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Abstract 

Background:  Recently, Mycobacterium avium complex (MAC) infections have been increasing, especially in immuno-
compromised and older adults. The rapid increase has triggered a global health concern due to limited therapeutic 
strategies and adverse effects caused by long-term medication. To provide more evidence for the treatment of MAC, 
we studied the in vitro inhibitory activities of 17 antimicrobial agents against clinical MAC isolates.

Results:  A total of 111 clinical MAC isolates were enrolled in the study and they were identified as M. intracellulare, 
M. avium, M. marseillense, M. colombiense, M. yongonense, and two isolates could not be identified at the species level. 
MAC strains had relatively low (0–21.6%) resistance to clarithromycin, amikacin, bedaquiline, rifabutin, streptomycin, 
and clofazimine, and the resistant rates to isoniazid, rifampin, linezolid, doxycycline, and ethionamide were very high 
(72.1–100%). In addition, M. avium had a significantly higher resistance rate than that of M. intracellulare for ethambu-
tol (92.3% vs 40.7%, P < 0.001), amikacin (15.4% vs 1.2%, P = 0.049), and cycloserine (69.2% vs 25.9%, P = 0.004).

Conclusions:  Our results supported the current usage of macrolides, rifabutin, and aminoglycosides in the regimens 
for MAC infection, and also demonstrated the low resistance rate against new drugs, such as clofazimine, tedizolid, 
and bedaquiline, suggesting the possible implementation of these drugs in MAC treatment.

Keywords:  Mycobacterium avium complex (MAC), Drug susceptibility test, Minimum inhibitory concentration (MIC), 
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Background
Members of the Mycobacterium avium complex (MAC) 
are the most common nontuberculous mycobacteria 
(NTM) species that cause pulmonary, soft tissue, and 
systemic diseases. MAC tends to cause infection in peo-
ple with immunodeficiencies or underlying lung diseases. 

Host factors associated with MAC infection include 
acquired immunodeficiency syndrome, gene mutations 
in the interferon gamma (IFN-γ)-interleukin 12 axis, 
positive anti-IFN-γ autoantibodies, cystic fibrosis, and 
bronchiectasis [1–3]. Over the last decade, the incidence 
of MAC infections has increased, along with the emer-
gence of several novel species. After 2015, Mycobacte-
rium intracellulare has become the most prevalent NTM 
species in China instead of Mycobacterium abscessus, 
according to a meta-analysis in 2020 [4]. M. intracellu-
lare and Mycobacterium avium remain the most impor-
tant and prevalent pathogens in the MAC [5], while 
other species, including Mycobacterium chimaera  [6], 
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Mycobacterium colombiense  [7], and Mycobacterium 
marseillense  [8] in the MAC have been increasingly 
reported recently.

M. chimaera, one of the species of M. intracellulare, is 
transmitted through contaminated catheters and often 
causes disseminated and life-threatening infections in 
people who have undergone open-heart surgery [9, 10]. 
As for M. colombiense and M. marseillense, they are 
genetically different from M. avium and M. intracellu-
lare [11, 12]. M. colombiense was first reported in Colum-
bian patients with human immunodeficiency virus [13], 
and has since been isolated from both immunocompro-
mised and immunocompetent patients with cutaneous, 
lymph node, and pulmonary infections [14–16]. M. mar-
seillense, which was identified later in 2009, has similar 
pathogenicity to M. colombiense. For Other species, like 
Mycobacterium vulneris, Mycobacterium timonense, 
Mycobacterium arosiense, Mycobacterium yongonense, 
and Mycobacterium bouchedurhonense, few cases were 
reported.

MAC infections can be difficult to treat due to multiple 
factors, including environmental and genetic risk factors 
and frequent drug-related side effects. A culture con-
version rate of 50%-80%, a recurrence rate of 25%-48%, 
and a reinfection rate of 46%-75% have been observed 
in patients with MAC lung diseases (MAC-LD) [17–19]. 
Treatment guidelines for MAC-LD by the American Tho-
racic Society and the British Thoracic Society recom-
mended a three-drug therapeutic approach that includes 
macrolides, rifampin, and ethambutol [20]. Additionally, 
for patients with refractory, severe or macrolide-resistant 
MAC-LD, parenteral amikacin or streptomycin are rec-
ommended treatments. In the MAC treatment regimen, 
only macrolides and amikacin undergo drug susceptibil-
ity testing [21–23], as the other agents lack correlations 
between in  vitro testing and in  vivo clinical response. 
Recently, a limited number of new antibiotics, including 
anti-tuberculous agents, such as clofazimine [24], has 
been introduced to treat MAC.

