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Abstract 

Background:  Unsupervised AI (artificial intelligence) can obtain novel knowledge from big data without particular 
models or prior knowledge and is highly desirable for unveiling hidden features in big data. SARS-CoV-2 poses a seri-
ous threat to public health and one important issue in characterizing this fast-evolving virus is to elucidate various 
aspects of their genome sequence changes. We previously established unsupervised AI, a BLSOM (batch-learning 
SOM), which can analyze five million genomic sequences simultaneously. The present study applied the BLSOM to the 
oligonucleotide compositions of forty thousand SARS-CoV-2 genomes.

Results:  While only the oligonucleotide composition was given, the obtained clusters of genomes corresponded 
primarily to known main clades and internal divisions in the main clades. Since the BLSOM is explainable AI, it reveals 
which features of the oligonucleotide composition are responsible for clade clustering. Additionally, BLSOM also pro-
vided information concerning the special genomic region possibly undergoing RNA modifications.

Conclusions:  The BLSOM has powerful image display capabilities and enables efficient knowledge discovery about 
viral evolutionary processes, and it can complement phylogenetic methods based on sequence alignment.
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Background
To confront the global threat of COVID-19 [1, 2], many 
SARS-CoV-2 genome sequences have been rapidly 
decoded and promptly released through the GISAID 
database [3]. To characterize this virus in various ways, 
we must implement diverse research methods such as 
AI (artificial intelligence), that are suitable for big data 
analyses. Unsupervised machine learning can obtain new 
information from big data without particular models or 
presumptions and is highly desirable for mining big data. 
We previously established a BLSOM (batch-learning 

self-organizing map) for oligonucleotide compositions, 
which can reveal various new characteristics of genome 
sequences [4, 5].

Oligonucleotide composition varies significantly 
among species, even those with the same genome 
G + C%, and is called the genome signature [6]. When we 
constructed a BLSOM for oligonucleotide compositions 
in fragment sequences (e.g., 10  kb) from a wide variety 
of species, the sequences were clustered (self-organized) 
primarily according to species, despite no species infor-
mation being used during machine learning [5, 7]. Impor-
tantly, the BLSOM is suitable for large-scale analysis and 
has been used to analyze five million genomic fragments 
from over one thousand genera [8]. In addition, the 
BLSOM is explainable AI and can reveal the drivers of 
species-specific clustering (self-organization).
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Many host factors (e.g., nucleotide pools, proteins and 
RNAs) and antiviral mechanisms (e.g., antibodies, cyto-
toxic T cells and interferons) are involved in viral growth 
and infection [9, 10]. Since human cells may not present 
ideal growth conditions for zoonotic viruses that have 
invaded from nonhuman hosts, efficient growth and 
human–human transmission will likely require changes 
in the viral genome. To study this viral adaptation, we 
previously analyzed time-series changes in the mono- 
and oligonucleotide compositions of four zoonotic 
RNA viruses (influenza virus [11, 12], Zaire ebolavirus 
[13], MERS coronavirus [13] and SARS-CoV-2 [14, 15]) 
and identified time-series directional changes that were 
detectable even on a monthly basis. The time-series anal-
ysis of oligonucleotide composition in SARS-CoV-2 has 
also predicted a group of RNA-motifs for human RNA-
binding proteins that appear to support the viral growth 
in human cells [15].

In the case of fast-evolving RNA viruses, diversity 
within the viral population arises rapidly as the epidemic 
progresses and subpopulation structure forms, and the 
GISAID consortium has defined seven main clades, and 
Mercatelli and Giorgi (2020) have conducted a large-
scale search for prevalent mutations worldwide [16]. In 
the present study, over 40,000 genomes of SARS-CoV-2 
are analyzed by using BLSOMs with oligonucleotides of 
various lengths. The BLSOM is a sequence alignment-
free method, and during machine learning, only the 

oligonucleotide composition of each viral genome is 
given. Therefore, clustering is performed basing only on 
the similarity of oligonucleotide compositions. By try-
ing various oligonucleotide lengths, we obtained condi-
tions for separating the known clades with high accuracy. 
Since the BLSOM is explicable AI, it can identify the fea-
tures of oligonucleotide compositions responsible for the 
separation. Since the BLSOM method is based on a com-
pletely different principle than conventional clade assign-
ment based on sequence alignment, it should provide a 
new efficient tool useful for analyzing a massive amount 
of virus genomes and elucidating various aspects of their 
genome sequence changes.

