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Abstract

Background: Humans have been influencing climate changes by burning fossil fuels, farming livestock, and cutting
down rainforests, which has led to global temperature rise. This problem of global warming affects animals by causing
heat stress, which negatively affects their health, biological functions, and reproduction. On the molecular level, it has
been proved that heat stress changes the expression level of genes and therefore causes changes in proteome and
metabolome. The importance of a microbiome in many studies showed that it is considered as individuals’ “second
genome”. Physiological changes caused by heat stress may impact the microbiome composition.

Results: In this study, we identified fecal microbiota associated with heat stress that was quantified by three metrics
– rectal temperature, drooling, and respiratory scores represented by their Estimated Breeding Values. We analyzed
the microbiota from 136 fecal samples of Chinese Holstein cows through a 16S rRNA gene sequencing approach.
Statistical modeling was performed using a negative binomial regression. The analysis revealed the total number of 24
genera and 12 phyla associated with heat stress metrics. Rhizobium and Pseudobutyrivibrio turned out to be the most
significant genera, while Acidobacteria and Gemmatimonadetes were the most significant phyla. Phylogenetic analysis
revealed that three heat stress indicators quantify different metabolic ways of animals’ reaction to heat stress. Other
studies already identified that those genera had significantly increased abundance in mice exposed to
stressor-induced changes.

Conclusions: This study provides insights into the analysis of microbiome composition in cattle using heat stress
measured as a continuous variable. The bacteria highly associated with heat stress were highlighted and can be used
as biomarkers in further microbiological studies.
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Introduction
Global warming and the resulting long-term increase in
temperatures are the main cause of heat stress in mam-
mals [1]. Moreover, selection towards high production
yield in livestock associated with high metabolic load is an
additional factor that makes livestock especially prone to
overheating. Heat stress negatively affects health, repro-
duction, and other biological functions [2]. Specifically, in
dairy cattle, heat stress impedes milk production, welfare,
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and growth [3]. Unfortunately, the phenomenon of heat
stress is common in current ages, and we should under-
stand how its long-term susceptibility affects organisms.
On the genomic level, heat stress is manifested by tran-
scriptional and post-transcriptional regulation of heat
stress-associated genes [4]. It is known that Bos indicus
has greater heat tolerance than Bos taurus [5], which indi-
cates a genetic component of heat resistance. A few genes
responsible for thermotolerance in dairy cattle – HSF1,
MAPK8IP1, and CDKN1B have been recently identified
[6]. However, the effect of heat stress on animal-associated
microbiotas is not well known. In cattle genomics, bac-
teria are the main cause of mastitis – one of the most
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prevalent diseases of dairy cattle [7]. In general, the com-
position of gut microbiota depends on multiple factors –
genetic [8], dietary [9] and environmental [10].
Heat stress belongs to environmental factors that may

change the composition of the microbiota. Studies in cat-
tle reported microbial species which abundance depends
on heat stress conditions. Chen and colleagues [11]
reported the effect of heat stress on physiological char-
acteristics and circulation levels of immune activity and
the microbiome. In an experimental study Zhao and col-
leagues [12] identified bacterial species in the rumen
microbiome associated with heat stress. In their study it
was found that heat stress has no effect on both alpha
and beta diversity, however the effect on the richness of
microbiota was identified, especially significant increase
in the abundance of Streptococcus, Enterobacteriaceae,
Ruminobacter, Treponema and Bacteroidaceae. Sales and
colleagues [13] in his study also reported that heat stress
influenced microbiota in beef cattle rumen. Particularly,
they found genera Flavonifractor,Treponema,Ruminococ-
cus, and Carnobacterium significantly associated with
heat stress. However, assessing the composition of micro-
biota in farm animals’ environments is important to study
its association with heat stress under breeding condi-
tions. Moreover, the categorization between heat stress
and normal conditions is a simplification. The level of
an animal’s heat stress is a continuous variable and thus
can be assessed using quantitative metrics. This however
implies non-standard statistical modeling of the associa-
tion between heat stress traits and microbiome as com-
pared to the experimental-based, case-control setup. In
our study, we focused on the identification of bacteria
associated with heat stress measured by drooling score,
rectal temperature, and respiratory score, expressed by the
estimated breeding values.

