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Abstract 

Lifestyle and physiological variables on human disease risk have been revealed to be mediated by gut microbiota. 
Low concordance between case-control studies for detecting disease-associated microbe existed due to limited 
sample size and population-wide bias in lifestyle and physiological variables. To infer gut microbiota-disease associa-
tions accurately, we propose to build machine learning models by including both human variables and gut micro-
biota. When the model’s performance with both gut microbiota and human variables is better than the model with 
just human variables, the independent gut microbiota -disease associations will be confirmed. By building models on 
the American Gut Project dataset, we found that gut microbiota showed distinct association strengths with different 
diseases. Adding gut microbiota into human variables enhanced the classification performance of IBD significantly; 
independent associations between occurrence information of gut microbiota and irritable bowel syndrome, C. difficile 
infection, and unhealthy status were found; adding gut microbiota showed no improvement on models’ performance 
for diabetes, small intestinal bacterial overgrowth, lactose intolerance, cardiovascular disease. Our results suggested 
that although gut microbiota was reported to be associated with many diseases, a considerable proportion of these 
associations may be very weak. We proposed a list of microbes as biomarkers to classify IBD and unhealthy status. Fur-
ther functional investigations of these microbes will improve understanding of the molecular mechanism of human 
diseases.
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Introduction
The human intestines are home to a dense microbial 
community, collectively known as the gut microbiota 
[1]. The gut microbiota forms a complex ecosystem and 
performs a wide range of functions with far-reaching 
impacts on human health, including extracting energy 
from the digestive system, preventing colonization by 
pathogens, promoting immune homeostasis, producing 

important metabolites, and even communicating with 
the central nervous system via the gut-brain axis [2]. So, 
it is thought to play an important role in the development 
of many diseases, including inflammatory bowel disease 
[3], Clostridium difficile infection [4], diabetes [5], cardio-
vascular disease [6], and mental health disorders [7]. The 
gut microbiota determines certain host characteristics 
and responds to host variables, such as human lifestyle 
and physiological variables, which can be reflected in the 
microbial composition [8]. Therefore, a considerable part 
of the human variables on human health and disease risk 
may be mediated or modified by gut microbiota.

With the development of high-throughput sequenc-
ing technology, we are now able to sequence the 
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hypervariable regions of the 16S rRNA gene and cluster 
into operational taxonomic units (OTUs) to profile the 
taxonomic composition of the microbial community in 
an environmental sample [9]. Over the last few years, 
many case-control studies have been conducted to col-
lect microbial 16S rRNA gene datasets from human fecal 
samples to explore the associations among the gut micro-
bial community and human diseases to reveal disease-
specific microbial biomarkers [10, 11]. However, many 
investigations showed low concordance on the discov-
ered disease-associated microbes and one obvious exam-
ple is about obesity. Gut microbiota reported by multiple 
studies of which abundance is differential between obese 
and lean individuals is inconsistent [12]. Furthermore, 
Sze and Schloss [13] comprehensively analyzed the 
results of several obesity-related studies. They found that 
the statistical detection power of a small-sample study 
was insufficient, and the ratio of abundance of Bacteroi-
detes and Firmicutes was not associated with obesity. In 
addition, recent construction of a large dataset from the 
Swedish population did not reveal an apparent microbial 
signature associated with irritable bowel syndrome (IBS) 
as previously reported in the literature, and the hetero-
geneity of the microbial community among IBS patients 
was higher than that among healthy individuals [14].

There are two possible reasons which may result in 
low concordance in previous studies. One is the limita-
tion of the sample size. Generally, there are thousands 
of microorganisms with a wide range of abundance 
levels in intestinal samples. Due to the high cost of 
building a large-scale dataset consisting of both gut 
microbiota information and elaborate human variables 
[15], researchers can only afford to sequence dozens 
or hundreds of samples to explore disease-associated 
microbes via statistical models. Thus, the model over-
fitting is common and thus reduces the reliability of 
the inferred results. The other critical shortcoming is 
neglecting the influence of host variables, which makes 
it difficult for researchers to confirm whether the calcu-
lated gut microbial-disease associations indicate the true 
interactions between microbes and the progression of 
diseases. The alternative possibility is that microbes are 
only related to certain host variables, and as a result, they 
are associated indirectly with diseases [16].