Results
BLSOM for 1 ~ 6‑mers
In the present study, over forty thousand SARS-CoV-2 
genomes were analyzed at once; polyA-tail was removed 
prior to all analyses. Figure 1 shows the BLSOM results 
for the mono- to hexanucleotide compositions in the 
viral genomes; importantly, only these compositions were 
used in the learning process. The total number of nodes 
(grid points) was set to 1/20 of the total number of viral 
genomes (40,450); therefore, each node had an average 
of 20 genomes. After learning, to determine if the sepa-
ration by the BLSOM was related to known clads, grid 
points containing genomes of a single clade were colored 
to indicate each clade, and grid points containing those 

Fig. 1  BLSOMs for 1 ~ 6-mers. BLSOMs were constructed for mono- to hexa-nucleotide compositions in 40,450 genome sequences. The total 
number of nodes was set to 1/20 of the total number of viral genomes. Grid points that include sequences from more than one clade are indicated 
in black, and those containing sequences from a single clade are indicated in a clade-specific color: G ( ), GH ( ), GR ( ), L ( ), S ( ) and V ( ). Grid 
points that include no sequences were left in blank (white). Sequences of the O clade (other and unclassified clades) were included in the BLSOM 
calculation but excluded from the final display; i.e., if a sequence belonging to the O clade is mixed with sequences belonging to a main clade, the 
node is colored according to the main clade
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of multiple clades were displayed in black. Figure 1 shows 
that most grid points in the mononucleotide BLSOM are 
black, indicating that the genome sequences are not sep-
arated by clade. However, for greater than dinucleotide 
lengths, the separation by clade gradually becomes clear. 
While each node has 20 genomes on average, and even 
though grids containing at least one genome belonging to 
another clade are marked in black, a major portion of the 
grids in the BLSOM for 4- to 6-mers are colored, showing 
the good classification power of the BLSOM. To show the 
improvement of the separation ability by SOM learning, 
the results of PCA used in the initial state are shown in 
Supplementary Fig. S1. We next tested oligonucleotides 
longer than 6-mers.

BLSOM for 7‑mers
For 7-mers, the BLSOM handles 16,384 (the 7th power of 
4) variables, and for efficient analysis, some modification 
of PCA (principal component analysis) used to set the 
initial state for machine learning is required, as described 
in the Methods. The BLSOM with this minor modifica-
tion provides good separation by clade (Fig. 2ai).

BLSOM is explainable AI and can provide information 
about the oligonucleotides responsible for the cluster-
ing (Fig. 2aii); the representative vector for each node is 

composed of 16,384 variables, and the contribution levels 
of the variables at each node can be visualized by a heat-
map: high (red), moderate (white) and low (blue) [17]. In 
Fig.  2aii, two examples of 7-mers are presented; UAGC​
GCU​ has a high occurrence (red) primarily in GH zones 
(mandarin orange), whereas GAGC​GCU​, which differs 
from the former by one underlined base, has a low occur-
rence (blue) there. When considering all 7-mer patterns 
(refer to Fig. S2), we observed multiple cases in which 
occurrence levels visualized as red/blue were reversed 
for a pair of 7-mers with a one-base difference, as shown 
in Fig. 2aii. Notably, these reverse patterns were primar-
ily observed for individual clade territories, indicating 
that one-base differences may be related to mutations 
involved in clade separation.