Although in  vitro drug susceptibility testing of MAC 
is routine, novel drugs are rarely tested. In addition, the 
prevalent MAC species differ by regions, which could 
cause different resistance profiles of MAC from different 
regions. Therefore, we conducted species identification 
and drug susceptibility testing on the MAC strains col-
lected from patients admitted to our hospital in Shang-
hai, China. In addition to the frequently used drugs, we 
also tested clofazimine, bedaquiline, tedizolid, and cyclo-
serine, with the aim of exploring the effectiveness of anti-
microbials against MAC, Because they are new accessible 
drugs  and they are recommended for treating tubercu-
losis by WHO, except for tedizolid. It suggests that they 
have the potential to be developed as anti-NTM drugs, 

with certain safety and tolerance. In addition, clinical tri-
als and vitro experiments have been conducted to study 
the therapeutic efficacy of these drugs on NTM diseases 
[25–29].

Results
A total of 111 MAC isolates were collected and were 
identified as M. intracellulare (n = 81), M. avium (n = 13), 
M. marseillense (n = 7), M. colombiense (n = 7), M. yon-
gonense (n = 1) by the criteria that the similarity on con-
catenated hsp65 and rpoB gene sequences was greater 
than 99.3% between type strains and the clinical isolates 
[30] (Fig.  1). The similarity between HZ347 and the M. 
arosiense type strain was 98.94%. Similarly, the isolate 
18-T1838 and the M. vulneris type strain was the most 
closely related and they shared 98.8% coincidence in con-
catenated hsp65 and rpoB gene. Therefore, the species of 
isolate HZ347 and 18-T1838 cannot be confirmed.

We tested the antimicrobial activities of 17 antimi-
crobial agents against 111 MAC isolates. The results 
were showed in Table  1 and Table  2. The detailed MIC 
values of different species were listed in Supplementary 
Table 1. The MAC isolates showed a low resistance rate 
to commonly used drugs, such as clarithromycin (4.5%, 
5/111), amikacin (2.7%, 3/111), rifabutin (21.6%, 24/111), 
and streptomycin (17.1%, 19/111). However, they were 
highly resistant to most anti-tuberculosis drugs, such as 
isoniazid (100%, 111/111), rifampin (82.9%, 92/111), lin-
ezolid (72.1%, 80/111), doxycycline (98.2%, 109/111), and 
ethionamide (91.9%, 102/111). Specifically, all the MAC 
isolates were resistant to isoniazid. Besides, ciprofloxa-
cin also showed a poor inhibitory effect on MAC isolates 
which had a resistance rate of 87.4% (97/111). Further-
more, the MAC isolates showed an intermediate resist-
ance rate for ethambutol (54.1%, 60/111), trimethoprim/
sulfamethoxazole (62.2%, 69/111), and moxifloxacin 
(60.4%, 67/111). Interestingly, the MAC isolates showed a 
low resistance rate for all four newly used drugs: bedaqui-
line (0%, 0/111), clofazimine (19.8%, 22/111), tedizolid 
(26.1%, 29/111), and cycloserine (30.6%, 34/111).

Most agents showed similar antimicrobial activities 
against the two main MAC species, M. intracellulare 
and M. avium. However, M. avium had a higher resist-
ance rate than that of M. intracellulare for clarithro-
mycin (15.4%, 2/13 vs 3.7%, 3/81), ethambutol (92.3%, 
12/13 vs 40.7%, 33/81), trimethoprim/sulfamethoxazole 
(76.9%, 10/13 vs 55.6%, 45/81), amikacin (15.4%, 2/13 vs 
1.2%, 1/81), linezolid (84.6%,11/13 vs 65.4%,53/81), clo-
fazimine (30.8%, 4/13 vs 17.3%,14/81), and cycloserine 
(69.2%, 9/13 vs 25.9%, 21/81). M. intracellulare had a 
higher resistance to ethionamide than M. avium. The dif-
ferences in the resistance rates of amikacin, ethambutol, 
and cycloserine were statistically significant (P = 0.049, 