Material andmethods
The material comprises 136 fecal samples of 136 Chi-
nese Holstein cows, which were collected in 2017, 2018,
and 2019 directly in herds belonging to Beijing Shounong
Livestock Development Co., Ltd. The cows from the same
year had been fed with exactly the same total mixed
ration diet for over 1 month and the cows from differ-
ent years were fed with different total mixed ration diets
with small change; however, all diets were based on corn
silage and concentrate, and all the cows were fed ad libi-
tum. The experimental design deliberately did not involve
formal case and control groups but was carried out on the
production population.
Fecal samples were collected directly from the cow’s

rectum using a method a bit similar to rectal inspection.
Around 7 AM, before the new feed is provided to the cow,
is the time point we selected to take fecal samples. As
cows are calmer after a good rest during the night, samples

are easier to keep during the morning cooler period in
summer. Moreover, we can be more sure that cows are
in similar digestion stage without stimulation from feed
for a relatively long time, and feces accumulated in the
cow’s rectum. By wearing a disposable plastic long-armed
glove, the sampler inserts his hand and arm into the cow’s
rectum, first removed the outer part of feces accumu-
lated in the rectum, and then grabbed a certain amount of
feces from the inner part by hand, after a few feces mix-
ing actions in the rectum. A disposable plastic long-armed
glove can be used once for each cow. After the sampler’s
hand holding feces moves out of the cow’s rectum, one can
turn the glove outside in. Feces will naturally accumulate
into the finger parts of the glove. By cutting a small hole
at the tip of the finger parts of the glove, a fecal sample
can be easily transferred into a properly labeled sterile 5
ml cryopreservation tube. Since big particles within feces
may precipitate at the bottom of the finger parts of the
glove, the very first part of the fecal sample can be dis-
carded. Fecal samples are normally then placed on dry
ice maximum for 3-4 h before they stored at -80°C at the
laboratory.
The thermal environment during the sampling process

was measured by temperature, humidity, and Tempera-
ture Humidity Index (THI) presented in Table 1.
The procedures of DNA extraction, amplification, and

sequencing were completed by Wekemo Tech Co., Ltd.
(Shenzhen, China). Microbial DNA was extracted from
fecal samples using the E.Z.N.A. soil DNA Kit (Omega
Bio-tek, Norcross, GA, U.S.) according to manufacturer’s
protocols. The final DNA concentration and purification
were determined by NanoDrop 2000 UV-vis spectropho-
tometer (Thermo Scientific, Wilmington, USA), and
DNA quality was checked by 1% agarose gel electrophore-
sis. The V3-V4 hypervariable regions of the bacterial
16S rRNA gene were amplified with primers 338F(5’-
ACTCCTACGGGAGGCAGCAG-3’) and 806R(5’-
GGACTACHVGGGTWTCTAAT-3’) (for samples picked
in 2017) as well as 341F(5’-CCTAYGGGRBGCASCAG-
3’) and 806R(5’-GGACTACNNGGGTATCTAAT-3’) (for
samples picked in 2018 and 2019) by thermocycler PCR
system (GeneAmp 9700, ABI, USA). The PCR reactions
were conducted using the following program: 3 min of
denaturation at 95 °C, 27 cycles of 30 s at 95 °C, 30s for
annealing at 55 °C, and 45s for elongation at 72 °C, and
a final extension at 72 °C for 10 min. PCR reactions were