Necessity for dimension reduction
Notably, most 7-mers existed in multiple copies in the 
viral genomes; therefore, a one-base difference giving 
the red/blue reverse pattern could not be connected 
uniquely to a mutation in the viral genome; this is also 
true for long oligonucleotides, such as 8 ~ 10-mers, for 
which it becomes difficult to conduct the analysis on the 
PC level. In other words, extending the oligonucleotide 
length until most k-mers were present as one copy per 

Fig. 2  BLSOM for 7-mers. a BLSOM and heatmap. The total number of nodes was set to 1/50 of the total number of viral genomes. (i) Nodes are 
colored as described in Fig. 1. (ii) The top panel shows the GH territory ( ) on the BLSOM. The middle and bottom panels show heatmaps of UAGC​
GCU​ and GAGC​GCU​, respectively, which differ only in the underlined base. b BLSOMs for 255 different 7-mers. Nodes are colored as described 
in Fig. 1. c BLSOMs for 377 different 7-mers. (i) Nodes are colored as described in Fig. 1. (ii) The top four panels show the four different territories 
colored as described in Fig. 1. The middle and bottom panels show heatmaps of four pairs of 7-mers with a one-base difference
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genome should allow us to connect one-base differences 
to mutations. Accordingly, we calculated the occurrences 
of long oligonucleotides in the viral genomes, and when 
the length was extended to 15-mers, most showed one 
copy per genome. The 15-mers, however, included over 
one billion types (the 15th power of 4), and even for those 
that appeared in the viral genomes, there were more 
than 0.3 million types. A strategy for dimension reduc-
tion is essential for efficient analyses; then we examined 
the effects of dimension reduction on clade separation by 
testing 7-mers again.

In Fig. S2, most 7-mers are red/blue all over and very 
locally dotted with blue/red, respectively. These 7-mers 
are thought to correspond to sequences that have not 
mutated in most strains or that arose by mutations but 
remain in only a small number of strains. The oligonu-
cleotides whose frequency in the viral population has not 
significantly changed with time should not be involved in 
the formation of main subpopulations, such as the main 
clades. To exclude these numerous 7-mers and select 
those that have changed significantly in occurrence dur-
ing the pandemic, we first tabulated viral strains for each 
month of collection and calculated the 7-mer occurrence 
frequency therein. To compare the frequencies in the 
June (2020) and December (2019) populations, we next 
selected 7-mers whose frequency in the June population 
increased/decreased by at least 0.1 compared with that in 
the December population.

We constructed a BLSOM with these 255 selected 
7-mers (Fig. 2b). Even using a very minor portion of the 
7-mers (255/16384 = 0.016), good separation by clade 
was observed, but the mutual separation of L, S and V 
clades, which are prevalent in Asia, was poor. This should 
be because strains belonging to these clades were very 
minor in the June population.

To study evolutionary processes throughout the epi-
demic phase, we must consider an intermediate phase 
and choose the March population here; then we selected 
7-mers whose frequency in the March population 
increased/decreased by at least 0.1 compared with that in 
the December population. The 334 obtained 7-mers were 
combined with the June 7-mers used in Fig.  2b. After 
excluding duplicates, we constructed a BLSOM for the 
377 remaining 7-mers. Importantly, the BLSOM separa-
tion (Fig. 2ci) was clearer than that observed when using 
16,384 types of 7-mers (Fig. 2a), and the red/blue reverse 
pattern was clearly connected to clade separation; for 
four clades, Fig. 2cii presents a pair of red/blue patterns 
corresponding to a pair of 7-mers with a one-base differ-
ence, and Fig. S3 presents all red/blue patterns. Since the 
dimension-reduction strategy appeared to be useful, we 
applied it to the 15-mer BLSOM.

BLSOM for 15‑mers
Most 15-mers have only one copy in the viral genome 
as mentioned above. More precisely, ten 15-mers have 
had two copies since December 2019, and the two 
copies are present in almost all strains until June, so 
these 15-mers are unrelated to mutations with signifi-
cant changes in population frequency during the pan-
demic. As performed for 7-mers in Fig.  2c, we selected 
15-mers whose frequency in the March/June population 
increased/decreased by at least 0.1 compared with that 
in the December population and obtained 587 differ-
ent 15-mers. Because a maximum of one copy of these 
15-mers was present in the genome, the occurrence fre-
quency of a given 15-mer in a certain population corre-
sponds to the frequency of the strains having the 15-mer 
sequence. The BLSOM with the 587 different 15-mers 
(Fig.  3a) showed good separation by clade. While each 
node has 50 genomes on average, and even though grids 
containing at least one genome belonging to another 
clade are marked in black, a major portion of the grids 
are colored. Next, we will examine why this good separa-
tion was obtained by focusing only on these 15-mers.