Page 3 of 10Lin et al. BMC Microbiology          (2022) 22:175 	

P < 0.001, and P = 0.004, respectively). All or almost 
all the M. marseillense and M. colombiense isolates 
were resistant to ethambutol, isoniazid, moxifloxacin, 
rifampin, trimethoprim/sulfamethoxazole, linezolid, cip-
rofloxacin, doxycycline, and ethionamide, while none of 
them were resistant to clarithromycin, amikacin, strepto-
mycin, or bedaquiline (Table 1). The other agents showed 
good inhibitory activities against the two species which 
had a resistance rate ranging from 0% to 42.9% (3/7). 
M. yongonense, M. arosience, isolate HZ347, and isolate 
18-T1838 had similar resistance profiles against the 17 

antimicrobial agents, except for that M. yongonense was 
resistant to cycloserine (MIC > 64  μg/mL) and isolate 
HZ347 was resistant to rifabutin.

Discussion
Our antibiotic susceptibility testing results supported 
the current recommendation of using macrolides, rifa-
mycins, and aminoglycosides to treat MAC infections. 
The medium for MIC measurement was changed to 7H9 
with 10% OADC due to poor growth in cation-adjusted 
Muller Hinton Broth (CAMHB). According to a study 

Fig. 1  Phylogenetic analyses of concatenated hsp65 and rpoB gene sequences of clinical MAC isolates, using the neighbor-joining method by 
MEGA10 software. The bootstrap value marked on the node is used to evaluate the reliability of the branch. The evolutionary branch length value 
on the branch indicates the genetic variability of the evolutionary branch. Each species is marked with the same color: M. intracellulare (medium 
blue), M. avium (light coral), M. marseillense (fuchsia), M. colombiense (dark orange), M. yongonense (hot pink), isolate HZ347 (gold), and isolate 
18-T1838 (aquamarine)
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in 2020, the drug susceptibility testing for MAC in 7H9 
is found easier for measurement and has greater repro-
ducibility compared with CAMHB [31]. The breakpoints 

of rifabutin, rifampin, trimethoprim/sulfamethoxazole, 
ciprofloxacin, and doxycycline for M.kansasii, and the 
breakpoints of ethambutol, isoniazid, and ethionamide 

