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Comparative genomic analysis revealed 
genetic divergence between Bifidobacterium 
catenulatum subspecies present in infant 
versus adult guts
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Abstract 

Background:  The two subspecies of Bifidobacterium catenulatum, B. catenulatum subsp. kashiwanohense and B. 
catenulatum subsp. catenulatum, are usually from the infant and adult gut, respectively. However, the genomic analy-
sis of their functional difference and genetic divergence has been rare. Here, 16 B. catenulatum strains, including 2 
newly sequenced strains, were analysed through comparative genomics.

Results:  A phylogenetic tree based on 785 core genes indicated that the two subspecies of B. catenulatum were 
significantly separated. The comparison of genomic characteristics revealed that the two subspecies had significantly 
different genomic sizes (p < 0.05) but similar GC contents. The functional comparison revealed the most significant dif-
ference in genes of carbohydrate utilisation. Carbohydrate-active enzymes (CAZyme) present two clustering patterns 
in B. catenulatum. The B. catenulatum subsp. kashiwanohense specially including the glycoside hydrolases 95 (GH95) 
and carbohydrate-binding modules 51 (CBM51) families involved in the metabolism of human milk oligosaccharides 
(HMO) common in infants, also, the corresponding fucosylated HMO gene clusters were detected. Meanwhile, B. 
catenulatum subsp. catenulatum rich in GH3 may metabolise more plant-derived glycan in the adult intestine.

Conclusions:  These findings provide genomic evidence of carbohydrate utilisation bias, which may be a key cause of 
the genetic divergence of two B. catenulatum subspecies.

Keywords:  Bifidobacterium catenulatum, Genomics, Carbohydrate utilization, Plant-derived glycan, Human milk 
oligosaccharides
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Introduction
Bifidobacterium is a genus of gram-positive, anaero-
bic microorganisms that are commonly found in the 
intestine of humans and animals [1, 2]. Some strains of 

Bifidobacterium have attracted significant attention due 
to their probiotic function in regulating microbiota and 
immune metabolism [3, 4]. Bifidobacterium catenulatum 
(B. catenulatum) is an important member of the genus; 
some of its strains demonstrate favourable probiotic 
characteristics, such as the preclinical treatment of acute 
liver injury [5], in  vitro inhibition of pathogenic bacte-
ria as well as the ability to stay alive in yoghurt for a long 
period [6]. These potential probiotic properties suggest 
that B. catenulatum may be a candidate for probiotics in 
food or medicine.
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Bifidobacterium has long been considered an impor-
tant intestinal symbiotic bacterium co-evolving with 
its hosts. In the previous studies, the dominant spe-
cies of Bifidobacterium in the gut of infants and adults 
are usually different [1, 7, 8]. For example, B. bifidum, 
B. longum subsp. infantis and B. breve are commonly 
found in the gut of infants, while B. adolescentis and 
B. catenulatum usually appear in the intestinal tract of 
adults [9–12]. According to the latest taxonomy [13], 
B. catenulatum contains two subspecies, B. catenula-
tum subsp. kashiwanohense and B. catenulatum subsp. 
catenulatum. These two subspecies have different pref-
erences in infant and adult intestine [14, 15]. B. catenu-
latum subsp. catenulatum is usually the dominant 
Bifidobacterium species in the adult gut [12, 15, 16]. 
Although B. catenulatum subsp. catenulatum is also 
present in infants, it is not the dominant Bifidobacte-
rium species in the infant gut microbiota [15], and it 
is shown to be shared between in single mother-infant 
pairs [1]. B. catenulatum subsp. kashiwanohense is a 
greatly rare species, which lives mainly in the gut of 
infants [14]. Current research suggests that B. catenula-
tum’s adaptation to different hosts is partially due to the 
functional preference of different subspecies, such as 
carbohydrate metabolism [14]. However, there is lim-
ited genomic evidence corresponding to the different 
functional preferences of the two subspecies. Therefore, 
it is necessary to fill the gap in the genomic knowledge 
of the genetic divergence and functional differentiation 
of the two subspecies; the additional information will 
be useful for supplementing the existing knowledge on 
the bacterium and providing scientific support for their 
purported health benefits.

In-species comparative genomics analysis allows for a 
deeper understanding of the individual characteristics 
between genomes [17]. However, because the Bifidobac-
terium genus is strictly anaerobic, thus it is difficult to 
culture and easily contaminated by other species [18]. 
The number of published B. catenulatum genomes is 
currently limited. Recently, newly developed sequencing 
technologies have begun to uncover the B. catenulatum 
genomes [19]. While there have been genomic analyses 
of this species, most of the genomic information of B. 
catenulatum remains unexplored.

