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Abstract 

Background:  Microbiota play important roles in the gastrointestinal tract (GIT) of dairy cattle as the communities 
are responsible for host health, growth, and production performance. However, a systematic characterization and 
comparison of microbial communities in the GIT of cattle housed in different management units on a modern dairy 
farm are still lacking. We used 16S rRNA gene sequencing to evaluate the fecal bacterial communities of 90 dairy cat-
tle housed in 12 distinctly defined management units on a modern dairy farm.

Results:  We found that cattle from management units 5, 6, 8, and 9 had similar bacterial communities while the 
other units showed varying levels of differences. Hutch calves had a dramatically different bacterial community than 
adult cattle, with at least 10 genera exclusively detected in their samples but not in non-neonatal cattle. Moreover, 
we compared fecal bacteria of cattle from every pair of the management units and detailed the number and rela-
tive abundance of the significantly differential genera. Lastly, we identified 181 pairs of strongly correlated taxa in the 
community, showing possible synergistic or antagonistic relationships.

Conclusions:  This study assesses the fecal microbiota of cattle from 12 distinctly defined management units along 
the production line on a California dairy farm. The results highlight the similarities and differences of fecal microbiota 
between cattle from each pair of the management units. Especially, the data indicate that the newborn calves host 
very different gut bacterial communities than non-neonatal cattle, while non-neonatal cattle adopt one of the two 
distinct types of gut bacterial communities with subtle differences among the management units. The gut microbial 
communities of dairy cattle change dramatically in bacterial abundances at different taxonomic levels along the pro-
duction line. The findings provide a reference for research and practice in modern dairy farm management.
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Background
It is now well-established that microbiota, especially bac-
terial communities, play crucial roles in the physiology 
and health of all mammals. While the number of bacterial 

cells in the human body has been estimated as 10 times 
more than the number of human cells [1] or at roughly 
the same order in a recent study [2], this ratio can rise 
to approximately 120 times in ruminants such as cattle 
[3]. Cattle depend on their gastrointestinal microbiota to 
digest and convert the plant mass that cannot be directly 
digested into absorbable nutrients necessary for host 
health and development. Thus, a better understanding of 
the structure of the gastrointestinal microbiota is instru-
mental for both production and scientific inquiry. Par-
ticularly, in the modern dairy system, calves, heifers, and 
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cows at different ages and production stages are raised 
and managed in independent yet inter-connected man-
agement units with housing and dietary differences [4]. 
Specifically, male calves are commonly sold at birth while 
female calves are raised on the source dairy from birth 
to weaning (approximately 70 days of age) in group pens 
or more commonly in individual hutch units that may 
be wooden, metal, or plastic of combination of materials 
and where calves are fed milk two to three times a day 
and offered solid grain mix ad  libitum with the goal of 
transitioning to a solid diet by the age of weaning. Once 
weaned, growing calves are moved to group pens where 
they are fed a roughage diet with concentrate formu-
lated to their nutrient requirements until breeding age. 
Once bred, pregnant heifers are moved to maternity pens 
closer to their calving date. After calving, the newborn 
calf is fed colostrum and raised as described earlier. Post-
partum cows are moved to the fresh cow milking pen 
before being moved to subsequent milking pens depend-
ing on the dairy’s management practices with respect to 
breeding (not pregnant and pregnant pens) and level of 
milk production (high and low milking pens). Late preg-
nant cows around 60 days prior to calving are dried off, an 
industry practice of cessation of milking to allow the dam 
to replenish her body resources and initiate colostrogen-
esis in preparation for giving birth to a calf. Adult cows 
at different stages are commonly fed a total mixed ration 
formulated to meet the specific stage of lactation nutrient 
requirements. Given such differences in management, 
housing, and diets, it is important to understand the 
dynamics of the gut microbiota changes between/among 
different management units over the entire production 
life cycle of dairy cattle. The knowledge gained can help 
design new strategies to improve production as well as 
the health of both the animals and humans who consume 
the produced meat and milk.

Since traditional culture-dependent techniques can 
only recover a small portion of the microbial population 
[5], several research groups have explored the gut micro-
biota of dairy cattle using the next-generation sequenc-
ing (NGS) technologies [3, 6–13]. For instance, Mao 
et al. analyzed the microbiota of ten gastrointestinal sites 
in Holstein cattle using 16S rRNA gene sequencing and 
found that these cattle hosted microbiota with signifi-
cant spatial heterogeneity [7]. Dill-McFarland et al. ana-
lyzed the succession pattern of bacterial communities in 
dairy cattle from 2-week-old to first lactation [9]. Shanks 
et al. profiled the structure of fecal bacteria in cattle from 
various feeding operations [12]. However, a systematic 
contrast of the gut bacterial microbiota in dairy cattle 
along all the management units on a modern farm is still 
absent. To fill these gaps, we analyzed the gut bacterial 
communities of dairy cattle in management units of a 

dairy herd in California starting from the newborn to late 
lactation and dry cows using 16S rRNA gene sequencing 
data.