Therefore, a large-scale dataset containing information 
on both gut microbial community and host variables is 
required for the accurate identification of microbiota-
disease associations. Fortunately, the American Gut Pro-
ject (AGP), which comprised thousands of 16 s rRNA 
gene sequencing samples and a rich human variables set 
related to human lifestyle and physiological variables and 
diseases, has been carried out worldwide [17]. Today, the 
AGP has sequenced more than 15,000 samples, which 

significantly expands human gut microbiota’s existing 
data. Most importantly, it provides a rich resource for 
each sample with information on gut microbiota, human 
lifestyle factors, and diseases. The goal of this study is to 
explore the relationship between these entities using this 
dataset.

Our approach is different from traditional association 
inference analysis, which tries to estimate the relation-
ship between a single microbe and a disease. We focus on 
determining whether the whole gut microbiota is inde-
pendently associated with human diseases by eliminating 
the influence of lifestyle factors using machine learning 
(ML) methods. The strength of association between gut 
microbiota and disease is evaluated by the classification 
performance of the ML models built with the microbiota. 
Although researchers have built large microbial datasets 
by merging different studies to explore the effect of gut 
microbiota on predicting diseases and mortality risks 
[18–20] via ML approaches, they neglected the impact 
of human lifestyle factors, resultant in the magnified 
predictive power of the microbiota. It is because human 
lifestyle factors influence both the gut microbiota and 
the disease progression. Besides, human lifestyle fac-
tors between enrolled healthy individuals (controls) and 
patients (cases) can be significantly different, and such 
differences could become the main contributor to the 
predictive power of the disease. It is necessary to build 
a well-performed disease classification model using both 
gut microbiota and human lifestyle and physiological 
variables in this condition. However, we argue that the 
independent gut microbiota-disease associations are real, 
only when the models’ classification performance with 
both gut microbiota and human variables is significantly 
better than the model built with just human lifestyle 
factors (Fig. 1). Conversely, when the models’ classifica-
tion performance is inferior to the human-lifestyle-built 
model, either gut microbiota may not be associated with 
diseases, or a more suitable data enrollment criterion is 
needed.

Following the argument, we explored the classifica-
tion power of the gut microbiota and human variables on 
multiple diseases using the AGP data with ML classifica-
tion models. Key OTUs and human variables, consisting 
of lifestyle and dietary factors, were identified with high 
validity using multiple ML methods. The performance 
of OTUs and human variables was compared compre-
hensively to show the difference between their contribu-
tions to diseases. In addition, considering the widespread 
associations of gut microbes with multiple diseases, we 
use OTUs to judge the overall health status of humans, 
and individuals with at least one disease were classified 
as unhealthy. Although lots of associations with diseases 
were identified previously, our results showed that adding 
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gut microbiota into human variables only enhanced the 
association strengths with IBD, irritable bowel syndrome, 
C. difficile infection, and unhealthy status. In addition, we 
reported the top 10 features (OTUs or human variables) 
used in the classification of these diseases, most of which 
were supported by previously published studies.

Results
Characteristics of the dataset
The dataset used in this study consisted of 7565 sam-
ples with 518 OTUs and 30 human variables (See Mate-
rials and methods for details). For human variables, 
there were 6 variables related to individuals’ physiologi-
cal characteristics (age, sex, height, weight, body mass 
index (BMI), and race), 2 related to lifestyle choices 
(exercise and smoking frequencies), 3 related to loca-
tion (latitude, elevation, and country), and 19 related 
to diet (frequencies of fruit, high-fat red meat, alcohol, 
and so on). For every sample, labels of eight diseases 
[cardiovascular disease (CD), small intestinal bacte-
rial overgrowth (SIBO), mental disorders (MD), lactose 
intolerance (LI), diabetes (DI), (inflammatory bowel 

disease) IBD, irritable bowel syndrome (IBS), C. diffi-
cile infection (CDI) and Diabetes (DI)] that have been 
reported to be related to gut microbiota were extracted. 
Besides, a disease label named ‘unhealthy (UH)’ was 
added if a sample had at least one of eight diseases. The 
characteristics of the dataset, the demographic details 
of samples, and the number of male and female patients 
for each disease are shown in Tables S1 and S2.