Table 1  Drug resistant rates of different MAC species

Notes: The P value represent comparisons between M. intracellulare and M. avium

Antimicrobial 
agent

No. of resistant isolates (%) P value

All isolates
n = 111

M. intracellulare
n = 81

M. avium
n = 13

M. marseillense
n = 7

M. colombiense
n = 7

M. 
yongonense
n = 1

HZ347
n = 1

18-T1838
n = 1

CLA 5(4.5%) 3(3.7%) 2(15.4%) 0(0%) 0(0%) 0 0 0 0.139

RFB 24(21.6%) 17(21.0%) 2(15.4%) 1(14.3%) 3(42.9%) 0 1 0  > 0.999

EMB 60(54.1%) 33(40.7%) 12(92.3%) 6(85.7%) 7(100%) 1 1 0  < 0.001

INH 111(100%) 81(100%) 13(100%) 7(100%) 7(100%) 1 1 1  > 0.999

MXF 67(60.4%) 43(53.1%) 8(61.5%) 6(85.7%) 7(100%) 1 1 1 0.570

RIF 92(82.9%) 64(79.0%) 11(84.6%) 7(100%) 7(100%) 1 1 1  > 0.999

SXT 69(62.2%) 45(55.6%) 10(76.9%) 6(85.7%) 5(71.4%) 1 1 1 0.226

AMI 3(2.7%) 1(1.2%) 2(15.4%) 0(0%) 0(0%) 0 0 0 0.049

LZD 80(72.1%) 53(65.4%) 11(84.6%) 7(100%) 6(85.7%) 1 1 1 0.213

CIP 97(87.4%) 70(86.4%) 10(76.9%) 7(100%) 7(100%) 1 1 1 0.404

STR 19(17.1%) 17(21.0%) 2(15.4%) 0(0%) 0(0%) 0 0 0  > 0.999

DOX 109(98.2%) 79(97.5%) 13(100%) 7(100%) 7(100%) 1 1 1  > 0.999

ETH 102(91.9%) 75(92.6%) 10(76.9%) 7(100%) 7(100%) 1 1 1 0.107

TZD 29(26.1%) 24(29.6%) 4(30.8%) 0(0%) 1(14.3%) 0 0 0  > 0.999

CFZ 22(19.8%) 14(17.3%) 4(30.8%) 2(28.6%) 2(28.6%) 0 0 0 0.265

BDQ 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0 0 0  > 0.999

CS 34(30.6%) 21(25.9%) 9(69.2%) 1(14.3%) 2(28.6%) 1 0 0 0.004

Table 2  MIC50 and MIC90 values of M. intracellulare and M. avium 

Antimicrobial agent M. intracellulare (n = 81) MIC (μg/mL) M. avium (n = 13) MIC (μg/mL)

Range 50% 90% Range 50% 90%

CLA  ≤ 0.06 to > 64 4 8 1–16 4 16

RFB  ≤ 0.25 to > 8 2 4  ≤ 0.25–4 1 4

EMB 1 to > 16 4  > 16 4 to > 16 16  > 16

INH 2 to > 8  > 8  > 8 2 to > 8  > 8  > 8

MXF  ≤ 0.12 to > 8 4 8 0.5 to > 8  > 8  > 8

RIF  ≤ 0.12 to > 8 8  > 8 4 to > 8 8  > 8

SXT  ≤ 0.12/2.38 to > 8/152 4/76  > 8/152 2/38 to > 8/152  > 8/152  > 8/152

AMI  ≤ 1 to > 64 8 16 2–32 4 16

LZD  ≤ 1 to > 64 32 64 4–64 32 64

CIP  ≤ 0.12 to > 16 16  > 16 1 to > 16  > 16  > 16

STR  ≤ 0.5 to > 64 16 64 2–32 16 32

DOX 2 to > 16  > 16  > 16  > 16  > 16  > 16

ETH 2.5 to > 20  > 20  > 20 5 to > 20  > 20  > 20

TZD  ≤ 0.5 to > 32 8 16 1 to > 32 8 32

CFZ  ≤ 0.25 to > 8 2 8 1–8 2 4

BDQ 0.015–0.12 0.06 0.12 0.03–0.12 0.06 0.12

CS 8 to > 64 32 64 16–64 32 64
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for M.tuberculosis were used on the MAC isolates. They 
have similar cellular structure and share similar niches in 
the mononuclear phagocyte system in vivo. Therefore, we 
thought it is acceptable to use breakpoints for M.kansasii 
and M.tuberculosis in MAC isolates. And it is common 
to use the same breakpoints for different NTM species 
in previous studies due to insufficient information about 
drug breakpoints for each NTM species [29, 32].

In our study, clarithromycin showed good inhibitory 
activity against all MAC isolates, consistent with previ-
ous studies [33, 34]. We performed the 23S rRNA gene 
sequencing on the clarithromycin-resistant isolates, and 
found that two strains with MIC greater than 64  μg/ml 
had known mutation in the 23S rRNA (data not shown). 
The resistance rate of MAC isolates against rifampin was 
82.9% (92/111), which was in agreement (78.9%; 216/274) 
with a previous study [35]. Unlike rifampin, rifabutin 
showed a better antimicrobial activity and was recom-
mended as an alternative to rifampicin, especially for 
disseminated MAC infections, for patients infected with 
MAC [36]. However, in a recent study, neither rifampin 
or rifabutin inhibited MAC growth in vitro [37]. There-
fore, further clinical trials are still needed to determine 
the best choice among different rifamycins for treating 
MAC diseases. The intermediate resistance against eth-
ambutol was comparable with that of a previous study 
(58.1%;159/274) [35]. These results do not support the 
usage of ethambutol for MAC. Among the aminoglyco-
sides, amikacin may be better for treating MAC infec-
tions than streptomycin, with an overall low resistant rate 
of 2.7% (24/111), which is as low as shown in previous 
studies [38, 39]. No common mutations were found in 
the rrs gene of the four amikacin-resistant isolates (data 
not shown). Streptomycin is a potentially good choice for 
treatment of MAC isolates. In a study in a Taiwanese dis-
trict, the resistance rate of MAC isolates against strepto-
mycin was even lower (4.8%; 4/83) [29]. This difference 
may be regional (different geographies) or may be due to 
the inconsistent proportions of MAC species collected in 
the studies.