Results
Composition of the bacterial communities in the fecal 
samples
We analyzed a total of 90 fecal samples collected on the 
same day from 90 different dairy cattle in 12 management 
units (Fig.  1, Table  1) in a dairy herd. We generated a 
total of 6,092,309 16S rRNA gene paired-end sequencing 
reads with an average of 67,692 ± 7963 reads per sample. 
Clustering sequence reads from V3/V4 regions of 16S 
rRNA genes into different Operational Taxonomy Units 
(OTUs) has been a widely adopted strategy. However, 
the traditional OTU methods obscure similar sequences 
by grouping them into a consensus sequence and fail to 
tell the technical errors from real biological variations 
[14]. Thus, we used a more recent method DADA2 that 
records how many times an exact sequence was read 
and infers sequence variants by a statistical model learn-
ing the sequencing error rate from the samples them-
selves [14]. Given the common usage of the term, we use 
OTU to represent the inferred sequence variant instead 
of Amplicon Sequence Variant (ASV) that the DADA2 
authors proposed [15]. After quality filtering and chimera 
removal with DADA2 [14], a total of 5,080,044 sequence 
reads with an average of 56,444 ± 6633 reads per sample 
were preserved. OTUs that were taxonomically classified 
as “Archaea/Eukaryote” or appeared in less than 9 sam-
ples (10% of sample size) were excluded. Although the 
number of sequencing reads varied in our samples, rar-
efaction curves showed that our sampling was sufficient 
to represent the bacterial communities as the curve had 
almost plateaued or started to form a plateau (Addi-
tional file 1: Fig. S1). The OTU table was normalized by 
rarefying with a threshold of 12,637 sequences, which is 
the minimum number of reads of all the 90 samples after 
processing. All downstream analyses were based on the 
normalized OTU table (Additional file 2: Supplementary 
file 1).

We identified a total of 4681 OTUs in the 90 fecal 
samples. These OTUs could be taxonomically assigned 
to 20 phyla, of which Firmicutes (2573/55.0%), Bac-
teroidetes (1291/27.6%), and Tenericutes (267/5.7%) 
included the highest number of the OTUs (Fig.  2A). 
While only Firmicutes (587,075/51.6% reads), Bacteroi-
detes (412,852/36.3% reads), Patescibacteria (53,402/4.7% 
reads), and Proteobacteria (16,379/1.4% reads) were 
observed in all 90 samples, they accounted for 94.1% of 
the total bacterial communities at the phylum level. Fir-
micutes had the highest average relative abundance in 
the samples from all the management units except hutch 
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calves, where Bacteroidetes had the highest average rela-
tive abundance of 62.3% and Firmicutes only accounted 
for 33.4% (Fig. 2B).

At the family level, these OTUs could be assigned to 
99 families, in which Ruminococcaceae (1441/34.9%), 
Rikenellaceae (500/11.6%), Lachnospiraceae (319/6.8%), 
and Prevotellaceae (273/8.5%) contained the highest 
number of the OTUs (Fig.  2C). Although only 12 fami-
lies were detected in all 90 samples, they accounted for 
992,097 (87.2%) reads of the total bacterial communities 

at this taxonomic level. Ruminococcaceae (397,075/34.9% 
reads) was the most dominant taxon in average rela-
tive abundance at this level, followed by Rikenellaceae 
(131,673/11.6% reads), Prevotellaceae (96,322/8.5% 
reads), Lachnospiraceae (77,143/6.8% reads), Murib-
aculaceae (70,454/6.2% reads) and Saccharimonadaceae 
(53,121/4.7% reads) (Fig. 2D).

At the genus level, 2169 (46.3%) of the 4681 OTUs 
could be assigned to 167 known genera, while the 
remaining 2512 OTUs (53.7%) could not be classified 