Table 1 Characteristic of the thermal environment

Sampling date Temperature (Td) Humidity (RH) THI

15 August, 2017 26.58 0.81 77.46

14 August, 2018 27.08 0.82 78.52

27 July, 2019 31.64 0.60 82.01
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performed in triplicate 20 μL mixture containing 4 μL
of 5 μL FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL
of each primer (5 μM), 0.4 μL of FastPfu Polymerase
and 10 ng of template DNA. The resulted PCR products
were extracted from a 2% agarose gel and further purified
using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA) and quantified using
QuantiFluor™-ST (Promega, USA) according to the man-
ufacturer’s protocol. Amplicons were sequenced using the
HiSeq-PE250 (samples picked in 2017) and MiSeq-PE300
(samples picked in 2018 and 2019) Illumina platforms
in paired-end modes. Part of the sequence data analyzed
previously by Zhang and colleagues [14] was used in this
study.
All the heat stress phenotypes were measured as it was

described by Luo and colleagues [15]. In particular, each
lactating cow was recorded twice a day for 2 consecutive
days. In order to correct for the environmental effects that
may affect phenotype values, cows’ response to heat was
expressed by breeding values for rectal temperature (RT),
drooling (DS), and respiratory scores (RS) estimated using
the following model:

yijklqno=μ + fymi + pj + sk + ml + tq + thi + an + pen + εijklqno,

(1)

where yijklqno refers to phenotype (RS, DS or RT), μ is the
population mean, fymi is the fixed effect for farm-year, pj
is the fixed effect of parity, sk is the fixed effect of lacta-
tion stage, ml is the fixed effect of the indication if the
animal is before or after milking, tq is the fixed effect of
testing time (morning or afternoon), thi is the fixed effect
of temperature-humidity index, an is the animal additive
genetic effect, pen is the permanent environmental effect,
and εijklqno is the random residual. The covariance matrix
of random effects has the following structure:
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The total number of 155 cows were used to estimate
the breeding values. The reliability of calculate EBVs was
presented in Table 2.
Furthermore, the breeding values were additionally cor-

rected by deregression [16] in order to remove the ances-
tral information from the EBVs.

Table 2 Descriptive statistics of the reliability of the estimated
breeding values

Phenotype Mean Median Standard deviation

rectal temperature 0.41 0.44 0.10

respiratory score 0.40 0.43 0.10

drooling score 0.33 0.35 0.09

Processing of sequencing data
The first step of the analysis included quality control of
sequenced data. For this purpose, the FastQC [17] soft-
ware was used. Then, poor quality reads and adapter
sequences were removed using Trim Galore [18]. Follow-
ingly, cleaned reads were processed using the QIIME 2
[19] software. First of all, data were dereplicated – reads
that are 100% the same were pooled together. Next, reads
were denoised – reads that occur very rarely were consid-
ered to be PCR errors and removed, as well as chimeric
sequences and singletons. Those steps were done using
DADA2 algorithm [20]. implemented in QIIME 2. All the
sequencing runs were processed separately. Afterward,
the Amplicon Sequence Variants (ASVs) table that rep-
resents counts of occurrence of a given sequence in a
sample was created. Diversity within samples (α-diversity)
was calculated using Simpson’s evenness and Shannon’s
diversity indices using the phyloseq [21] R package. The
association of microbes composition with heat stress fac-
tors was tested using aGLMM-MiRKAT test implemented
in GLMM-MiRKAT R package [22].
The SILVA database (SILVA SSU 138.1) [23] was used

to classify ASVs taxonomically. For the classification, the
naive Bayes algorithm implemented in scikit-learn Python
package was used [24].
Since taxa originally assigned by the SILVA database

represent different levels of taxonomy, they were aggre-
gated to genera and phyla levels. Genera and phyla with
a variance below one and that occurred in less than
three samples were excluded from downstream analyses.
Filtered tables were used for the further differential abun-
dance analysis. Additionally, for organoleptic testing of
batch effect occurrent, the UniformManifold Approxima-
tion and Projection (UMAP; [25]) dimensional reduction
technique was used to find potential sources of unwanted
variability. The phylogenetic tree was generated using the
align-to-tree-mafft-fasttree pipeline [26] implemented in
QIIME2 software.