In the current study, a total of 19 genomes of B. catenu-
latum species were analysed, including 12 B. catenu-
latum subsp. catenulatum and 5 B. catenulatum subsp. 
kashiwanohense from the Refseq database, and 2 newly 
sequenced (IMAUFB085 and IMAUFB087) strains. The 
study dissected the genetic background and functional 
genomic information in B. catenulatum using compara-
tive genomic approaches. This work not only provides 
general insights into the genomic differences between 

two subspecies of B. catenulatum but also reveals the key 
factors leading to their divergence.

Results
Average nucleotide identity (ANI) and Total nucleotide 
identity (TNI) analyses of B. catenulatum strains
The sequence similarity and taxonomic status among the 
strains used in this study were confirmed by calculat-
ing the pairwise ANI (Fig. 1A) and TNI (Fig. 1B) values 
of all 20 genome assemblies. Strains with an ANI value 
of over 95% are generally considered the same species 
[20]. The ANI and TNI analyses produced similar clus-
tering results, displaying distinct subspecies branches. 
IMAUFB085 and IMAUFB087 were grouped with most 
of the B. catenulatum subsp. catenulatum strains; their 
ANI values compared to that of B. catenulatum subsp. 
catenulatum JCM1194T were 98.41% and 98.42%, and 
TNI values were 87.45% and 84.48%, respectively. These 
results confirmed the classification of IMAUFB085 and 
IMAUFB087 as B. catenulatum subsp. catenulatum.

ANI analysis revealed that 3 B. catenulatum subsp. 
catenulatum strains, JGBg468, BCJG468 and MC1, sig-
nificantly differed from the other B. catenulatum subsp. 
catenulatum strains; their ANI values compared to 
JCM1194T were 93.83%, 93.88% and 93.86%, respectively, 
less than the threshold value of 95%. Therefore, these 
strains were subsequently excluded. In addition, cluster 
analysis distinguished two subspecies. The ANI value was 
greater than 95% between the 2 subspecies groups, and 
greater than 98% within the subspecies, indicating that 
these strains belonged to the same species.

Comparison of general genomic features between two 
subspecies
The general information of the strains shows that all B. 
catenulatum subsp. kashiwanohense strains are derived 
from infants, while only two strains of B. catenulatum 
subsp. catenulatum are known to be infantile isolates 
(Table S1). The genomic features of 19 B. catenulatum 
genomes are summarised (Table 1) and the genomic char-
acteristics within the B. catenulatum species exhibited 
different degrees of difference. The genome size and GC 
content of B. catenulatum isolates were 2.16 ± 0.13  Mb 
and 56.21 ± 0.11%, respectively. A comparison of the 
basic genomic characteristics of the two subspecies (Fig. 
S1) indicated that the genome size of B. catenulatum 
subsp. kashiwanohense (2.36 ± 0.05 Mb) was significantly 
larger than that of B. catenulatum subsp. catenulatum 
(2.09 ± 0.07 Mb) (p = 0.0021), while there were no signifi-
cant differences in GC content (p > 0.05). The substantial 
genomic differences reflected the speciation boundaries 
of the two subspecies, while the similarity in GC content 
represented a close relationship between them [21, 22]. 
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Fig. 1  Heatmap of ANI (A) and TNI (B) based on the sequences of 20 genomes. The location and isolated resource of primary B. catenulatum 
isolates were annotated
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In addition, B. catenulatum subsp. kashiwanohense con-
tained more coding genes (CDSs) than B. catenulatum 
subsp. catenulatum (p = 0.0046) and there were no statis-
tical differences in the number of tRNAs (p > 0.05).

The overall genomic differences between the two sub-
species were further explored using the BLAST Ring 
Image Generator (BRIG) to graphically compare B. 
catenulatum strains with B. catenulatum subsp. kashi-
wanohense strain JCM15439T as the reference (Fig. S2). 
Overall, most of the sequences in JCM15439T were also 
in all other strains, and the genomes were more than 
90% identical. However, two large genomic gaps (GGs) 
existed separately in the two newly sequenced strains, 
IMAUFB085 and IMAUFB087, which had less than 70% 
of the matched degree compared to JCM15439T. In gen-
eral, the GG sequences represent hypothetical CDSs, 
genomic islands or prophages [23]. These data indicate 
that these two strains have many unknown genomic 
information to be explored.