15‑mers with rapidly changing population frequencies
The novel characteristic of evolutionary study of this 
fast-evolving virus is near-future prediction and verifi-
cation on a monthly basis. We previously performed a 
time-series analysis of 20-mer occurrences in over ten 
thousand SARS-CoV-2 strains isolated from December 
2019 to April 2020 and identified seven mutations rapidly 
increasing in population frequency [14]; for all 20-mers, 
we created a histogram of increase levels in the April 
population compared with the December population and 
identified the rapidly increasing mutations. Here, we con-
ducted a similar histogram analysis of over 250,000 types 
of 15-mers found in over forty thousand viral genomes; 
we analyzed the occurrence level of each 15-mer on a 
monthly basis. Figure 3b is a histogram of the differences 
in 15-mer frequency between the June and December 
populations.

On the horizontal axis, the frequency difference rela-
tive to December is displayed, and on the vertical axis, 
the number of 15-mer types with the frequency differ-
ence in a 0.04 range is displayed. In the first histogram, 
the numbers of 15-mer types are displayed as normal 
values. In the center, where the frequency difference is 
close to zero, there is a very high peak, showing that most 
15-mers underwent little change in population frequency 
from December; i.e., most 15-mer sequences did not 
mutated, or if they did, they did not spread significantly 
in the population. These 15-mers are not responsible for 
formation of main subpopulations such as main clades.
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In the other histogram, the vertical axis is displayed 
logarithmically to show both high and low values. Inter-
estingly, there are clear characteristic peaks near both 
ends where the increase/decrease in frequency exceeds 
0.9 (colored in dark and light brown, respectively), which 
has a logarithmic value of 1.778 (= 60); i.e., 60 types of 
15-mers that belong to the dark/light brown peak have 
drastically increased/decreased in population frequency, 
respectively. The BLASTn analysis of a total of 120 types 
of the 15-mers against a standard viral genome sequence 
[18, 19] showed that these 120 types were related to four 

mutations, which correspond to four of the seven muta-
tions that were previously found to be rapidly increasing 
in population frequency [14]. Since the fifteen 15-mers 
with one mutation can be represented as one 29-mer 
sequence, the pre- and postmutation sequences of the 
29-mers are presented in Table. S2.

In the upper and lower panels of Fig. 3ci, the monthly 
population frequencies of the increasing/decreasing 
15-mers are arranged according to the elapsed month. 
Since these 15-mers are the pairs produced by mutations, 
the two panels show symmetrical time-series changes. 

Fig. 3  BLSOM and histogram analysis of 15-mers. a BLSOM of 15-mers. The number of nodes was set as described in Fig. 2a. b Histogram of the 
increase/decrease level of each 15-mer frequency in the June population compared to the December population. The vertical axis shows normal 
numbers or logarithms (Log). Here, nonexistence in the logarithmic display is shown expediently as 0; the dark- and light-brown (blue) bars in the 
histogram indicate data showing the largest (the second largest) class of the increase/decrease, respectively. c Changes in the monthly occurrences 
of 15-mers and their heatmap patterns. (i) The upper and lower panels plot the monthly occurrences of 15-mers according to the elapsed month, 
which are related to the M1 ~ 4 mutations in Table 1 (see also Table S2) and indicated by dark and light brown in b, respectively. Since there is little 
difference among the sixty 15-mers, the relationship between each 15-mer and the colored symbol was not described. (ii) Heatmaps of four pairs 
of 15-mers with a one-base difference; the four in the upper and lower panels show heatmaps of the pre- and postmutation sequences. d (i) The 
upper and lower panels plot monthly occurrences of a group of fifteen 15-mers belonging to the second largest class specified by dark and light 
blue, respectively. Here, the pre- and postmutation 15-mers are plotted in the same figure: M5 and M7 mutations in Table 1. (ii) Heatmaps of two 
pairs of 15-mers with one-base differences are placed next to the corresponding time-series diagram
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Notably, these mutations were previously found to 
increase monotonically to a frequency of 0.84 until April 
and continued to increase to 0.94 until June, supporting 
the monotonic increase tend reported in the previous 
study [14].