Differential abundance analysis
The edgeR [27] R package was used for the normaliza-
tion of the processed ASV table as well as for statistical
modeling of the association between the abundance of
microbiota and heat stress indicators. In particular, the
Trimmed Mean of M-values (TMM) based normalization
[28] was applied. It identified and excluded highly abun-
dant and highly variable genera and phyla, whereupon
weighted mean of an abundance of remaining groups
was used for the actual normalization [29]. The associ-
ation between genera/phyla abundance and heat stress
indicators was modeled using the negative binomial dis-
tribution:

K = β0 + β1X1 + β2X2 + e (3)
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Table 3 Amplicon Sequence Variants classification results

Taxonomic level Number of
unique features

Percent of
classified reads

Domain 2 100.00

Phylum 29 97.94

Class 72 97.81

Order 114 97.50

Family 156 70.16

Genus 235 20.93

Species 152 2.35

where K represents the counts of reads for a given
genus/phylum, β0 is the intercept, β1 is the effect of the
DRP (expressed by log fold change), X1 is the design
matrix for DRP, β2 is the effect of the sampling year class,
X2 is the incidence matrix for sampling year, e is the
random error.

K ∼ NB(μk ,φ) (4)

whereμk represents themean of counts reads, and φ is the
dispersion parameter such that Var(K) = μk + φμ2

k cal-
culated using Cox-Reid approximate conditional inference
moderated towards the mean [30].
The significance of the effect of DRP on the relative

abundance of the genus/phylumwas tested using the Like-
lihood Ratio Test [31]. The test statistic is as follows:

LR = −2ln
(
L(m1)

L(m2)

)
∼ χ2(1) (5)

where m1 is the reduced model (i.e. the formula (5) with-
out the effect of DRP), andm2 is the full model (5).
Since each genus/phylum is tested separately, multi-

ple testing correction method was applied using a False
Discovery Rate (FDR) [32].

Results
Processing and classification of sequence variants
46,825 unique sequences of V3 and V4 regions with a total
of 6,486,706 reads were identified and classified. Table 3
summarizes the classification of ASVs based on the dif-
ferent taxonomic levels. In general, reads were classified
into two domains – archaea (0.01%) and bacteria (99,99%).
Almost all reads could be taxonomically assigned up to
order, but species could be assigned only to 2.35% of reads.
Further analysis was carried out using genus-level and
phylum-level resolution.

Microbiota composition
The general composition of microbiota in all samples was
presented on bar plot using genus-level and phylum-level
resolution. Figure 1 presents the relative abundance of
genera with average proportions of more than 0.5%. We
can see that Clostridium is a genus with the highest rel-
ative abundance (15.14%). There were 209 genera with a
relative abundance of less than 0.5%. Figure 2 presents the
analogous visualization for phyla. Firmicutes is a phylum
with the highest relative abundance (63.66%). Regarding
the less abundant phyla, there were identified 22 phyla
with less than 0.5% of the relative abundance.

Clustering
Genera table was then clustered using UMAP algorithm.
The projection of the UMAP coordinates calculated from
the ASVs counts matrix on the genus level demonstrates
three distinct clusters (Fig. 3), which reflect the sampling
year. In further analysis, the effect of the sampling year
was corrected.

Correlation analysis of diversity metrics
In order to check whether the general diversity of micro-
biota within samples is correlated with the DRPs, a

Fig. 1 The relative abundance of genera with average proportions of more than 0.5%



Czech et al. BMCMicrobiology          (2022) 22:171 Page 5 of 9

Fig. 2 The relative abundance of phyla with average proportions of more than 0.5%

correlation analysis was performed. Correlations were
generally positive, but non-significant (Table 4) with the
highest correlation estimated between DRPs for the res-
piratory score and the Simpson’s evenness index (0.27).
Overall, non-significant correlations indicate that there is
no linear dependence between DRPs and sample diversity
calculated based on the abundance of genera.

Relationship of EBVs with microbiomes composition
aGLMM-MiRKAT test was performed to test the asso-
ciation between the microbial community composition
and EBVs. None of the analyzed EBVs showed statistically
significant association with the microbial composition. It
means that individual genera and phyla should be consid-
ered in a statistical model.