Fig. 1  Management units and dairy cattle life cycle on a dairy farm. A Schematic diagram of the independent yet inter-connected management 
units of the dairy herd where the samples were collected. The number around each box represents the management unit ID used in this study. B 
Dairy cattle life cycle by age and production stage
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to known genera, thus annotated by 70 lowest known 
taxonomic ranks (family, order, etc.). These unclassified 
taxa might be novel bacteria in the cattle feces or not 
differentiable solely based on the hypervariable regions 
of 16S rRNA genes. Overall, the largest number of the 
OTUs were assigned to [f ]Ruminococcaceae (588/11.9% 
OTUs), followed by Rikenellaceae_RC9_gut_group 
(288/6.15% OTUs), and Ruminococcaceae_UCG-010 
(250/5.3% OTUs) (Fig.  2E). While only 17 genera were 
consistently detected in the 90 samples, these commonly 
shared genera occupied 72.8% of the total bacterial com-
munities at this taxonomic level. Most of the assigned 
genera had an average abundance of < 2% in the sam-
ples from the management units, while only 15 genera 
had a relative abundance ≥ 2% including [f ] Rumino-
coccaceae (11.5%), Ruminococcaceae_UCG-005 (8.8%), 
Rikenellaceae_RC9_gut_group (8.2%), [f ]Muribaculaceae 
(6.2%), [f ]Lachnospiraceae (5.2%), Candidatus_Saccha-
rimonas (4.7%), [o] Bacteroidales (4.3%), Bacteroides 
(3.6%), Ruminococcaceae_UCG-014 (3.5%), Ruminococ-
caceae_UCG-013 (3.4%), Christensenellaceae_R-7_group 
(3.0%), Ruminococcaceae_UCG-010 (2.6%), Prevotel-
laceae_UCG-003 (2.5%), [f ]Prevotellaceae (2.2%), and 
Alistipes (2.2%) (Fig. 2F).

Alpha diversity of the cattle fecal bacterial communities 
in the management units
We next compared the richness and evenness of the fecal 
bacterial communities of cattle in different management 
units in the production line using both Chao 1 richness 
index and Shannon diversity index. As shown in Fig. 3A 

and B, the fecal bacterial communities in pre-weaned 
calves (unit 1) fed primarily milk and housed in indi-
vidual hutches (Table  1) had significantly lower Chao 1 
and Shannon indexes than those in all other units, except 
for the post-weaned group-housed calves fed a solid diet 
(unit 2) (Kruskal Wallis, false discovery rate, FDR < 0.05), 
suggesting that the hutch calves generally had simpler 
fecal bacterial communities. Post weaned heifers (unit 2), 
while having no significant differences in bacterial com-
munities compared with hutch calves (unit 1), consist-
ently differed from breeding heifers (unit 3), springers 
(unit 4), and pregnant late lactation cows (unit 9), which 
might be related to the development of the rumen and 
these growing young cattle being full ruminants by the 
time they were bred.

Similarity and difference of the fecal bacterial communities 
between management units
To further evaluate the similarities and differences of 
the bacterial communities between different manage-
ment units, we calculated the β-diversity (Bray-Curtis 
distance) of the samples and visualized the results 
using non-metric multidimensional scaling (NMDS). 
As shown in Fig. 4A, the hutch calves’ samples (unit 1) 
were largely grouped to form a cluster (I), which sepa-
rated from the samples from the other management 
units, with two post-weaned heifers’ (unit 2) samples 
included, suggesting that the fecal bacterial communi-
ties of hutch calves (unit 1) are similar to one another 
but largely different from those of cattle in the remain-
ing management units. Interestingly, the samples from 

Table 1  Classification of cattle based on the growth, production stages, and their residential management units of the dairy herd 
where samples were collected

Management Unit No. of 
Samples

Unit ID Description

Hutch calves 9 1 From birth to approximately 1–2 weeks after weaning, individually housed (1 to 70 days age 
approximately)

Post weaned heifers 6 2 Group-housed heifers and bull calves (if not sold) fed solid diet

Breeding heifers 8 3 Approximately 13 to 15 months old

Springer 8 4 Within 1 to 4 weeks from calving, pregnant nulliparous heifers

Fresh uniparous cows 8 5 1 to 2 months post-calving, first lactation cows

Mid-lactation uniparous cows 8 6 60 to 250 Days in Milk, first lactation

Fresh multiparous cows 8 7 1 to 2 months post-calving, second lactation or greater

Mid-lactation multiparous cows 8 8 60 to 250 Days in Milk, second lactation or greater

Pregnant late
lactation cows

8 9 > 250 Days in Milk

Far-off dry cows 3 10 21 to 60 days prior to calving, multiparous dry cows

Close up dry cows 8 11 within 21 days prior to calving, multiparous dry cows

Hospital pen/
Fresh (post-calving)

