered and trimmed 
using FASTQC (http://​www.​bioin​forma​ticsb​abrah​am.​ac.​uk/​
proje​cts/​fastqc/) and Trimmomatic (  http://​www.​usade​llab.​
org/​cms/​index.​php?​page=​trimm​omatic) respectively with a 
minimum quality set at Q20 [64, 65]. Trimmed reads were 

Fig. 2  Location of selected livestock farms in the Northern Region of Ghana (2018)

http://www.bioinformaticsbabraham.ac.uk/projects/fastqc/
http://www.bioinformaticsbabraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
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de-novo assembled with Unicycler V0.4.9 from which only 
contigs greater than 200 bp were used for further analysis.

Assembled files were uploaded to Resfinder (https://​
cge.​cbs.​dtu.​dk/​servi​ces/​ResFi​nder/), a tool available on 
Center for Genomic Epidemiology platform to detect 
resistance genes present in the sequenced isolates using 
an identity threshold of 90% and a minimum length of 
60%. Plasmids and mobile genetic elements were pre-
dicted using Plasmidfinder (https://​cge.​cbs.​dtu.​dk/​servi​
ces/​Plasm​idFin​der/) and MGEfinder (https://​cge.​cbs.​
dtu.​dk/​servi​ces/​Mobil​eElem​entFi​nder/) respectively. 
The sequence types of the isolates were predicted using 
MLSTFinder (https://​cge.​cbs.​dtu.​dk/​servi​ces/​MLST/).

Assembled sequences were mapped to a reference 
genome (GenBank accession number LS483305.1) 
and a core maximum likelihood phylogenetic tree was 
constructed using CSI phylogeny tool on Center for 
Genomic Epidemiology (CGE). Analysis was performed 
with default parameters. The resultant tree was anno-
tated in the Interactive Tree of Life (iTOL) [66].
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