Differential abundance analysis
Based on the results of the negative binomial model and
considering FDR ≤ 0.05 22 genera were significantly

associated with rectal temperature with all but one (Helo-
coccus) of them showing decreased abundance with the
increase of rectal temperature. Rhizobium – that repre-
sents soil bacteria – was the most associated genus with
the rectal temperature. The occurrence of this bacteria
might be observed perhaps due to the specific metabolism
or the specific plant diet.
Succinivibrio was the only genus associated with respi-

ratory score and Pseudobutyrivibrio – with the drooling
score. There was no overlap between genera significant
for the three heat stress indicators (Table 5). Differential
abundance analysis of phylum (Table 6) showed that 6
phyla were significiantly associated with rectal tempear-
ture. All of them showed decreased abundance with the
increase of rectal temperature. Fibrobacteres was the only
phylum associated with respiratory score. Surprisingly, for
drooling score, 5 differentially abundant phyla were iden-
tified. Five of them showed increase abundance with the
increase of rectal temperature. Only Fibrobacteres showed

Fig. 3 UMAP projection of the ASVs counts matrix on the genus level
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Table 4 Pearson correlation coefficients between DRPs and
alpha diversity measures expressed by Simpson’s evenness and
Shannon diversity

DRP Simpson’s evenness Shannon diversity

Rectal temperature 0.25 -0.04

Drooling score 0.13 0.23

Respiratory score 0.27 0.11

the descrease abundance. Fibrobacteres was significantly
associated with both drooling and respiratory scores,
while Nitrospiarae, Gemmatimonadetes, Acidobacteria,
and Planctomycetes were significantly associated with
both rectal temperature and drooling score.
In order to check the genetic relationship between those

associated genera, the phylogenetic tree was created based
on the 16S rRNA sequences. The genetic relationship of
the associated genera was shown in Fig. 4. Colors indicate
the association between the genera and the phenotype.
We can see, that Succinivibrio that was associated with the
respiratory score phenotypes created the single clade with
all the genera associated with the rectal temperature. Only
Pseudobutyrivibrio that was associated with the drooling
score creates a single, separate clade.
Table 5 Significant differentially abundant genera

Genus logFC FDR

Rectal temperature

Rhizobium -16.97 3.88 × 1005

Rhodoplanes -16.36 1.64 × 1004

Kaistobacter -15.95 1.10 × 1004

Streptomyces -15.82 1.10 × 1004

Sphingomonas -15.60 1.37 × 1004

Acidovorax -15.54 2.26 × 1004

Nocardia -15.35 1.10 × 1004

Cupriavidus -15.09 1.64 × 1004

Candidatus Solibacter -14.27 1.15 × 1003

Nocardioides -13.82 2.43 × 1004

Brevundimonas -12.95 5.59 × 1004

Kribbella -12.95 2.47 × 1003

Amycolatopsis -12.34 2.03 × 1003

DA101 -12.25 1.75 × 1003

Azospira -11.84 2.03 × 1003

Catellatospora -11.33 8.41 × 1003

Reyranella -11.12 5.69 × 1003

Pseudonocardia -10.89 6.89 × 1003

Devosia -10.64 2.28 × 1003

Rhodococcus -10.23 1.11 × 1002

Helcococcus 8.31 8.22 × 1003

YRC22 -4.58 2.99 × 1002

Respiratory score

Succinivibrio 6.24 3.33 × 1002

Drooling score

Pseudobutyrivibrio -16.64 1.68 × 1003

Table 6 Significant differentially abundant phyla

Phylum logFC FDR

Rectal temperature

Acidobacteria -26.99 1.18 × 1016

Gemmatimonadetes -22.40 5.03 × 1013

Chloroflexi -21.07 2.98 × 1011

Nitrospirae -15.19 1.18 × 1007

Planctomycetes -11.19 5.52 × 1005

Euryarchaeota -6.80 2.99 × 1002

Respiratory score

Fibrobacteres -8.67 2.58 × 1002

Drooling score

Fibrobacteres -16.72 5.22 × 1004

Nitrospirae 15.73 4.22 × 1004

Gemmatimonadetes 15.17 4.69 × 1004

Acidobacteria 14.46 4.71 × 1004

Planctomycetes 12.50 1.13 × 1002

Discussion
This study aimed to identify genera that are associated
with the rectal temperature, drooling score, and respira-
tory score, and in the consequences, associated with heat
stress. The quantitative pseudophenotypes were used in
order to model animals’ microbiomes under conventional
production conditions, without setting up a case (heat
stress conditions) – control (standard conditions) experi-
ment. Such an approach allows for the estimation of gen-
era effect on heat stress under real conditions underlying
dairy herd management.
The general composition of microbiota was not altered