8 12 Lactating cows treated with medication that requires milk withdrawal. May include fresh cows 
(post-calving) during their transition from producing colostrum to milk and/or pending milk 
withdrawal after treatment at drying (prior to entering Far-off dry pen).
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Fig. 2  Assignment of the OTUs to different taxonomic levels. A The number of OTUs assigned to different phyla. B Average relative abundances of 
the phyla in the samples from different management units. C The number of OTUs assigned to different families. D Average relative abundances of 
the families in the samples from different management units. E The number of OTUs assigned to different genera. F Average relative abundances 
of the genera in the samples from different management units. In B, D, and F, the length of color-coded bars represents the average relative 
abundance of the taxa in the samples in the indicated management units. Taxa with < 2% relative abundance in all the units were merged into the 
“Other/Unassigned” category
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the other units form two rather compact yet distinct 
clusters II and III (Fig. 4A), suggesting the samples in 
each cluster have quite similar bacterial communities. 
Cluster II contains samples from all the management 
units except unit 1; in contrast, cluster III comprises 
samples only from units 3, 5, 6, 7, 8, 11, and 12, sug-
gesting that non-neonatal cattle (from unit 2 to 12) 
may only have one of two types of rather uniform bac-
terial structures.

Moreover, we found that at the phylum level, the 
relative abundances of several phyla were signifi-
cantly different between the samples in clusters 
II and III (Fig.  4B-E, t-test, P < 0.05). The samples 
in cluster II were high in Bacteroidetes (Fig.  4B), 
while samples in cluster III were high in Fir-
micutes (Fig.  4C), Patescibacteria (Fig.  4D), and 
Actinobacteria (Fig.  4E). There were also five addi-
tional phyla with low relative abundances showing 

significant differences between the two clusters 
(Additional file 3: Fig. S2).

Shared and unique taxa at the genus level 
in the management units
For the 237 taxa at the genus level (167 assigned to 
known genera and 70 assigned to higher taxonomic 
ranks), 112 of them had the average relative abundance of 
0.1% or greater in at least one management unit. Among 
these 112 genera, 70 were observed in all management 
units while the remaining 42 genera existed in a varying 
number of management units. Particularly, there were 
several genera largely detected only in management unit 
1but barely seen in other units, suggesting these taxa 
may play important roles in the early stage of life for 
the cattle. For  example, 10 genera, as shown in Table  2 
listed by the relative abundance from high to low, were 
observed majorly in unit 1 but sparsely seen in other 
units. In contrast, we found Prevotellaceae_UCG-004, 

Fig. 3  Diversity of fecal bacterial communities of cattle in the management units. Boxplots of Chao 1 richness index (A) and Shannon diversity 
index (B) of fecal bacterial communities of cattle in the management units (x-axis). Each violet-red dot represents the bacterial communities 
in a fecal sample, and management units are coded by distinct colors. The numbers above each box indicate the management units that are 
significantly different from the current one with the pairwise Wilcoxon test (P < 0.05)

Fig. 4  Similarity and difference of the fecal bacterial communities. A Non-metric multidimensional scaling (NMDS) plot of the Bray-Curtis distance 
for bacterial communities in different management units. Each point represents a fecal bacterial community and is colored by the management 
unit from which it was sampled. The communities are grouped into three clusters (I, II, and III) circled in blue, black, and red rings, respectively. 
Boxplot of four phyla’s relative abundances in clusters II and III for B Bacteroidetes C Firmicutes D Patescibacteria and E Actinobacteria

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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dgA-11_gut_group, Caproiciproducens, and an unas-
signed genus ([f ]p-2534-18B5_gut_group) missing in ani-
mals from unit 1, but in all other 11 management units 
(Table 2).

Dynamics of bacterial communities 
between the management units
From the core bacteria, the 112 genera with an average 
minimal abundance of 0.1% in at least one management 
unit), we found 56 of them displayed significantly differ-
ent abundances in the samples from the 12 management 
units (ANOVA, FDR < 0.05). We further summarized 
how each of these 56 genera was significantly different 
in their composition between different pairs of man-
agement units (Tukey HSD, P < 0.05, Fig. 5A and B). For 
example, unit 1 had a varying number of significantly dif-
ferent genera with all other 11 units, from 11 with unit 5 
to 27 with unit 7 (Fig. 5A). As shown in Fig. 5B, the rela-
tive abundances of these significantly different genera 
between unit 1 and other units were in the range of 25.9 
and 52.6%. Interestingly, there is no significantly different 
genus between any pair of management units 5, 6, 8, and 
9, suggesting the types and relative abundances of the 
genera were similar in these four units.

Synergistic and antagonistic relationships
Bacteria thriving in a community may interact with one 
another synergistically or antagonistically. To reveal such 

potential interactions between different bacteria, we cal-
culated the correlations of the core bacteria using the 
SparCC (Sparse Correlations for Compositional data) 
algorithm [16]. By setting ±0.7 as the threshold values 
for strong positive and negative correlations and pseudo 
p-values < 0.05 as the significant correlations, we found 
61 OTUs that had strong correlations with at least one 
other OTU (Fig.  6; Additional  file  4: Supplementary 
file  2; Additional  file  5: Supplementary file  3). Most of 
these strong correlations are positive, while only one pair 
between Ruminococcaceae_UCG-005 and Bacteroides is 
negative (SparCC = − 0.70). In Fig. 6, all the strong cor-
relations are shown within the networks. From the 181 
strong correlations, 117 are between the OTUs assigned 
to the same phylum, indicating that strong correlations 
are more likely to be within the same phylum than those 
from different phyla.