For every disease, ML classification models were 
constructed using five types of features respectively: 
human variables only (Meta), OTU abundance only 
(OTUab), OTU occurrence only (OTUoc), both human 
variable data and OTU abundance (Meta-OTUab), 
and both human variable data and OTU occurrence 
(Meta-OTUoc). Models were trained and compared 
on identical training and validation data. For each 
type of feature, the best model was selected according 
to the AUC score. By comparing the performance of 
models with only Meta and models with both human 
variables and OTU information (Meta-OTUab and 
Meta-OTUoc), all diseases were classified into three 
categories: adding gut microbiota a) could improve, 

Fig. 1  Workflow of disease classification models construction. We classified eight diseases (IBD: Inflammatory Bowel Disease; CDI: C. difficile 
Infection; IBS: Irritable Bowel Syndrome; SIBO: Small Intestinal Bacterial Overgrowth; DI: Diabetes; LI: Lactose Intolerance; CD: Cardiovascular Disease; 
MD: Mental Disorder) with 30 human variables (physiological characteristics, lifestyle, location, and diet) and gut microbial community data 
(OTUs) obtained from the American Gut Project database using four machine learning techniques (Random Forest, Gradient Boosting Decision 
Tree, Logistic Regression and eXtreme Gradient Boosting). We propose to build association models by including both human variables and gut 
microbiota, and assumed that when the performance of the model with both gut microbiota and human variables is better than the model with 
just human variables, the independent association of gut microbiota with the disease can be confirmed
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b) didn’t affect or c) reduced disease classification 
performance.

Adding gut microbiota into human variables enhanced 
the association strengths with IBD
As a global public health concern, the incidence and 
prevalence of IBD, which is caused by gut dysbiosis, 
is increasing in developed and developing countries 

[21, 22]. In this study, 413 IBD patients from the AGP 
were included in the final dataset, and the results of 
the best models using five types of features are shown 
in Fig.  2 and Fig.  S1. The model using human variable 
data only (Meta) as the feature achieved an AUC of 
0.74677 ± 0.01240. Interestingly, the AUCs of models 
using OTUoc alone (0.74341 ± 0.00696) did not differ 
significantly from the models using Meta (P = 0.48579), 

Fig. 2  Comparing AUC values of nine diseases using five feature types
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and utilizing OTUab alone achieved significantly higher 
AUCs (0.78455 ± 0.00905; P  = 0.00012), indicating that 
IBD classifier built with gut microbiota alone could be 
as good as with human variables. Additionally, the AUCs 
obtained using the combination of Meta and OTUs 
(Meta-OTUab: 0.80844 ± 0.00855 and Meta-OTUoc: 
0.79028 ± 0.00637) were significantly higher than those 
obtained using Meta alone with P < 0.00001, suggesting 
that adding gut microbiota into human variables sig-
nificantly enhanced the association strengths with IBD 
(Tables S3 and S4) and that the independent association 
of gut microbiota with IBD could be confirmed. It was 
noteworthy that the Meta-OTUoc achieved higher AUCs 
than those achieved with Meta-OTUab, which implied 
that, compared to the abundance of gut microbes, their 
occurrences are better features for the classification of 
IBD.