by heat stress. Therefore we focussed on single genera
as potentially involved in heat stress response. Most of
the genera were significantly associated with rectal tem-
perature which might be caused by the fact that samples
and measurement came from the same environment (rec-
tum). Since most of the significantly associated genera
showed decreased abundance with the increase of heat
stress, we can assume, that heat stress favors the inhibition
of growth of some microbial populations.
Based on the current literature, Bailey [33] observed a

reduced abundance of bacteria in genus Pseudobutyriv-
ibrio in mice exposed to stressor-induced changes. Such
reduced abundance was also observed by us the asso-
ciation with a drooling score. Baek [34] in his study
observed that Succinivibrio shows increased abundance
in cows under heat stress. In our study, this genus was
also associated with the respiratory score metric. Inter-
estingly, Helcococcus, the only genus that abundance
increased with increasing rectal temperature, has not
been reported in studies focused on heat stress and any
stress-induced conditions, but it was reported as associ-
ated with postpartum endometritis by Miranda CasoLu-
engo [35]. Moreover, [36] showed that Streptomyces was
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Fig. 4 Phylogenetic tree of genera identified in fecal samples. Color indicates significantly associated genera with a given phenotype

reported as a genus with enriched relative abundance in
Jersey cows in the normal condition compared to the
heat stress condition. It is worthwhile to mention that
many genera reported with the association to the rec-
tal temperatures show the high fold change, suggesting
that increased rectal temperature has a high impact on
microbiota composition. Proteobacteria phylum that rep-
resents most of the associated genera in our study seems
to be themost important phylum in heat stress conditions.
Yu [37] already reported that Proteobacteria and Firmi-
cutes are the most common phyla associated with heat
stress conditions. Interestingly, analysis based on the phy-
lum resolution showed that there were overlapping phyla.
Fibrobacteres turned out to be the significantly associated
phylumwith respiratory and drooling scores. This phylum
was already reported as significant in heat stress analysis
of pigs reported by He [38]. Chloroflexi and Plancto-
mycetes significantly associated with rectal temperature
were also reported as a significant phyla in the analysis of
short-term acute heat stress on the rumen microbiome of
Hanwoo steers [34].
Differences found inmicrobial compositions and in gen-

era/phyla abundance suggest that those changes might
occur due to adapting to climate change. In this study,
the abundance of Fibrobacteres was decreased due to
heat stress. The role of this bacteria is the degradation
of plant-based cellulose in ruminants and acetate pro-
duction. Ransom-Jones and colleagues [39] reported that
glycosyl hydrolases of Fibrobacteres may produce carbo-
hydrate activators, including cellulose enzymes and in
consequence, cowsmay producemore energy with acetate
in the rumen that can be associated with heat production.
Some bacteria (e.g. Pseudobutyrivibrio) were described

as a part of the microbiome, but their impact on host
physiology is not yet known.
Heat stress modeled as a binary variable (i.e. normal

vs. stress conditions) provides valuable insights into the
understanding of the microbiome association to heat
stress, however, it should be beard in mind that the real,
production environment of a dairy cow markedly devi-
ates from the experimental conditions. The most obvious
differences comprise duration, intensity, and variation in
ambient temperatures, which are typically not modeled
in experiments. Therefore, our study, despite being more
challenging from the analytical perspective, provided an
attempt to analyze the microbiome dynamics directly in a
production herd. In such a situation, an important aspect
of the analysis is the heat stress “phenotype”. In order
to pre-correct for a whole series of genetic (i.e. familial
relationship) and environmental effects (such as parity or
lactation stage) possibly affecting the heat stress indicator
measurements, prior to the actual heat stress modeling,
we decided to use breeding values as pseudophenotypes,
which were then deregressed in order to remove ancestral
and familiar contributions. Such an approach provided a
novel approach for the investigation of bacteria in dairy
cattle under heat stress condition.
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