Functional prediction of the bacterial community
To further explore the fecal bacteria of the dairy cat-
tle, we predicted the functions of the bacterial com-
munity using a marker gene based tool Tax4Fun2 [17]. 
Compared to the initial version Tax4Fun, Tax4Fun2 has 
higher accuracy, allows users to customize the reference 
genomes, and integrates a multifunctional redundancy 
evaluation [17, 18].

A total of 7726 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Orthologs (KOs) were predicted in 

Table 2  Number of occurrences and taxonomic assignment at the genus level for taxa that were either majorly detected in unit 1 or 
missing in unit 1 but observed in other units

Avg. No. of Reads 
in Unit 1

Avg. No. of 
Reads in Unit 2

Sum of Avg. No. of Reads 
in other 10 Units

Phylum Family Genus

Genera majorly observed in unit 1

  330 (2.6%) 4 2 Bacteroidetes Prevotellaceae Prevotella_9

  157 (1.2%) 0 0 Bacteroidetes Prevotellaceae Prevotella_2

  102 (0.8%) 0 3 Bacteroidetes Prevotellaceae Prevotella

  97 (0.8%) 10 5 Clostridiales Ruminococcaceae Faecalibacterium

  87 (0.7%) 0 1 Proteobacteria Burkholderiaceae Sutterella

  86 (0.7%) 9 0 Bacteroidetes Tannerellaceae Parabacteroides

  74 (0.6%) 2 0 Fusobacteria Fusobacteriaceae Fusobacterium

  72 (0.6%) 17 0 Firmicutes Ruminococcaceae Subdoligranulum

  54 (0.4%) 4 0 Firmicutes Ruminococcaceae Oscillospira

  86 (0.7%) 9 0 Bacteroidetes Tannerellaceae Parabacteroides

  15 (0.1%) 0 6 Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-004

Genera missing in unit 1 but observed in other units

  0 31 1581 Bacteroidales Prevotellaceae Prevotellaceae_UCG-004

  0 1 1196 Bacteroidales p-2534-18B5_gut_group Unassigned, annotated as
[f ]p-2534-18B5_gut_group

  0 16 905 Bacteroidales Rikenellaceae dgA-11_gut_group

  0 2 401 Clostridiales Ruminococcaceae Caproiciproducens
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Fig. 5  Significantly different taxa at genus level between all pairs of management units. A Number of genera significantly different between each 
pair of the management units. B Relative abundance of significantly different genera between each pair of the management units



Page 10 of 15Zhao et al. BMC Microbiology          (2022) 22:132 

the identified bacterial microbiota in the samples while 
no single KO had a relative abundance higher than 2% 
in any sample (Additional  file  6: Supplementary file  4). 
Among them, 4001 (51.8%) KOs were present in all 90 
samples, indicating these molecular functions were 
essential for the cattle regardless of age, housing, and 
production status such as K00001 (alcohol dehydroge-
nase) that mediates the oxidation and reduction of eth-
anol [19]. Interestingly, some KOs were only present in 
the samples from one management unit. For instance, a 
collection of 9 KOs (K04340, K14194, K16046, K16227, 
K18254, K18611, K18906, K20218, and K21329) were 
only observed in some samples of unit 1, though at 
very low abundances (Additional file  6: Supplementary 
file 4). These KOs might be involved in the food diges-
tion of hutch calves. For instance, K18611 (4-pyridoxic 
dehydrogenase) is an enzyme that degrades vitamin B6, 
which is contained in milk, the primary diet for hutch 
calves housed in unit 1 [20]. There were 982 (12.7%) sig-
nificantly differential KOs (ANOVA, FDR < 0.05) and the 
top 20 most abundant ones were shown in Fig. 7A.

From the pathway perspective, Tax4Fun2 predicted 6, 
45, and 239 pathways at KEGG level 3, 2, and 1, respec-
tively. Metabolism (70.4–72.0%) was the most abundant 
pathway at level 3 in every management unit, followed 
by Environmental Information Processing (12.0–13.2%), 
Cellular Processes (6.1–6.7%), Genetic Information Pro-
cessing (5.3–5.7%), Human Diseases (2.8–3.1%), and 
Organismal Systems (1.2–1.3%, Additional  file  7: Sup-
plementary file  5). Further analysis revealed 10 signifi-
cantly differential pathways at level 2, with the energy 
metabolism pathway being the most abundant (Fig. 7B). 
However, the abundances of these pathways combined 
were only 6.6% on average. At level 1, there were 68 sig-
nificantly differential pathways, and the most abundant 

20 of them were shown in Fig. 7C. Again, energy metab-
olism related pathways are most abundant, such as gly-
colysis/gluconeogenesis, carbon fixation, and methane 
metabolism.