Reverse red/blue patterns for 15‑mers
In the BLSOM shown in Fig. 3a, the representative vec-
tor for each node is composed of 587 variables, and the 
contribution level of each variable at each node can be 
visualized by a red/blue heatmap (Fig. 3cii). Since fifteen 
pairs of 15-mers related to one mutation showed primar-
ily the same red/blue pattern, one example of each muta-
tion is presented in Fig. 3cii; the upper and lower panels 
show the patterns for the pre- and postmutation 15-mers, 
respectively. Notably, for the four mutations, very simi-
lar red/blue reverse patterns were observed, which cor-
respond to the separation of G (red), GH (mandarin 
orange) and GR (yellow green) territories from L (green), 
S (cyan) and V (blue) territories of the Asian-type.

In addition to dark and light brown peaks in the 
logarithmic histogram, characteristic peaks are also 
observed at positions apart from the central peaks, 
whose increases/decreases exceed 0.2, and are specified 
by dark/light blue; the number of peaks on the increase 
side (dark blue) is smaller than that on the decrease side 
(light blue), and the BLASTn analysis of 15-mers belong-
ing to the dark blue peaks revealed that they are related 
to the two mutations (M5 and M7 in Table 1), which were 
also reported previously [14]. In Fig. 3di, the time-series 
changes of increasing and decreasing 15-mers are plotted 
in the same panel.

Mutations involved in main clade separation
We next explain details of the six mutations described 
in Fig.  3. Table  1 lists the nucleotide and amino-acid 
changes and the clade territories in the BLSOM where 
the mutated sequences are located (i.e., the red region in 
the heatmap) along with the day of first isolation of the 
strain with the respective mutation. When the red region 
corresponds primarily to the entire territory of a certain 
clade, the suffix "a" is added, and when the red region is a 
part of a certain clade territory but is a continuous zone, 
"i" and "ii" are used to distinguish the separate zone. In 
addition, when the red areas are scattered in a clade, they 
are noted by "p". The sequences with the first four muta-
tions (M1-4) are specified as Ga, GHa and GRa, because 
the mutated sequences exist in the entire areas of G, GH 
and GR; these mutations are thought to relate to the sepa-
ration of G and its offspring GH and GR, which are prev-
alent in Europe, from the Asian-types L, S and V. The first 
isolation date for these mutations was 1/24 in Sichuan 
or Zhejiang in China, and the second isolation date was 

1/28 in Germany or Lishui in China. The sequences with 
the M5 or M7 mutation were localized in GHa or GRa, 
respectively, showing that the mutations should relate to 
the separation of GH and GR from G; the first isolation 
date of M5 and M7 was 2/4 in the USA and 2/16 in Eng-
land, respectively.

Consistency in identifying mutations with the phylogenetic 
clustering method
With a phylogenetic method using NUCMER [20] for 
sequence alignment, Mercatelli and Giorgi (2020) have 
conducted a large-scale search for common mutations 
worldwide and compared them with ten known muta-
tions that have been associated with main clade sepa-
ration by the GISAID consortium [16]. The genomic 
positions of the ten mutations are shown in bold in the 
Relation column in Table 1, and when our identified loca-
tions matched the mutations reported by Mercatelli and 
Giorgi (2020) [16], they were underlined. Our analysis 
relies only on BLSOM, histogram and time-series anal-
yses of oligonucleotide composition, all of which are 
sequence alignment-free methods. The degree to which 
these different methods give similar results is impor-
tant for knowing the reliability of the method. The six 
mutations assigned in the analysis of Fig. 3c and d were 
found to be among the ten known mutations and thus 
were underlined. Notably, in Fig.  3c and d, the 15-mers 
whose increase/decrease was remarkable to others and 
exceeded 0.2 in the histogram of Fig. 3bii were analyzed. 
Since the BLSOM shown in Fig. 3a targeted the 15-mers 
with an increase/decrease of at least 0.1, it contains all of 
these prominent 15-mers, resulting in a good separation 
according to main clades.