Phylogenetic divergence of two subspecies of B. 
catenulatum
Classification of species and establishment of intra-spe-
cific relationships are frequently based on phylogenetic 
analysis. A phylogenetic tree based on 785 core genes was 
constructed that confirmed the subspecies divergence of 
B. catenulatum (Fig. 2A). 16 B. catenulatum strains were 
clearly divided into two subspecies, indicating the genetic 
differences between the two subspecies at the genomic 
level. Interestingly, the annotation of the source of the 
isolates suggested a significant cluster. Infant isolates, 

including all B. catenulatum subsp. kashiwanohense 
strains and 2 B. catenulatum subsp. catenulatum strains, 
exhibited intra-specific genetic similarity, while the rest 
were adult isolates in another cluster, indicating close 
phylogenetic relationships. These data suggest that the 
divergence of the B. catenulatum strains likely dependent 
on their hosts. B. catenulatum may adapt its functions 
to infant and adult intestines respectively, thus gradually 
differentiating into different subspecies.

Constructing the pan‑core genome of B. catenulatum
The gene pool of a population contains all the genetic 
material and functions of a species. Roary was used to 
calculate the pan-core genome of the 16 B. catenulatum 
strains; a total of 4608 pan genes were searched. The 
genetic distribution of B. catenulatum showed that the 
two subspecies of B. catenulatum shared 998 core genes 
(21.66%) (Fig.  2B). There were unique core gene sets in 
the 2 subspecies, with 87 unique core genes in B. catenu-
latum subsp. kashiwanohense and 63 in B. catenulatum 
subsp. catenulatum (Table S2). The unique core gene 
sets of two subspecies are involved in the metabolism of 
diversity functions, such as carbohydrate (group_1783, 
group_2168, et  al.), amino acid (metI, group_2203, 
et  al.), protein (group_1013, group_1298, et  al.), and so 
on. These unique core genes may play a role in the dif-
ferentiation of their species [2, 22, 24], although some 
are hypothetical proteins. Additionally, there were dif-
ferent numbers of strain-specific genes in the B. catenu-
latum subspecies; their numbers ranged from 20 to 

Table 1  General genomic features of B. catenulatum genomes

Collection strain Genome size
(Mb)

GC content
(%)

No of
CDSs

No of
tRNAs

IMAUFB087 2.01 56.06 1,834 56

IMAUFB085 1.98 55.94 1,781 54

B. catenulatum subsp. catenulatum JCM1194T 2.08 56.20 1,616 56

B. catenulatum subsp. catenulatum DSM16992 2.06 56.10 1,606 56

B. catenulatum subsp. catenulatum LMG11043 2.08 56.11 1,515 56

B. catenulatum subsp. catenulatum DSM16992(2) 2.11 56.41 1,616 56

B. catenulatum subsp. catenulatum 1899B 2.12 56.25 1,656 56

B. catenulatum subsp. catenulatum A2 2.02 56.15 1,584 54

B. catenulatum subsp. catenulatum A1 2.06 56.21 1,659 56

B. catenulatum subsp. catenulatum A3 2.15 56.36 1,707 59

B. catenulatum subsp. catenulatum HGUT-01490 2.08 56.20 1,615 56

B. catenulatum subsp. kashiwanohense PV20-2 2.37 56.12 1,876 58

B. catenulatum subsp. kashiwanohense JCM15439T 2.34 56.30 1,842 54

B. catenulatum subsp. kashiwanohense APCKJ1 2.45 56.20 1,968 54

B. catenulatum subsp. kashiwanohense DSM21854 2.31 56.20 1,758 53

B. catenulatum subsp. kashiwanohense DSM21854(2) 2.32 56.30 1,854 68
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578, suggesting the potential genetic diversity among B. 
catenulatum species.

Subsequently, the pan-core gene curves for the 
genomes of the B. catenulatum species were estab-
lished (Fig. S3A). With the addition of the new 
genomes, the number of pan genes increased, indi-
cating the existence of an open pan-genome within 
the species of B. catenulatum. In contrast, the num-
ber of core genes was not expected to be signifi-
cantly reduced by the addition of the new genomes 

since the exponential trendline reached the number 
of 1000. Notably, B. catenulatum subsp. catenulatum 
has a fairly open pan-core genome (Fig. S3B), while B. 
catenulatum subsp. kashiwanohense’s genome tends 
to be closed (Fig. S3C). These results indicate that 
B. catenulatum subsp. catenulatum may have flex-
ible environmental adaptability, while B. catenulatum 
subsp. kashiwanohense exists in a more specific and 
conserved habitat [25]. However, due to the limita-
tion of B. catenulatum genome number, this deduction 
needs more sequencing results to confirm.
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Comparison of the main functions between two subspecies
The above results have uncovered the genetic differences 
between the two subspecies at the general genomics 
level, which are usually associated with functional differ-
entiation [24]. Therefore, it is necessary to conduct fur-
ther functional genomic comparisons between the two 
subspecies of B. catenulatum. Their functional genomic 
differences were obtained by annotating all the strains 
through the RAST website. The functional annotations of 
16 B. catenulatum genomes were examined in 23 func-
tional categories (Fig. S4). These results suggest that the 
function of amino acid derivatives (21.06%) is the most 
highly represented category within B. catenulatum fol-
lowed by protein metabolism (21.00%) and carbohydrate 
metabolism (15.73%) (Fig. S4). It indicates that the three 
functions are the main ability to utilise substrates by B. 
catenulatum. The comparison of the main functional 
differences between the two subspecies showed the sub-
species differ significantly in their metabolism of carbo-
hydrates (p = 0.01), amino acids (p = 0.011) and proteins 
(p = 0.012) (Fig. 3A, 3B, 3C).