Next, we assessed the relative roles of Meta or OTUs 
in the best ML model for classifying IBD with Meta, 
Meta-OTUab, and Meta-OTUoc. We ranked the fea-
tures according to their weights and calculated the aver-
age rank after repeating the model training process ten 
times. As shown in Table  1, we found that the top 10 
features for the three types of features were distinct. For 
the model using human variable data only (Meta) as fea-
tures, the top 10 most important human variables for 

classifying IBD comprised six dietary characteristics (the 
frequencies of vitamin B, probiotics, salted snacks, milk 
cheese, frozen dessert, and vitamin D), two basic physi-
cal characteristics (BMI and age) and two geographical 
location features (elevation and latitude). For the model 
using Meta-OTUab as features, except for three dietary 
characteristics (the frequencies of probiotics, vitamin D, 
and vitamin B), the other seven of the top 10 features for 
classifying IBD were all OTUs (four Clostridiales, one 
Bacteroidales, one Erysipelotrichales, and one Enterobac-
teriales). When using Meta-OTUoc as features to classify 
IBD, the results changed in that, except for four human 
variables (probiotics, exercise, weight, and Caucasian), 
the other six of the top 10 features were all OTUs of 
Clostridiales.

Adding gut microbiota occurrence information improved 
the association strength with IBS, CDI, and unhealthy 
status
Irritable bowel syndrome (IBS) and C. difficile infec-
tion (CDI) are widely reported to be closely related to 
gut microbes and some diet habits [3, 23]; therefore, we 
hypothesized that adding microbes into human variables 
will improve the classification of these two conditions. 
To investigate the potential use of the out composi-
tion to classify the health of individuals, we defined a 

Table 1  Top 10 most important features using three types of feature sets for IBD

Meta Meta-OTUab Meta-OTUoc

Feature Name Rank Feature Name Rank Feature Name Rank

ELEVATION 5 PROBIOTIC_FREQUENCY 3.7 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_;s_

5

VITAMIN_B_SUPPLEMENT_FREQUENCY 6 p_Firmicutes;c_Erysipelotrichi;o_
Erysipelotrichales;f_Erysipelotrichaceae;g_
Holdemania;s_

4.7 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Ruminococcaceae;g_Ruminococcus;s_

14

PROBIOTIC_FREQUENCY 6.3 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_;s_

9.8 PROBIOTIC_FREQUENCY 15.6

LATITUDE 7.3 p_Bacteroidetes;c_Bacteroidia;o_
Bacteroidales;f_Rikenellaceae;g_
Alistipes;s_indistinctus

13.4 EXERCISE_FREQUENCY 24.7

SALTED_SNACKS_FREQUENCY 7.7 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_Coprococcus;s_

14.5 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Ruminococcaceae;g_;s_

25.3

AGE_CORRECTED 7.7 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Ruminococcaceae;g_Ruminococcus;s_

21 p_Firmicutes;c_Clostridia;o_
Clostridiales;f_;g_;s_

45.4

BMI 7.9 p_Proteobacteria;c_
Gammaproteobacteria;o_
Enterobacteriales;f_Enterobacteriaceae;g_
Morganella;s_

22.3 WEIGHT_KG 48.5

MILK_CHEESE_FREQUENCY 8.1 VITAMIN_D_SUPPLEMENT_FREQUENCY 23.3 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_;s_

50.7

FROZEN_DESSERT_FREQUENCY 9.7 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_[Ruminococcus];s_

29.1 Caucasian 51.2

VITAMIN_D_SUPPLEMENT_FREQUENCY 9.7 VITAMIN_B_SUPPLEMENT_FREQUENCY 31.3 p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_;s_