In addition, since the BLSOM targeted the 15-mers 
with an increase/decrease of at least 0.1, the time-
series change and heatmap pattern can be obtained for 
more 15-mers than those analyzed in Fig. 3c and d, and 
Fig.  4a ~ g present the additional results showing the 
reverse pattern for both the time-series change and the 
heatmap diagram. In Fig. 4a for M6 and 4b for M8, dif-
ferential parts of the GH territory are red, showing the 
internal branching of GH; M6 first appeared on 2/4 in the 
USA, and M8 appeared on 2/28 in Canada. In Fig. 4c for 
M9, the red area covers the V territory, and this muta-
tion was first isolated on 1/17 in Yunnan and among the 
ten mutations. Fig. 4d for M10 and 4e for M11 show that 
the red area covers the S territory, indicating that the 
two mutations, which first appeared in the same strain 
isolated on 1/5 in Wuhan, are related to the S separa-
tion. Since M11 (but not M10) is a synonymous muta-
tion and has been lost in some S-clade strains since 1/23, 
M11 may be a hitchhiker-type neutral mutation that has 
increased with M10.
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In the case of M12 (Fig. 4f ), a part of the V and S ter-
ritories, as well as a very minor part of the GR territory, is 
red; this is a synonymous mutation of Tyr and may have 
occurred independently. In the case of M13 (Fig.  4g), 
it is red locally at L, G, and GH; for L, it first appeared 
on 1/23 in Guangdong, for G on 3/5 in the USA and for 
GHiip on 3/15 in India and Saudi Arabia. Notably, the 
strains that appeared in the GHiip territory are prevalent 
in Asia and overlap, in the BLSOM, with or are adjacent 
to the Asia-prevalent G strains that also have the M13, 
showing that the position within on the map reflects 
similarities in the presence of mutations other than those 
contributing to the main clade separation. Since this is a 
nonsynonymous mutation from Ser to Leu and contin-
ues to increase monotonically over time, it appears to be 
a functionally beneficial mutation. This mutation (M13) 
and M8, which are not among mutations reported by 
Mercatelli and Giorgi (2020) [16], have increased in fre-
quency mainly since May.

Collectively, the three mutations (M7, 9 and 11) are 
also among the ten mutations related to the main clade 
separation; therefore, nine mutations analyzed so far 
were among the ten mutations, and the remaining one 
(M0 in Table 1) will be discussed in the Discussion sec-
tion. Notably, AI can separate the V clade from others 
without the 15-mers related to M0, and this type of infor-
mation should be important for identifying the mutation 
essential for separation of the respective clades.

Decreasing 15‑mers with no increasing pairs
In the histogram in Fig.  3bii, a higher number of peaks 
are observed on the decreasing side (specified by light 
blue) than on the increasing side (specified by dark 
blue), showing that many decreasing 15-mers were 

present. BLASTn analysis showed that these 15-mers 
were derived primarily from the beginning part of the 5’ 
UTR or the end part of the 3’ UTR. Many strains isolated 
in the early epidemic stage have been sequenced to near 
the start and end of the genome, but with the rapid pan-
demic spread, a large number of genomes for which the 
sequences in UTRs are undetermined have accumulated 
in the GISAID, and this had resulted in a time-series 
decrease for both end sequences. This decrease was due 
to artificial manipulation, and there was no relationship 
between heatmap patterns and clade territories (data not 
shown).

However, there was a peculiar group of 15-mers in the S 
gene, which showed a time-series decrease, but there was 
no pair showing an increase. In the heatmap, there was 
a characteristic blue pattern but not a red one (Fig. 4h); 
the small blue regions were scattered among multiple 
clade territories, showing that the genomes lacking the 
15-mers of interest were scattered there. Since there was 
no paired red pattern in the heatmap and no pair increas-
ing in the time-series analysis, the 15-mers decreasing in 
Fig. 4h may not be due to mutation. When the sequences 
located in the small blue areas were investigated, two 
consecutive bases in the S gene were registered as 
unknown bases (NN); CCUU (24,980–24,983) was regis-
tered as CNNU: N1 in Table 1. When the total number of 
Ns in the genomes with the CNNU was examined, there 
was no tendency for the number to be higher than in 
other genomes. Therefore, this genomic site is considered 
to be difficult to sequence or inaccurate for sequencing; 
the CNNU sequence was observed in genomes of five dif-
ferent clades. Even in RNA viral genomes, modifications 
such as methylation are known to occur and their func-
tions are drawing attention [21], and some modifications 