In view of the remarkably significant differences in 
the metabolic functions of carbohydrates, amino acids 
and proteins in the two subspecies, the detailed cat-
egories of the main functions were compared in the 
two subspecies (Fig.  3D). It showed that the two sub-
species are divided into two clusters, and the difference 
in functional genes was most significant in carbohy-
drates, it mainly lie in aminosugars, monosaccharides 
and an unclassed subcategory related to carbohydrates. 
In addition, the most significant differences in pro-
tein occurred in genes related to protein biosynthesis, 
and for amino acids it occurred in functional genes of 
lysine, threonine, methionine, and cysteine. This sug-
gests that the functional difference in these significant 
subcategories is the key to the difference in the func-
tional genomes of the two subspecies of B. catenula-
tum. Because of the most significant difference between 
the two subspecies was in carbohydrate function, the B. 
catenulatum genes involved in carbohydrate utilisation 
were analysed.
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Different carbohydrate utilisation patterns in two 
subspecies of B. catenulatum
The carbohydrate utilisation abilities of B. catenulatum 
subspecies at the genomic level were compared by analys-
ing the functional genes of carbohydrate-active enzymes 
(CAZymes) of 16 B. catenulatum strains. As shown in 
Fig.  4A, 16 B. catenulatum strains were distributed in 
all six carbohydrate-active enzyme families, indicating 
that they had rich carbohydrate functions. Notably, the 
clustering results of CAZymes were roughly consistent 
with those of the phylogenetic trees in that the two sub-
species were distinct. This finding not only suggests that 
the two subspecies have different metabolic patterns in 
terms of carbohydrate utilisation, but also indicates that 
CAZymes-related genes are closely associated with the 
divergence of B. catenulatum subspecies.

Among the identified GH families in B. catenulatum 
species, the most dominant ones were GH3, GH13 and 
GH43; meanwhile, GT2 and GT4 were the main carbo-
hydrate enzyme families within B. catenulatum species. 
Comparing the main carbohydrate hydrolase families in 
the subspecies revealed the number of GH3 family mem-
bers was significantly higher in B. catenulatum subsp. 
catenulatum than those in B. catenulatum subsp. kashi-
wanohense (p = 0.0038, Fig. 4B). GH3 is mainly involved 
in the metabolism of plant-derived glycan common in 
the adult diet, such as β-glucosidase and xylosidase [26]. 
However, there was no statistically significant difference 
in the function of GH13, GH43, GT2 and GT4 between 
the two subspecies (p > 0.05) (Fig. 4C, 4D, 4E, 4F). There-
fore, GH3 may be a key factor in the divergence of carbo-
hydrate functional genes between the two subspecies of 
B. catenulatum.⁠

Analysis of the specific CAZymes of B. catenulatum 
subsp. kashiwanohense revealed five families that only 
existed in the subspecies, including GH18, CBM5, GH95, 
CBM51 and CBM66 (Fig. 4G). The CBM family is primar-
ily responsible for banding carbohydrates. In addition, 
the GH18 family often combines with CBM5 to par-
ticipate in the function of chitinase, and CBM66 mainly 
assists in the degradation of fructose [27]. In particular, 
the GH95 family is specifically involved in the production 
of α-L-fucosidase, the most abundant substance in HMO 
and closely related to the function of infant-specific spe-
cies [28]. Additionally, the CBM51 family helps GH95 
enzymes pick up fucose to metabolise HMO [29]. These 
CAZyme families CBM51 and GH95 may be conducive 
to the colonisation of B. catenulatum subsp. kashiwano-
hense in the intestines of infants, especially the utilization 
of HMO, in contrast to the abundance of plant-derived 
glycan of B. catenulatum subsp. catenulatum, further 
suggesting the bias of the two subspecies in carbohydrate 
utilisation. In addition, GH29 enzymes often interact 

with GH95 enzymes to utilise HMO [30], and the study 
found that GH29 is only in B. catenulatum subsp. kashi-
wanohense except for PV20-2.