Discussion
In modern dairy management, it is not uncommon to 
house animals in different management units based on 
their ages, nutrition requirements, reproductive status, 
lactation status, production, and management styles [21]. 
Such a management system optimizes milk production 
and management but brings challenges profiling and ana-
lyzing the bacterial communities in the GIT because the 
bacterial communities can be influenced by numerous 
factors including, but not limited to, diet, animal physiol-
ogy and status, the farm environment, geographic loca-
tion, antimicrobial use, and management practices of the 
production lifecycle [6, 12, 22–25]. For instance, the bac-
terial communities of cattle housed individually were less 
likely to be affected by other cattle compared with those 
housed together in open pens. Another example is that 
cattle with diseases may be treated with antimicrobial 
drugs that may directly change the balance of the bacte-
rial communities.

In this study, we sought to characterize the composi-
tion, diversity, and dynamics of the fecal bacteria in dif-
ferent management units over the production lifecycle of 
dairy cattle on a California dairy farm. We used paired-
end sequencing of the V3/V4 hypervariable regions of 
the 16S rRNA genes to profile the bacterial communi-
ties in 90 fecal samples collected from 90 cattle in the 12 
management units. Our results suggest high similarity 
between any two of the management units 5, 6, 8, and 
9, but show significant differences in most of the other 
management unit pairs in terms of richness, evenness, 

Fig. 6  Strong correlations in the core bacteria. Each node is an OTU and the number within represents the OTU ID. Nodes are colored based on 
their taxonomic assignment at the phylum level. The edges in green and red indicate positive and negative correlations
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Fig. 7  Significantly differential orthologs and pathways in the KEGG database predicted using Tax4Fun2. A Top 20 the most abundant significantly 
differential KOs. B Significantly differential level 2 pathways. C Top 20 the most abundant significantly differential level 1 pathways. Rows represent 
KOs/pathways and columns represent management units. Subplots were arranged by the relative abundance from high to low



Page 12 of 15Zhao et al. BMC Microbiology          (2022) 22:132 

and structure of the gut bacterial communities at the 
genus level.

Overall, consistent with several earlier studies [6, 7, 12, 
13, 22], our results reveal Firmicutes and Bacteroidetes 
were the two most dominant taxa at the phylum level, 
distantly followed by several other phyla. Specifically, our 
results show that, on average, the Firmicutes and Bacte-
roidetes represented 51.6 and 36.3% of the total commu-
nities, respectively. Interestingly, the relative abundance 
of Bacteroidetes was lower in cows immediately before 
and after calving (within two weeks from calving) in units 
with fresh multiparous cows (18.7%) and close up dry 
cows (23.2%), while the relative abundances were in the 
range of 29.4 and 62.2% in other units (Fig. 2B).

For some genera, as Mao et al. [7] demonstrated, Prevo-
tella had a lower abundance in samples taken from the 
small and large intestines, but higher in the forestomach, 
such as the rumen. In our work, the relative abundance of 
Prevotella was only 0.07%. However, in one of the hutch 
calves’ (unit 1) samples, we observed Prevotella had a 
relative abundance of 7.16% (905 reads) while the num-
ber of Prevotella reads in the other 89 samples was in 
the range of 0 to 11. We also found in this sample, Rumi-
nococcus_1 had a relatively high abundance (5.56%, 703 
reads) while this genus was in the range of 0 to 115 reads 
in other samples. So potentially there is some synergistic 
relationship between Prevotella and Ruminococcus_1 and 
the interaction prevent Prevotella from being degraded 
or eliminated when going through the GIT. Such interac-
tion could also be related to the diet of hutch calves being 
primarily milk compared to all the other units fed a solid 
diet. Moreover, feeding waste milk from the hospital pen 
or fresh cow pen to calves is a common practice in the 
dairy industry and was done on this dairy at the time 
of sampling. Waste milk commonly contains antibiotic 
residues of varying concentrations as it is collected from 
milking cows in the hospital being treated with antibiot-
ics or awaiting clearance during their withdrawal period 
before rejoining the pens where milk is harvested for 
human consumption.