51.3
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sample as unhealthy if it was obtained from an individual 
with any one of the eight diseases. Finally, we obtained 
2921 unhealthy samples (UH) containing at least one 
of those eight diseases for training the models using 
OTUs or Meta alone and in combination. As shown 
in Fig.  2, comparing to Meta, Meta-OTUoc provided 
the significantly higher AUCs (IBS: 0.73953 ± 0.00580, 
CDI: 0.84252 ± 0.00959 and UH: 0.73582 ± 0.00280) 
in classifying all these three diseases with P = 0.00107, 
0.00003, and 0.00001. And, the AUCs obtained using 
Meta-OTUab were not significantly different from those 
obtained using Meta for all these three diseases, indi-
cating that adding gut microbiota occurrence informa-
tion improved the association strength with IBS, CDI, 
and unhealthy status. Surprisingly, for CDI, the AUC 
obtained using OTUab (0.80916 ± 0.00922) and OTUoc 
(0.79603 ± 0.01700) both did not differ significantly from 
that obtained using Meta (P = 0.24377 and 0.02344), indi-
cating that CDI can be classified accurately based on the 
abundance information of gut microbes alone. However, 
for IBS and UH, the AUC obtained using OTUab and 
OTUoc were all significantly lower than that obtained 
using Meta.

When calculating the weight for each feature in the 
models with Meta-OTUoc, we identified the top 10 most 
important features for classifying these three diseases 
(Table  2). When using Meta-OTUoc as the features to 
classify IBS, except for one OTU annotated to Clostridia, 
the other nine of the top 10 most important features were 
all human variables, including three dietary characteris-
tics (the frequencies of milk cheese, probiotics, and milk 
substitute), four basic physical characteristics (age, sex, 
weight, and height), one geographical location feature 

(latitude) and one lifestyle (exercise frequency). For the 
CDI, the top 10 most important human variables com-
prised two dietary characteristics (the frequencies of vita-
min B and probiotics), two basic physical characteristics 
(BMI and weight), one lifestyle (exercise frequency), and 
five OTUs (one Erysipelotrichales, three Clostridiales, 
and one Bacteroidales). When classifying UH, except for 
three OTUs annotated to Clostridia, the other seven of 
the top 10 OTUs were all human variables, including five 
dietary characteristics (the frequencies of milk cheese, 
probiotics, milk substitute, frozen dessert, and vitamin 
B), one basic physical characteristic (age) and one life-
style (poultry frequency).

Adding gut microbiota showed no effect on association 
strengths with DI, SIBO, LI, and CD
Recently, gut microbes were also reported to be related 
to Diabetes (DI), small intestinal bacterial overgrowth 
(SIBO), lactose intolerance (LI), cardiovascular disease 
(CD), and mental disorders (MD) [4–7, 24]. As shown in 
Fig. 2, the AUCs of using gut microbiota alone (OTUab 
and OTUoc) were both significantly lower than that 
obtained using Meta for all these five diseases, indicat-
ing that gut microbiota alone is not a good classifier of 
IBD as human variables. However, it is noteworthy that 
the AUCs obtained using the combination of Meta and 
OTUs (Meta-OTUab and Meta-OTUoc) did not dif-
fer significantly from those obtained using Meta alone 
(Meta) for DI and SIBO, suggesting that adding gut 
microbiota into human variables showed no effect on 
association strengths with DI and SIBO. Besides, the 
AUCs obtained using Meta-OTUoc did not differ signifi-
cantly from those obtained using Meta alone (Meta) for 

Table 2  Top 10 features using Meta-OTUoc for classifying IBS, CDI, and UH

IBS CDI UH

1 LATITUDE p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_
Erysipelotrichaceae;g_;s_

MILK_CHEESE_FREQUENCY

2 MILK_CHEESE_FREQUENCY p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_;s_

PROBIOTIC_FREQUENCY

3 PROBIOTIC_FREQUENCY VITAMIN_B_SUPPLEMENT_FREQUENCY MILK_SUBSTITUTE_FREQUENCY

4 AGE_CORRECTED BMI p_Firmicutes;c_Clostridia;o_Clostridiales;f_;g_;s_

5 female WEIGHT_KG p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Lachnospiraceae;g_;s_