Identification of HMO gene clusters in B. catenulatum 
genomes
Considering the specific utilisation of fucosylated HMO 
(FHMO) by GH29 and GH95 enzymes, the FHMO gene 
cluster in B. catenulatum were subsequently examined. 
Two Bifidobacterium strains (B. longum subsp. longum 
SC596 and B. pseudocatenulatum JCM1200T) with typi-
cally structural FHMO gene clusters were selected as the 
reference [31] for the search for the homologous FHMO 
gene cluster in all of the B. catenulatum genomes. The 
homologous alignment showed an integrated FHMO 
gene cluster in all B. catenulatum subsp. kashiwanohense 
genomes but not in B. catenulatum subsp. catenulatum 
(Fig.  5), further confirming the unique ability to uti-
lise HMO by B. catenulatum subsp. kashiwanohense. In 
the study, two different structures of FHMO gene clus-
ters, named type I and type, ⁠were found in B. catenula-
tum subsp. kashiwanohense (Table S3). Type I shared 
89.6% homology with B. longum subsp. longum SC596. 
The size of type I was about 13.0 kb, including 11 open 
reading frames (ORF), manifested as GH95, GH29, fucU, 
dihydrodipicolinate synthase family protein (DHP), ami-
dohydrolase family protein, SDR family oxidoreductase, 
fuconate dehydratase, three ABC transporters and lacI. 
Meanwhile, type II shared 97.8% homology with B. pseu-
docatenulatum JCM1200T; it was only found in PV20-2 
and lacked GH29 and fucU genes, consistent with the 
results of CAZymes.

Notably, the GC content of the FHMO gene clusters in 
B. catenulatum subsp. kashiwanohense was significantly 
lower than the entire subspecies (Fig. S5), suggesting 
that its FHMO gene clusters might be obtained through 
horizontal gene transfer (HGT) [32–34]. The identifica-
tion of the FHMO gene clusters in B. catenulatum subsp. 
kashiwanohense further confirmed its advantage of 
HMO utilisation, thus providing genomic evidence for its 
adaptability in the infant intestine.

Discussion
As a typical intestinal symbiotic bacteria, Bifidobacte-
rium has experienced a long and extensive evolutionary 
process in human hosts [1]. For example, B. catenulatum 
has evolved into two subspecies, B. catenulatum subsp. 
kashiwanohense and B. catenulatum subsp. catenula-
tum. Previous studies have revealed that B. catenula-
tum subsp. kashiwanohense and B. catenulatum subsp. 
catenulatum have a close phylogenetic relationship [2]. 
Here, phylogenetic reconstruction has revealed genetic 
differences between the two subspecies. The genome size 
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and the number of the CDSs of B. catenulatum subsp. 
catenulatum were significantly lower than that of B. 
catenulatum subsp. kashiwanohense. Also, both subspe-
cies have a unique core gene set, such results represent a 
marker of genetic divergence [22]. In addition, there was 
obvious host differentiation in B. catenulatum, that B. 
catenulatum subsp. catenulatum is more present in adult 
intestines [1, 2], while B. catenulatum subsp. kashiwano-
hense commonly be confirmed as an infant-associated 

species [14]. Although B. catenulatum subsp. kashi-
wanohense is only rarely reported, previous studies have 
shown that kashiwanohense can be present in breast milk 
samples [15] and utilize milk-derived substrates, suggest-
ing that the infant gut may be its main niche [14]. In this 
study, the possible association between subspecies diver-
gence and the host was further explored through func-
tional genomic comparisons to explain the divergence of 
B. catenulatum at the genomic level.

Fig. 4  Prediction of CAZymes in 16 B. catenulatum strains. The Heatmap of CAZymes in B. catenulatum. The isolated source of strains was annotated 
(A). The significance analysis of the key CAZymes families between two subspecies of B. catenulatum including GH3 (B), GH13 (C), GH43 (D), GT2 (E), 
and GT4 (F). Specific CAZymes in B. catenulatum subsp. kashiwanohense (G)
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Bifidobacterium is a genus of saccharolytic microorgan-
isms whose ability to utilise indigestible carbohydrates is 
essential for their establishment in the gastrointestinal 
tract [35]. In this study, functional genomics revealed 
significant differences in the carbohydrates consumed by 
the subspecies of B. catenulatum. Notably, the CAZymes 
cluster results are consistent with the phylogenetic tree 
analysis, suggesting that the functional differences in car-
bohydrates may be related to the genetic divergence of 
B. catenulatum. This study found that the GH3 content 
of B. catenulatum subsp. catenulatum was significantly 
higher than that of B. catenulatum subsp. kashiwano-
hense. Previous studies have shown that GH3 is a key 
family in the evolution of Bifidobacterium and is involved 
in the degradation of plant polysaccharides [36]. The 
results here indicate that GH3 is also a key factor for the 
divergence of B. catenulatum in carbohydrate function. 
Studies have shown that the gut environment in adults 
is more complex than in infants because adults typically 
consume more difficult-to-digest carbon sources, such as 
plant-based dietary fibre [9, 10]. Kim et al. found that B. 
catenulatum strains can degrade fructooligosaccharides 
(FOS) in nutritionally restricted environments [37]. Pre-
vious studies have shown that a low-fiber diet in adults 
can cause a significant increase in the abundance of B. 
catenulatum [38]. Here, the results demonstrate that B. 
catenulatum subsp. catenulatum has more GH3 that 