It is noticeable that bacterial communities in hutch 
calves were significantly different from those in other 
management units except post-weaned heifers (Figs.  2, 
3, 4A, 5). These differences confirmed the earlier find-
ings that the enteric microbiota in neo-natal calves were 
different from adult cows and the bacterial communities 
underwent a dramatic change during the development 
at an early age [9, 10, 23]. Intriguingly, bacteria from the 
samples in post-weaned heifers displayed similar patterns 
with the communities from the adult cattle, predomi-
nately Firmicutes; but at the same time, they showed 
no significant difference from those of hutch calves. As 
the post weaned heifers were aged from approximately 

2 months (70 days on average) to 13-month old, the 
microbiota changes were still ongoing towards the bacte-
rial profiles in adults during this transition period. Using 
the same set of samples, we have previously found that 
E. coli from hutch calves exhibited a wider spectrum of 
resistance to antimicrobial drugs compared to bacteria 
from other units [21]. Currently, it largely remains unde-
termined concerning the roles of bacterial communities 
on antimicrobial resistance of specific bacterial species, 
however, in future studies, it will be interesting to assess 
such roles, for example, resistomes on phenotypes of 
antimicrobial resistance.

For the samples from non-neonatal cattle (from unit 2 
to unit 12), we did not find any evidence supporting that 
the bacterial communities could be clustered based on 
the management unit membership. This demonstrated 
that the management unit itself is not a determinate force 
for the structure of the bacterial communities. Instead, as 
shown in Fig. 4A, we did observe distinct patterns where 
most of our samples from non-neonatal cattle formed 
two clusters (II and III), implying they had two major dif-
ferent structures. As we looked deeper, we found that at 
the phylum level, the relative abundances of several phyla 
became very different between the two clusters (Fig. 4B-
E). For example. in cluster III, the mean and median of 
Patescibacteria relative abundance were 20.9 and 19.7% 
while those values in cluster II were only 1.9 and 1.1%, 
respectively. What caused the differences in Patescibac-
teria in various samples still needs future research, but 
the potential interactions between some taxa classified as 
Firmicutes and Patescibacteria seem to prevent Patesci-
bacteria from decreasing. It has been reported that the 
rumen bacteria in the 1st and 2nd lactations, which over-
lapped with some of our management units, are dynamic 
yet similar, and the samples from the two lactations can-
not be separated by the lactation cycle in PCA visualiza-
tion [8]. This demonstrated that the bacterial structure 
might undergo further shaping going through the GIT 
(their rumen samples versus our fecal samples) or the 
formed patterns were just a case-sensitive phenomenon.

Pitta et  al. reported that significant bacterial population 
change was observed during the transition from 21 days 
before calving to 21 days after calving in uniparous and 
multiparous cows, respectively [26]. This shift period cor-
responded approximately to our management units 4 and 
5 for uniparous cows and units 10 and 11 for multiparous 
cows. However, we did not see this significant shift as dem-
onstrated earlier [26]. The only significant difference we 
observed was Shannon diversity between units 4 and 5. This 
could be due to the different sites of the GIT from which 
the samples were taken (their rumen samples versus our 
fecal samples). It is also possible that this was due to the four 
management units in our study not being strictly narrowed 



Page 13 of 15Zhao et al. BMC Microbiology          (2022) 22:132 	

to 21 days prior and post-calving. As the dairy farm environ-
ment is dynamic, it is not surprising that most taxa were 
shared by cattle housed in different management units.

Measuring potential bacterial interactions was chal-
lenging and barely reported in dairy cattle studies. The 
classic correlation methods had their limitations when 
applied to genomic data such as 16S rRNA gene sequenc-
ing data which are sparse and compositional. SparCC as a 
method that negates the negative correlation bias of com-
positional data [27] and identifies true association missed 
by others [28], was used here as a way of evaluating bac-
terial interactions. In general, we identified 180 strong 
positive correlations and 1 strong negative correlation 
between 61 OTUs (Fig.  6). These co-occurrent OTUs 
may tend to share the same habitats and perform similar 
functions, as most of these co-occurrent patterns spotted 
between OTUs were in the same phyla (Fig. 6).

Conclusions
In this study, we profiled the structure and dynamics of 
gut bacterial communities from cattle in 12 independ-
ent yet inter-connected management units on a mod-
ern California dairy farm. To the best of our knowledge, 
this is the first study that describes the bacterial com-
munities across all management units and reveals the 
structures of gut microbial communities to each of 
the well-defined management units. We analyzed the 
changes in gut microbial communities across production 
systems. Though the fecal microbiota were similar in 4 of 
the management units, they showed significant changes 
between others. It is confirmed that microbial ecology 
underwent dramatic changes in the early days of life, as 
evidenced by the significantly different bacteria in hutch 
calves from other adult cattle and revealed dynamics of 
the bacterial abundance in the later stages of the produc-
tion lifecycle. Moreover, we identified at least 10 genera 
that were detected only in hutch calves but were absent 
in all the other cattle in other units. These genera might 
play crucial roles in the early establishment and develop-
ment of the GIT. We also dissected potential interactions 
among gut bacterial groups, mostly from the species in 
the same phylum.