6 WEIGHT_KG p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Ruminococcaceae;g_;s_

AGE_CORRECTED

7 MILK_SUBSTITUTE_FREQUENCY EXERCISE_FREQUENCY FROZEN_DESSERT_FREQUENCY

8 HEIGHT_CM p_Firmicutes;c_Clostridia;o_Clostridiales;f_
Ruminococcaceae;g_Oscillospira;s_

POULTRY_FREQUENCY

9 EXERCISE_FREQUENCY PROBIOTIC_FREQUENCY VITAMIN_B_SUPPLEMENT_FREQUENCY

10 p_Firmicutes;c_Clostridia;o_
Clostridiales;f_;g_;s_

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_
[Barnesiellaceae];g_;s_

p_Firmicutes;c_Clostridia;o_Clostridiales;f_;g_;s_
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LI, suggesting that adding gut microbiota occurrence fea-
tures showed no effect on the association strength with 
IBS. And, the AUCs obtained using Meta-OTUab did 
not differ significantly from those obtained using Meta 
alone (Meta) for CD, suggesting that adding gut micro-
biota abundance features showed no effect on the asso-
ciation strength with CD. In addition, neither Meta nor 
OTUs nor their combination provide good performance 
for classifying MD.

The top 10 most important features for classifying 
DI, SIBO, LI, and CD with the combination of Meta 
and OTUs archiving the highest AUCs were identified 
according to the feature weights (Fig. 3 and Table 3). The 
top 10 most important features for classifying DI with 
Meta-OTUoc comprised seven OTUs (two Clostridiales, 
two Desulfovibrionales, one Coriobacteriales, one Entero-
bacteriales, and one Pseudomonadales) and three basic 
physical characteristics (BMI, age, and weight). When 
classifying SIBO with Meta-OTUab, except for five 
dietary characteristics (the frequencies of milk cheese, 
whole grain, frozen dessert, and vitamin B) and one basic 
physical characteristic (weight), four of the top 10 most 
important features were all OTUs (two Clostridiales, one 
Coriobacteriales and one Lactobacillales). The top 10 

most important variables for classifying LI comprised five 
dietary characteristics (the frequencies of milk substitute, 
milk cheese, frozen dessert, high-fat red meat, and red 
meat), one lifestyle (poultry frequency), two basic physi-
cal characteristics (BMI and Caucasian), and one OUT 
annotated to Clostridiales. It is reasonable that the two 
most important human variables for classifying LI are the 
frequencies of milk substitute and milk cheese, followed 
by one race-related feature (Caucasian). It is notewor-
thy that CD was classified mainly by seven OTUs, six of 
which were annotated to Clostridiales, and three basic 
physical characteristics (age, weight, and height). Inter-
estingly, BMI or weight was of the most 10 most impor-
tant features for all four diseases.

Discussion
Important OTUs for human diseases
For IBD, adding gut microbiota to human variables can 
achieve better results than that achieved using human 
variables alone and Meta-OTUab achieved the highest 
AUC. Among the top 10 most important features used 
to classify IBD with Meta-OTUab, eight were OTUs 
with four belonged to the Clostridiales order. At the 
family level, two were annotated to Ruminococcaceae, 