Fig. 4  Change in monthly occurrences of 15-mers and their heatmaps. Nine time-series diagrams and heatmaps are presented as described in 
Fig. 3d
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may inhibit the proper progression of reverse tran-
scriptase, resulting in sequencing difficulty. If the CNNU 
in the S gene is caused by RNA modification, the BLSOM 
will become a method for searching for such special 
genomic sites. Experimental proof of RNA modification 
may be an important topic of SARS-Cov2.

Discussion
The analyses shown in Figs.  3 and 4 identified nine 
mutations, which were among the ten known muta-
tions assigned by the phylogenetic clustering method 
based on sequence alignment. To explore the remaining 
one (denoted as M0 in Table 1), we analyzed time-series 
changes of fifteen 15-mers harboring the M0 mutation 
and found that their population frequency was 0.15 in 
February but only 0.09 in March and did not increase 
thereafter (data not shown). Because our analysis was 
based on 15-mers whose frequency increased/decreased 
to at least 0.1 in the March/June population, the M0 
mutation was excluded from the analysis. To check this 
explanation, the increase/decrease level was reduced to 
0.05, and the 2087 types of 15-mers obtained were used 
for additional BLSOM analysis (Fig. S4). The reverse pat-
terns of the red/blue heatmap and the time-series change 
were just as expected (data not shown), proving that the 
present AI method produce the result totally consistent 
with that of the phylogenetic clustering method. Nota-
bly, during AI assignment, the V clade separation was 
achieved even without the M0-related 15-mers, and 
this type of information should clarify the importance 
of individual mutations that contribute to each clade 
separation. The BLSOM of 2087 types of 15-mers with 
an increase/decrease of at least 0.05 should assign the 
mutations related to much more detailed subgroupings 
in each clade. Since the BLSOM has a powerful visuali-
zation ability, it can also provide information concerning 
genomic sites that are difficult to sequence (e.g., N1 in 
Table  1 and Fig.  4h) for various reasons, including pos-
sible RNA modifications.

Even during preparation of the present manuscript, 
many genome sequences of SARS-CoV-2 accumulated in 
the GISAID database. This appears to be a research dif-
ficulty but should provide a unique advantage. For the 
fast-evolving RNA virus, the near-future prediction and 
verification cycle can be realized, although the elemen-
tary process of molecular evolution is based on random 
mutation. This is because the time-series directional 
changes have been observed on a monthly basis most 
likely due to the viral adaptation for efficient growth in 
human cells. Near-future prediction and verification 
should be the most direct ways to test the reliability of 
the obtained results, models and ideas, providing a new 

paradigm for molecular evolutionary studies. Taking 
this view into consideration, we will proceed with the 
discussion.

In the present 15-mer analysis, we focused on the 
March/June population for the middle/final period and 
obtained 587 types of 15-mers that increased/decreased 
in population frequency by at least 0.1. When strains 
isolated later this year become available, our successive 
strategy will be to search for new 15-mers that increased/
decreased their frequency by at least 0.1 (or 0.05) com-
pared with that in December and construct a BLSOM 
of 15-mers including these newly obtained ones. A trial 
analysis of 3700 recently downloaded genomes isolated 
in August revealed only one new mutation that increased 
in frequency to 0.1 in the August population. This muta-
tion had a frequency of 0.09 in June that increased to 0.12 
in August; therefore, the corresponding 15-mers were 
included in the BLSOM presented in Fig. S4. In the cor-
responding heatmap, red/blue inversion was observed 
within the GR territory, showing that it was an internal 
branch of GR. The mutation was an amino acid substitu-
tion: I120F in the gene encoding nsp2.