As second-line drugs for MAC disease, the clinical 
efficacy of moxifloxacin and linezolid remains uncertain 
[40]. In our study, both had limited activity against MAC 
isolates, which is comparable with previous studies in 
Korea [41], Sweden [39], and China [42]. However, unlike 
the poor activity in vitro, a recent study has shown that 
fluoroquinolone-containing regimens could achieve simi-
lar clinical improvement with the standard regimen and 
could be an alternative for patients who cannot tolerate 
the standard regimen [43]. As for the other tested anti-
tuberculosis drugs, such as isoniazid, ciprofloxacin, doxy-
cycline, and ethionamide, the MAC isolates showed high 
resistance, which supported the consensus that these 

drugs should not be used in the treatment of MAC dis-
eases as shown in a previous study [34]. The comparison 
of drug resistance rate of recommended agents for MAC 
isolates from different studies were shown in Table 3.

In our study, the new oxazolidinone, tedizolid, had a 
significantly lower resistance rate than linezolid, support-
ing the previous results which indicated that tedizolid 
has enhanced in vitro activities against several NTM spe-
cies [44]. In addition, it has less side effects in long-term 
therapy, compared with linezolid and has a concentra-
tion-dependent activity against M. avium. Its efficacy can 
be enhanced by ethambutol, which suggests its potential 
role in the treatment of MAC diseases [45].

Clofazimine, which also had a low resistance rate in our 
study, has been recently proven to be an effective agent 
for the treatment of MAC both in patients and mouse 
models [46, 47]. A recent study conducted in Korea found 
that a lower MIC value of clofazimine (≤ 0.25 mg/L) was 
associated with negative conversion of sputum culture 
in patients with NTM lung diseases [26]. Another study 
in Korea demonstrated that clofazimine, together with 
inhaled amikacin, could provide favorable outcomes in 
patients with refractory MAC-LD [25]. Nevertheless, the 
adverse effects of clofazimine are a major concern that 
affects its application in patients.

Bedaquiline is a diarylquinoline antibiotic, acting 
through an antimicrobial mechanism by inhibiting 
F1Fo-ATP synthase, an enzyme that is essential in Myco-
bacterium tuberculosis  [48]. Although several clinical 
studies have found increased sputum conversion rates 
with bedaquiline in patients with multidrug-resistant 
tuberculosis, its efficacy in the treatment of MAC-LD 
is currently controversial. In some studies, bedaquiline 
is considered to be a good candidate for refractory or 
relapsing diseases caused by MAC [27, 49], while in other 
studies, bedaquiline treatment in patients with MAC-LD 
were not favorable due to the emergence of resistance 
and the decreased systemic exposure caused by rifamy-
cin through the induction of cytochrome P450 [50, 51]. 
In our study, most MAC isolates showed low MIC values 
(0.015–0.12  μg/mL) for bedaquiline, which is in agree-
ment with previous studies [52–54]. Clinical trials are 
warranted to correlate the in vitro susceptibility of MAC 
to bedaquiline with the clinical outcome.

Cycloserine is mainly used to treat drug-resistant M. 
tuberculosis, and there are few reports on its effect on 
NTM. MAC isolates were completely sensitive to cyclo-
serine in several studies [55], with an MIC breakpoint 
of 80  μg/mL. However, in our study, the resistant rates 
(≥ 64  μg/mL) are 28.9% and 42.9% for M. intracellulare 
and M. avium, respectively. Considering the side effects 
of long-term use of cycloserine and the intermediate 
resistance rate in vitro, it is necessary to be cautious and 
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more data are needed to test its effect upon clinical appli-
cation as a candidate drug.