utilises plant-derived glycans; therefore, the subspecies is 
conducive to the decomposition of difficult-to-use plant-
derived glycans in the adult gut.

On the other hand, infants, especially those who are 
breastfed, have many HMOs in their intestines. HMO is a 
prebiotic unique to breast milk and is especially enriched 
in human breast milk [39]. The ability of infant-specific 
Bifidobacterium to metabolise HMO has been recognised 
as a specific marker of its adaptive colonisation and ben-
eficial for strengthening the immune system in infants 
[40]. For B. catenulatum subsp. kashiwanohense, which 
is characterised by infant adaptation [14], its two specific 
CAZymes, namely GH95 and CBM51, which are notable. 
GH95 mainly utilises fucosyllactose, a major component 
of HMO [41]. On the other hand, CBM51 is beneficial to 
GH95 and helps it pick up FHMO [29]. Thus, this study 
suggests that GH95 and CBM51 act synergistically in the 
utilisation of FHMO by B. catenulatum subsp. kashiwan-
ohense. In particular, GH29 is often identified with GH95 
as the family of metabolic HMO [30]. In B. catenulatum 
subsp. kashiwanohense, all strains except PV20-2 contain 
GH29. Therefore, the study suggests that these three fam-
ilies (GH29, GH95 and CBM51) play an important role 
in the colonisation of B. catenulatum subsp. kashiwano-
hense in the infant intestine.

Based on the findings related to the HMO-related 
families, this study further confirms the existence of 

Fig.5  HMO gene clusters in B. catenulatum subsp. kashiwanohense and two reference clusters in Bifidobacterium. Arrows represent genes, and 
numbers on top of each gene indicate the locus tag number in the respective genome. Numbers inside the arrows indicate percent identity 
between corresponding genes and homologs relative to reference. The numbers outside on the left indicate percent identity of full clusters relative 
to reference. SBP: Solute Binding Protein; cABC: carbohydrate ABC transporter; sABC: sugar ABC transporter; SDR: SDR family oxidoreductase; DHP: 
dihydrodipicolinate synthase family protein; fucU: L-fucose mutarotase; fucd: fuconate dehydratase
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relatively conserved HMO gene clusters in B. catenula-
tum subsp. kashiwanohense while not in B. catenulatum 
subsp. catenulatum. These HMO gene clusters are highly 
homologous to those in other typical infantile adapted 
Bifidobacterium that are connected to the GH95 and 
GH29 families. Only the PV20-2 strain lacks GH29 and 
fucU, while the genome of PV20-2 shares high homol-
ogy with the HMO gene cluster of B. pseudocatenulatum 
JCM1200T, which can grow in purified FHMO [42], the 
lack of these two genes appears to have little effect on 
the overall ability to use FHMO. Given that the reference 
genomes in HMO gene clusters are all from infants, their 
clusters have been demonstrated to be conducive to their 
utilisation of HMO [35, 42]. This study suggests that B. 
catenulatum subsp. kashiwanohense may have a similar 
utilisation mechanism of FHMO for adaptive survival 
in the infant intestine [30, 35, 41]. Previous studies [14, 
43] had confirmed through gene expression experiments 
that the fucosyllactose transporters in B. catenulatum 
subsp. kashiwanohense JCM15439T and HMO genes in B. 
catenulatum subsp. kashiwanohense APCKJ1 endowed 
them with ability of HMO consumption, thus contribut-
ing to their adaptation in the HMO-rich environments. 
Given the high similarity of the HMO gene clusters in 
B. catenulatum subsp. kashiwanohense, this ability to 
consume HMO may be an intrinsic characteristic of 
this subspecies. In addition, a group_2168 gene codes 
L-fuconate dehydratase specifically exists in the unique 
set of B. catenulatum subsp. kashiwanohense (Table S2), 
which would be one of the markers of genetic divergence 
[22] and is consistent with the conclusion that it adapts 
to metabolizing FHMO. Notably, B. catenulatum subsp. 
catenulatum 1899B and IMAUFB085 belong to infant 
isolates, but no HMO genes were found in them, further 
confirming that possession of HMO genes is a genetic 
trait of B. catenulatum subsp. kashiwanohense.