Fig. 3  Feature distribution for the best model with the highest AUC. Different features are marked with various colors and shapes. OTUs are 
annotated at the order level. In all subgraphs, the orders of host variables and OTUs are fixed and unified, and OTUs are sorted according to their 
average sizes reversely
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which have been reported as a prominent family in 
IBD, especially two species, Ruminococcus torques, and 
Ruminococcus gnavus [25], and two were annotated to 
Lachnospiraceae, which is also reported to be related 
to IBD [26]. The physiologic niche of Ruminococcus 
gnavus was speculated to be mucolytic, with dramatic 
changes in this species affecting the delicate equilibrium 
of the mucus layer and potentially increasing the intes-
tinal permeability in IBD patients [25]. One belonged 
to the Klebsiella genus. Klebsiella is an intestinal patho-
biont that can produce a cytotoxin (tillivaline) and is 
thought to be involved in the pathogenesis of IBD [27]. 
For the unhealthy status classification, three of the top 
10 features with the highest weight belonged to the 
Clostridiales order. Under the Clostridiales order, the 
Lachnospiraceae family has been associated with many 
human diseases, such as IBD [26], irritable bowel syn-
drome [28], type 1 diabetes [29, 30], Clostridium difficile 
infection [31] and liver cirrhosis [32]. The Ruminococ-
caceae family was also reported to be related to Clostrid-
ium difficile infection [31] and type 1 diabetes [29]. The 
other two most important OTUs for unhealthy status 
classification belonged to the Bacteroides genus and 
the Bifidobacterium genus. According to the previous 
research, Bacteroides genus was associated with several 
human diseases, including five gut diseases (irritable 
bowel syndrome [28], Clostridium difficile infection [31], 
colorectal carcinoma [33], Crohn’s disease [34, 35] and 
infectious colitis [36]), type 1 diabetes [29, 30] and liver 
cirrhosis [37]. From the OTUs distribution across dis-
ease states (Fig. 3), most of the important OTUs are from 
the order ‘Clostridiales’ and many relatively rare OTUs 
(Feature Indexes range from 300 to 400) play important 
roles in disease predictions. By comparing the distri-
butions of features of ‘OTUoc’ and ‘Meta-OTUoc’, it is 
found that effects of abundant OTUs, which are impor-
tant in ‘OTUoc’, weaken in ‘Meta-OTUoc’, which may 
be the reason that there are more potential associations 
between abundant OTUs and host variables than the rare 
OTUs. For IBD, by comparing distributions of ‘Meta’ and 
‘Meta-OTUab’ which achieves the highest AUCs, we 
found that predictive effects of OTUs are stronger than 
most of the host variables except for several diet factors, 
which proves the value of microbiota to IBD classifica-
tion again. For SIBO, a small intestinal disease, adding 
gut microbiota from feces into human variables showed 
no effect on association strength, which means that feces 
may be not the correct material to investigate for SIBO.

Important human variables for human diseases
Human variables showed a strong efficiency in human 
disease classification. According to our results shown 
in Fig.  3, the basic physiological characteristics (BMI, 

age, height, and weight) are the most important human 
variables correlated to most diseases, followed by loca-
tion factors (latitude and elevation) and the frequency 
of probiotics, milk cheese, and alcohol intake. BMI and 
age were found to be important classifiers of all seven 
diseases except lactose intolerance, which is supported 
by a cross-sectional study of pre-specified demographic 
and clinical data [38]. Multiple pieces of evidence from 
experimental and observational studies showed that 
for a substantial proportion of patients with IBS, their 
symptoms were associated with the ingestion of spe-
cific foods, such as milk, which contain lactose, a disac-
charide that is not effectively digested by many adults 
worldwide [39, 40]. Additionally, evidence exists to sug-
gest that probiotics may exert an effect on IBS through 
various mechanisms [41]. Following previous studies, we 
found that milk cheese and probiotics intake were two of 
the most important types of human variables in addition 
to latitude and age for classifying IBS (Table  2). For DI 
classification, we found that BMI and age were the two 
most important types of human variables, which was 
supported by a cross-sectional study [38]. We found that 
the most important health feature for classifying SIBO 
was the frequency of probiotics intake, which was sup-
ported by a previous systematic review [42]. The review 
and meta-analysis showed that probiotics are both safe 
and effective for preventing SIBO. We also found that the 
frequency of cheese and milk intake are two of the most 
important features for LI classification. This finding is not 
surprising because the breakdown of nondigested lac-
tose causes LI; therefore, LI management usually involves 
excluding milk and milk products from the diet. It is 
noteworthy that the race-related feature was also among 
the top 10 health features for LI classification. This dis-
covery was validated by the previous reports that lactase 
persistence varies among different human populations 
[43]. Age and sex were found to be the two most impor-
tant features for classifying CD. This is a reasonable con-
clusion because age has been reported as one of the most 
powerful risk factors for developing CD [44] and there is 
a higher prevalence of CD in men than in women [45].