In our study, the number of M. intracellulare isolates 
was much higher than that of M. avium, which is con-
sistent with previous studies in China [56]. Drug sus-
ceptibilities of M. avium and M. intracellulare to several 
agents were different. M. avium had a higher resistance 
rate than M. intracellulare for clarithromycin, ethambu-
tol, trimethoprim/sulfamethoxazole, amikacin, linezolid, 
clofazimine, and cycloserine. However, since the number 
of isolates was small in our study, most of the differences 
were not statistically significant, except for amikacin, eth-
ambutol, and cycloserine. In another study in China [57], 
M. intracellulare (242 isolates) showed higher resistance 
rate to most drugs than M. avium (45 isolates), which is 
contrary to our results. However, no significant difference 
between the species was found in their study. Therefore, 
it is difficult to obtain significant results and provide reli-
able evidence for the difference in drug susceptibility of 
the two MAC species with a small sample size. In another 
study that included more strains (1883 isolates) [41], they 
found consistent conclusions with ours that M. intracel-
lulare (1060 isolates) had lower resistant rates than M. 
avium (823 isolates) for ethambutol and amikacin. Since 
the two drugs are both guideline-recommended drugs 
for MAC, the finding is of great significance for the guid-
ance of treatment for the two MAC species in the future. 
In a study in Germany [34], higher resistance rates of M. 
avium to trimethoprim/sulfamethoxazole and linezolid 
were also reported. In a study in Beijing in 2015 [58], the 
resistant rates of moxifloxacin and linezolid of the M. 
intracellulare isolates were significantly lower than that 
of the M. avium, and the resistant rate of rifampicin was 
lower in the M. avium isolates. Therefore, due to regional 
differences and different methods for identifying species, 
the results of drug susceptibility tests for M. intracellu-
lare and M. avium varies widely across studies. Future 
studies are need to enrolled more MAC isolates to iden-
tify the resistance profiles in different regions.

Conclusions
In conclusion, clarithromycin, rifabutin, amikacin, and 
streptomycin showed good in vitro antimicrobial activi-
ties against the MAC isolates, with resistance rates of less 
than 25%. However, isoniazid, rifampin, linezolid, doxy-
cycline, and ethionamide had poor inhibitory activities, 
which is consistent with previous studies, and thus, not 
suitable to treat MAC diseases. In addition, new drugs, 
such as clofazimine, tedizolid, bedaquiline, and cyclo-
serine also showed good antimicrobial activities in vitro 
and could be introduced to treat MAC in the future. 
Besides, different resistance profiles for amikacin, eth-
ambutol ,  and cycloserine were seen for M. avium and  

M. intracellulare, but further studies are still needed to 
confirm these differences.

Methods
Study design, isolate collection and species identification
Between January 2017 and December 2020, a total of 
111 MAC clinical isolates were collected from Huashan 
Hospital affiliated to Fudan University, Shanghai, China. 
They were cultured from various types of samples, 
including airway, blood, body fluids and soft tissues. 
The MAC isolates were cultured in the Middlebrook 
7H9 media supplemented with 10% oleic acid/dextrose/
catalase (OADC). The MAC species were identified by 
partial sequences of the hsp65 and rpoB genes [59] and 
a phylogenetic tree was analyzed based on these genes. 
The hsp65 gene was amplified with primers TB11 (5′-
AGT​TTG​ATC​CTG​GCT​CAG​-3′) and TB12 (5′-GGT​
TAC​CTT​GTT​ACG​ACT​T-3′) [60] and the rpoB gene 
was amplified with primers MycoF (5′-CGA​TGC​GGT​
AAA​GGT​GAC​ATTG-3′) and MycoR (5′-CCT​TGA​
CAG​TGG​ACA​CCT​TGGA-3′) [30]. The phylogenetic 
tree was built using the MEGA software version 10.0 
by the Neighbor joining method with a bootstrap value 
1,000. The sequences of hsp65 and rpoB of MAC type 
strains, M. avium subsp. avium ATCC25291, M. intra-
cellulare ATCC13950, M. intracellulare FLAC0133, M. 
intracellulare FLAC0181, M. intracellulare MOTT-02, 
M. marseillense DSM45437, M. yongonense 05–1390, 
M. colombiense CECT3035, M. vulneris DSM45247, 
M. mantenii DSM45255, M. arosiense DSM45069, M. 
paraintracellulare MOTT-64, and M. intracellulare 
subsp. chimaera DSM44623 were used as references.