Methods
Sample collection and study herd
On a single day in June 2016, a total of 90 fecal samples 
were collected from 90 individual cattle in 12 manage-
ment units (Fig. 1, Table 1) from a dairy herd in the Cen-
tral Valley of California, USA. Cattle in each of these 
management units were identified based on convenience 
sampling. Trained study personnel collected the fecal 
samples manually from the rectum of cattle using stand-
ard veterinary protocols. Other information such as the 

sampling population in each management unit can also 
be found at Li et  al. [21]. These samples were also used 
for an antimicrobial resistance study that has been pub-
lished by Li et al. [21]. An aliquot of each sample shipped 
in refrigerated conditions to Dr. Su’s laboratory at the 
Department of Bioinformatics and Genomics, the Uni-
versity of North Carolina at Charlotte for 16S rRNA gene 
sequencing.

Illumina MiSeq sequencing
DNA from stool samples was extracted with the Qiagen 
DNA Stool kit following the manufacturer’s instructions. 
Two steps of Polymerase Chain Reaction (PCR) pro-
cedures were used to generate amplicons from the 16S 
RNA genes for sequencing. The first-round PCR was to 
target V3/V4 regions of 16S rRNA genes with the for-
ward primer: 5′- CCT​ACG​GGNGGC​WGC​AG and the 
reverse primer: 5′- GAC​TAC​HVGGG​TAT​CTA​ATC​C. 
This step was done with the KAPA Biosciences HiFi PCR 
kit and additional BSA. The protocol consists of initial 
denaturation at 95 °C for 3 min, followed by 25 cycles of 
denaturation (90 °C for 30 s, 55 °C for 30 s, and 72 °C for 
30 s), and final elongation at 72 °C for 5 min. The PCR 
products were cleaned up with Ampure XP beads. The 
second-round PCR was performed with Nextera XT 
index Primers and sequencing Adaptors with the follow-
ing setting: initial denaturation at 95 °C for 3 min, fol-
lowed by 8 cycles of denaturation (90 °C for 30 s, 55 °C for 
30 s, and 72 °C for 30 s), and final elongation at 72 °C for 
5 min. The PCR products were cleaned up with Ampure 
XP beads and paired-end sequenced (2 × 300 bp) on an 
Illumina MiSeq platform at the University of North Car-
olina at Charlotte.

OTU table construction
Primers with raw sequences were removed by Cutadapt 
[29]. We performed quality control using DADA2’s “fil-
terAndTrim” function with “trancLen” equal to 200 bp 
for forward reads and 150 bp for reverse reads based on 
quality profiles. Technical error rate learning was per-
formed with all the sequences in the samples. Sample 
inference was performed by the “dada” function with the 
setting optional parameter “pool = TRUE.” Paired-end 
reads merger in DADA2 resulted in approximately 50% 
loss of sequences, thus only forward reads were used in 
this study. OTU table and chimera removal were imple-
mented with default parameters. We used the “assignTax-
onomy” function that provided a native implementation 
of the RDP Classifier [30] with minimum bootstrap con-
fidence of 80 to assign taxonomy from the phylum level 
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to the genus level to each OTU. SILVA database release 
132 [31] was used as the reference database.

Function prediction
Molecular function prediction was done using Tax-
4Fun2 with the default reference library. The functional 
profiles were generated with the built-in functions 
“runRefBlast” and “makeFunctionalPrediction” with 
default settings.

Statistical analysis
Rarefying was performed by the “single_rarefaction” 
function with the minimum number of reads of all sam-
ples, which is equal to 12,637 in QIIME [32]. We used 
alpha diversity, including Chao 1 index which evaluates 
richness, and Shannon index which evaluates diversity 
to measure the within-sample diversity. Differences in 
Chao 1 index and Shannon index in different units were 
assessed by the Kruskal Wallis test with the Benjamini-
Hochberg (BH) correction for multi-comparisons, and 
pairwise management units’ comparisons were per-
formed by pairwise Wilcoxon test. The Bray-Curtis dis-
tance matrix was employed to perform beta diversity 
analysis. Visualization was done by a non-metric mul-
tidimensional scaling plot. SparCC correlations were 
calculated by FastSpar [33], a C++ implementation of 
SparCC algorithm (100 bootstrap samples were gener-
ated for pseudo p-value calculation). R software [34] 
and R packages ggplot2 [35], vegan [36], superheat [37], 
ggpubr [38], and qgraph [39], were used for calculation 
and visualization.
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