The complex carbohydrate environment in the human 
gut can drive HGT events in Bifidobacterium, and com-
monly occurs between closely related species [44, 45]. 
Garrido et  al. [11] propose that the HMO gene clusters 
have transferred from B. longum subsp. infantis to B. 
longum subsp. longum during evolution. Notably, the 
HMO gene cluster in B. catenulatum subsp. kashiwano-
hense in this study showed a significant decrease in GC 
content. Previous reports confirmed that HGT frag-
ments differ from native genes in GC content [33, 34]. 
Thus we infer that the HMO clusters of B. catenulatum 
subsp. kashiwanohense were obtained by HGT, which 
were important in the genomic evolution of species [11]. 
At present, these types of HMO gene clusters have been 
found in typical infant-derived strains, such as B. breve, 
B. longum and B. pseudocatenulatum species, and they 
have high homology with each other [30, 35, 42]. This 

study proposes that B. catenulatum subsp. kashiwano-
hense acquired HMO gene clusters through HGT from 
other proximal species (such as B. longum), the acqui-
sition of HGT contributed to the specific function of 
genome divergence and HMO utilisation.

Although the two subspecies of B. catenulatum are 
closely phylogenetically related and share a common 
ancestor [2], previous studies have confirmed that they 
showed different tendencies adapted in infants and adult 
intestines [9, 10, 14]. Taken together, given that the car-
bohydrate genetic pattern of the two subspecies was con-
sistent with the phylogenetic relationship, we speculated 
that the B. catenulatum species evolved to retain the 
competitive carbohydrate function genes to adapt to the 
intestinal environment of infants and adults respectively, 
driving the emergence of two subspecies. Our results are 
similar to the divergence of B. longum, for the infantis 
subspecies of it has specific genes related to the metab-
olism of HMO and is more suitable for breast-feeding 
infant intestines, while the longum subspecies is present 
in both infant and adult hosts but has more genes for 
the utilization of plant-derived glycan and is more suit-
able for adult diets [35]. The example of this divergence 
of species in different hosts seems to suggest a poten-
tial pattern of genetic divergence of Bifidobacterium, in 
which infant and adult wealthy species have more HMO 
genes and plant-derived glycan genes respectively in the 
human gut in order to adapt to their respective hosts.

Conclusions
In summary, this study proposes that the B. catenulatum 
species evolved to retain the competitive carbohydrate 
function genes to adapt to the respective intestinal envi-
ronment in infants and adults, driving the emergence of 
two subspecies. This study has provided genomic evi-
dence for the potential host adaptation phenomenon of 
B. catenulatum in infant and adult intestines. However, 
the number of B. catenulatum strains is limited; more 
strains will need to be sequenced in the future to dis-
sect further the mechanism underlying their genetic 
divergence.

Methods
Bacterial strains, DNA extraction and publicly available 
assemblies
The two B. catenulatum strains (IMAUFB085 and 
IMAUFB087) that sequenced in this study were provided 
by the Lactic Acid Bacteria Collection Center (LABCC). 
Moreover, IMAUFB085 was isolated from infant faeces 
and IMAUFB087 from adult faeces in Tibet, China [46].

The two strains were cultured under anaerobic con-
ditions in the Man Rogosa and Sharpe (MRS) broth 
with L-cysteine hydrochloride at 37  °C for 24  h. DNA 
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extraction was performed using the TIANamp Bacteria 
DNA Kit. Genomic DNA was quantified using a TBS-380 
fluorometer. High-quality DNA samples were obtained to 
construct fragment libraries.

In addition, other 17 B. catenulatum genomes were 
obtained from the National Coalition Building Institute 
(NCBI, https://​www.​ncbi.​nlm.​nih.​gov/) on 4 February 
2021, including that of type strains, namely B. catenula-
tum subsp. catenulatum (JCM1194T) and B. catenulatum 
subsp. kashiwanohense (JCM15439T) (Table S1). Addi-
tionally, the B. pseudocatenulatum strain (JCM1200T) 
in the B. adolescentis group, most closely related to B. 
catenulatum according to the phylogenetic relationship 
of Bifidobacterium genus in a previous study [2], were 
downloaded to infer phylogenetic relationships across 
species within it.