In the present paper, we mainly explain the certainty 
of phylogenetic classification for showing the reliability 
of the method, and we finally discuss the useful applica-
tion of the present method. During the reviewing pro-
cess, one reviewer suggested the application to the search 
for convergent evolution. Therefore, we conducted the 
BLSOM analysis for currently available SARS-Cov2 
genomes including those of recently prevalent omicron 
strains, which are phylogenetically very different from 
previously known clades and are thought to match the 
search for convergent evolution, and could efficiently find 
mutations undergoing convergent evolution by using its 
visualization function. The analysis following this policy 
will be published as a separate study. We will also dis-
cuss characteristics of the dimension reduction shown in 
Fig. 3. Dimension reduction inevitably results in informa-
tion loss. However, as shown in the histogram in Fig. 3b, 
mutations that significantly change the frequency in 
a viral population showed compartmentalized differ-
ences. Therefore, we can focus on a group of mutations 
that have reached a certain level step by step, by combin-
ing dimension reduction with histogram analysis. Such 
dimension reduction with the step-by-step focusing is 
useful for understanding the contribution level of preva-
lent mutations for the expansion in a viral population.

Conclusion
The phylogenetic method based on sequence align-
ment is a well-established and irreplaceable method for 
molecular evolutionary studies. The presently developed 
sequence alignment-free method is suitable for analyzing 
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a massive amount of sequence data and can analyze over 
five million sequences simultaneously [8]; notably, this 
method is highly robust against sequencing errors, and 
therefore, no special pretreatment is required. Further-
more, the BLSOM is unsupervised AI that can be used 
without special models or presumptions, and has power-
ful visualization capabilities that enable efficient knowl-
edge discovery from big data. Evolutionary studies have 
entered the era of big data, and the present method can 
complement phylogenetic methods based on sequence 
alignment, especially for a massive number of sequences.

Methods
Genome sequences
Genome sequences of human SARS-CoV-2 were down-
loaded from the GISAI database (https://​www.​gisaid.​org/​
epiflu-​appli​catio​ns/​next-​hcov-​19-​app/) [3]; sequences 
belonging to the complete genome, high-coverage and 
human categories were downloaded on July 20, 2020. We 
used all SARS-CoV-2 genome sequences (40,450) after 
removing their polyA-tails. Although a significant num-
ber of viral sequences contained many Ns (undetermined 
nucleotides), we did not conduct any special preproc-
essing because in big data analyses, such as word-count 
analyses, the effects of erroneous data appear to natu-
rally decrease with an increase in dataset size. In the Dis-
cussion section, 3708 sequences isolated in August are 
additionally analyzed. The word-count program can be 
obtained from k_wada@nagahama-i-bio.ac.jp.

BLSOM
The SOM developed by Kohonen et  al. (1966) is an 
unsupervised neural network algorithm that imple-
ments characteristic nonlinear projection from the 
high-dimensional space of input data onto a two-
dimensional array of weight vectors [22]. We previ-
ously modified the conventional SOM for genome 
informatics to make the learning process and resulting 
map independent of data-input order and established a 
BLSOM [4]. The BLSOM for oligonucleotide composi-
tion was constructed as described previously [5]; initial 
vectorial data for the BLSOM were defined as the first 
and second components from PCA. Because PCA can 
detect basic properties of genomic sequences, such as 
G + C%, global patterns of oligonucleotide BLSOMs, in 
which various learning parameters and the number of 
sequences per node are changed, resembled each other 
[5, 7, 17]. However, PCA requires a very long calcula-
tion time for k-mers of a large number of sequences 
(approximately 40,000 sequences in this case) when 
k > 6. During machine learning, distance calculation 
is performed for sequence data and nodes (e.g., 1/50 
of the number of sequences), and the calculation time 

is dramatically reduced. In other words, for 7-mer or 
longer oligonucleotides, the PCA process used only 
to determine the initial state requires a much longer 
computation time than machine learning, making effi-
cient high-dimensional analysis difficult. To solve this 
problem of 7-mers in PCA, 1/100 of the sequences 
were randomly selected, and the PCA result obtained 
for these sequences was used to set the initial state. 
BLSOM programs were obtained from k_wada@naga-
hama-i-bio.ac.jp and http://​bioin​fo.​ie.​niiga​ta-u.​ac.​jp/?​
BLSOM​viewer#​jc96a​619.
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BLSOM: Batch-learning self-organizing map; PCA: Principal component analy-
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