Drug susceptibility testing
The Sensititre Myco susceptibility plate for slow-
growing mycobacteria (Thermo Fisher Scientific Inc., 
Waltham, MA, USA) was used to test the susceptibil-
ity of the following antimicrobial agents: clarithromy-
cin, rifabutin, ethambutol, isoniazid, moxifloxacin, 
rifampin, trimethoprim/sulfamethoxazole, amikacin, 
linezolid, ciprofloxacin, streptomycin, doxycycline and 
ethionamide, according to the manufacturer protocol. 
The plate was designed with the reference to the CLSI 
document and was used in previous studies [33, 61]. 
Bedaquiline was purchased from AmBeed Inc. (Arling-
ton Heights, IL, USA). Clofazimine, tedizolid and cyclo-
serine were purchased from Aladdin (Shanghai, China). 
The drug susceptibility testing of bedaquiline, clofazi-
mine, tedizolid, and cycloserine was performed using 
broth microdilution method according to Clinical and 
Laboratory Standards Institute (CLSI) protocol M24-
A3. The 111 clinical MAC isolates were cultured on 
Middlebrook 7H11 agar for 7–14 days. M. intracellulare 
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ATCC13950, Staphylococcus aureus ATCC29215, and 
Mycobacterium smegmatis ATCC19420 were used as 
controls. Then isolates were transferred to the Middle-
brook 7H9 media supplemented with 10% OADC and cul-
tured for one week at 37 °C. The bacterial suspension was 
adjusted to a 1 McFarland standard with sterile deminer-
alized water and was transferred to the Middlebrook 7H9 
media with 10% OADC at a ratio of 1:100. For tests using 
the Sensititre Myco susceptibility plate, 100 μL of the inoc-
ulum solution was added to each well of the 96-well micro-
titre plate containing lyophilized antibiotics. For the other 
four antimicrobial agents, 100 μL of both inoculum solu-
tion and serial dilutions of the agents were added to the 
96-well plates. Plates were covered with adhesive seals and 
incubated at 37 °C in ambient air for 14 days. Results were 
read manually by visual growth readings according to the 
CLSI M24 guidelines and illustrations of various growth 
patterns. The minimum inhibitory concentration (MIC) 
values were the lowest concentrations that completely 
inhibited growth except for trimethoprim/sulfamethoxa-
zole, for which the MIC value was read as the lowest con-
centration that inhibited 80% of the growth compared to 
the positive control. MIC breakpoints of the antibiotics for 
MAC are shown in Table 4.
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Table 4  Breakpoints of 17 antibiotics

Notes: a, b, c denotes the breakpoints for MAC, M.kansasii, and M.tuberculosis 
coming from Susceptibility Testing of Mycobacteria, Nocardia, and Other 
Aerobic Actinomycetes; Approved Standard–Third Edition. CLSI document M24-
A3. d, e, f denotes the breakpoints coming from previous studies [29, 45, 62]

Abbreviations: CLA Clarithromycin, RFB Rifabutin, EMB Ethambutol, INH Isoniazid, 
MXF Moxifloxacin, RIF Rifampin, SXT Trimethoprim/sulfamethoxazole, AMI Amikacin, 
LZD Linezolid, CIP Ciprofloxacin, STR Streptomycin, DOX Doxycycline, ETH 
Ethionamide, TZD Tedizolid, CFZ Clofazimine, BDQ Bedaquiline, CS Cycloserine

Antimicrobial 
agent

MIC breakpoints (μg/mL)

Susceptibility Intermediate Resistance

CLAa  ≤ 8 16  ≥ 32

RFBb  ≤ 2 -  ≥ 4

EMBc - -  > 5

INHc - -  > 0.2

MXFa  ≤ 1 2  ≥ 4

RIFb  ≤ 1 -  ≥ 2

SXTb  ≤ 2/38 -  ≥ 4/76

AMIa  ≤ 16 32  ≥ 64

LZDa  ≤ 8 16  ≥ 32

CIPb  ≤ 1 2  ≥ 4

STRd  ≤ 16 32  ≥ 64

DOXb  ≤ 1 2–4  ≥ 8

ETHc - -  > 5

TZDe - -  > 8

CFZd  ≤ 1 2  ≥ 4

BDQf - -  > 0.25

CSd  ≤ 16 32  ≥ 64
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