Genome sequencing and assembly
Genome sequencing was performed using the Illu-
mina HiSeq platform to generate 150-bp paired-end 
reads for each sample. Then, the sequences were filtered 
through the Illumina HiSeq system. The high-quality 
sequences were assembled using SOAPdenovo2 [47] on 
a 64-bit Linux system. High-quality data corresponding 
to a sequencing depth of about 387-fold, was generated 
for each strain. In addition, local inner gaps were filled, 
and single-base errors were corrected using GapCloser 
(http://​sourc​eforge.​net/​proje​cts/​soapd​enovo2/​files/​
GapCl​oser/).

Genome annotation
In this study, all the general genomic information of B. 
catenulatum genomes was generated using self-made 
Perl scripts with statFASTA.pl. The functional gene infor-
mation of B. catenulatum was obtained by performing 
the gene prediction and preliminary annotation of all B. 
catenulatum genomes through the Rapid Annotation 
using Subsystems Technology (RAST) server (https://​
rast.​nmpdr.​org/​rast.​cgi). In addition, tRNA genes were 
identified using tRNAscan-SE (http://​trna.​ucsc.​edu/​
tRNAs​can-​SE/).

ANI and TNI
The genetic relatedness between the two B. catenulatum 
subspecies was evaluated, and the taxonomic status of 
the strains in this study was confirmed by analysing the 
ANI and TNI values of all the strains. B. pseudocatenu-
latum JCM1200T, the type strain most phylogenetically 
related to B. catenulatum [2], was included in the com-
parison. All pairwise ANI values were calculated accord-
ing to the method proposed by Goris et  al. [48]. TNI 
values were calculated according to the method proposed 

by Chen et al. [49]. Finally, the clustering heat map was 
drawn using TBtools [50].

Construction of pan‑core genome and strain‑specific genes
The annotated genomes of B. catenulatum were obtained 
using Prokka v1.12 [51] and processed using Roary v3.8.0 
[52] to identify the pan genes, core genes and specific 
genes using the default parameters. The intersection 
groups, representing the unique sets of genes identified 
only between the intersected genomes, were visualised 
using the UpSet diagram in TBtools [50].

Phylogenetic analysis
The core gene alignment from Roary was used in 
TreeBeST [53] with 1,000 bootstrap iterations to build a 
phylogenetic NJtree through Neighbor-Joining (NJ) [54]. 
The phylogenetic trees were then visualised and anno-
tated using iTOL (https://​itol.​embl.​de/).

BRIG (BLAST Ring Image Generator)
BRIG v0.95 [55] was adapted to compare the genomes of 
B. catenulatum strains based on a JAVA language envi-
ronment. All settings use default parameters. The image 
of the circular genomes was also generated through 
BRIG.

CAZymes online annotation
The identification of CAZymes across the B. catenulatum 
genomes was carried out using the dbCAN2 meta server 
(http://​bcb.​unl.​edu/​dbCAN2/), using three annota-
tion tools, including HMMER, DIAMOND and Hotpep 
searches [56]. The database includes glycosyltransferases 
(GTs), glycoside hydrolases (GHs), carbohydrate ester-
ases (CEs), polysaccharide lyases (PLs), auxiliary activ-
ity (AA) and carbohydrate-binding modules (CBMs). 
According to the annotation results, the detailed infor-
mation on the active carbohydrate enzyme family was 
checked on the CAZyme website (http: //www.​aczy.​org/).

Detection of the HMO gene clusters
Taking B. longum subsp. longum SC596 and B. pseu-
docatenulatum JCM1200T as the reference, which 
possess typical HMO gene clusters. In addition, the 
genome of SC596 was obtained from the IMG database 
[57]. The corresponding protein-encoding sequences 
were extracted from the genomes and compared using 
BLASTp with default parameters from the NCBI website. 
The cut-off values of 50% of similarity across 50% of pro-
tein length and a 0.0001 e-value as a significance for the 
identification of homologous proteins. The recognised 

https://www.ncbi.nlm.nih.gov/
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HMO gene clusters were visualised using the genoplotR 
package.

Statistical analysis
The data were presented as means ± SEM. The Wilcoxon 
signed-rank test was used to verify the significance of the 
difference between the groups, and visualisation was per-
formed using the ggpubr packages in R (4.0.3). Lastly, sig-
nificance was set at a p-value of less than 0.05.

Data availability
The assembly and Sequence Read Archive (SRA) 
data of the two newly isolated sequences in this work 
were submitted as a Whole Genome project (Bio-
Project No. PRJNA751426) at GenBank under the 
accessions JAIEWL000000000 (IMAUFB087) and 
JAIEWM000000000 (IMAUFB085) (available at https://​
www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​751426). The 
phylogenetic trees and alignment files in this study were 
submitted to the TreeBASE web (Accession No. 28852) 
(available at http://​purl.​org/​phylo/​treeb​ase/​phylo​ws/​
study/​TB2:​S28852).
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