Removing probiotics, vitamin B, and vitamin D
The frequency of probiotics intake was among the top 10 
features of IBD, IBS, CDI, SIBO, and UH; the frequency 
of eating vitamin B was among the top ten features of 
IBD, CDI, SIBO, and UH; the frequency of vitamin D 
intake was among the top 10 features of IBD and MD. 
Some samples may have been obtained from individuals 
who adopted these three dietary habits advised by the cli-
nician; therefore, we repeated our analysis after remov-
ing these three health features. As the results are shown 
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in Fig.  S2 and Table  S5, we found that, after removing 
the frequency of probiotics and vitamins B and D intake, 
Meta-OTUab, Meta-OTUoc, OTUab, and OTUoc all 
showed significantly better results than Meta for classi-
fying IBD; Meta-OTUab, Meta-OTUoc and OTUab all 
showed significantly better results than Meta for classify-
ing CDI; Meta-OTUoc showed significantly better results 
than Meta for classifying SIBO and UH; Meta-OTUab 
and Meta-OTUoc showed no significantly different 
with Meta for classifying DI, IBS, and LI. While, Meta-
OTUab, Meta-OTUoc, OTUab, and OTUoc all showed 
significantly worse results than Meta for classifying CD 
and MD. These results mean adding gut microbiota into 
human variables enhanced the association strengths with 
IBD, SIBO, CDI, and UH, suggesting that the independ-
ent associations do exist between gut microbiota and 
IBD, SIBO, CDI, and UH. Besides, adding gut microbiota 
showed no effect on association strengths with DI, IBS, 
and LI. The top 10 most important features for disease 
classification after removing the frequency of probiotics 
and vitamins B and D intake are shown in Table S6.

The best model for different diseases and performance 
changed with OTU numbers
We validated the performances of four ML methods 
in different features and disease prediction by showing 
AUCs of four machine learning methods on the valida-
tion dataset for five feature types and nine diseases for 
comparison (Fig. 4). We found that different ML methods 
achieved the best performances for different features and 
different diseases, with the XGBoost and GBDT meth-
ods performing similar and AUCs of these two methods 
better than other methods in most disease classification 
tasks except the IBD and MD. However, LR models gen-
erated the highest AUCs for IBD prediction using the 
other four types of features except for using Meta and for 
SIBO prediction using Meta and Meta-OTUoc. RF model 
obtained the highest AUC for MD prediction using Meta. 
These results suggested that we can combine the advan-
tages of the four machine learning methods to improve 
the overall prediction effect.

When there are too many OTUs as input features, the 
models may be overfitted. Spearman’s correlations of the 
human variables indicated modest, or high, inter-corre-
lations between some factors (Table  S7). Therefore, we 
evaluated the changes in classification performance for 
the four diseases (IBD, IBS, DI, and UH) in the optimal 
model result with the number of OTUs. The changes in 
AUCs obtained using a reduced number of OTUs are 
shown in Fig.  5. We found that using only some of the 
OTUs achieved better or equal results than using all 518 
OTUs. Especially for IBD, using only the top 3% of OTUs 
(20 OTUs) achieved no significantly different results with 

using all OTUs for all four types of input features. For 
IBS, the OTUs number showed no significant effect on 
the combination of OTUs and Meta, but the top 5.8% of 
OTUs (30 OTUs) and 7.7% (40 OTUs) for OTUab and 
OTUoc respectively generated no significantly differ-
ent results with using all OTUs. Interestingly, for DI, the 
top 2% of OTUs (10 OTUs) for Meta-OTUab generated 
significantly better results than using all OTUs combing 
Meta. The OTU set with the best classification results 
was different for the four diseases. These OTU sets can 
be used as biomarkers for the corresponding diseases.

Influence of adding gut microbiota diversity feature 
on models’ performance
In our experiments, abundance or occurrence of OTUs 
is used in modeling directly, instead of features that sum-
marize the structure of microbial community (E.g. alpha 
diversity). Loss of diversity is reported to be associated 
with many diseases such as IBD, obesity, and diabetes [46, 
47]. We also try adding the value of alpha diversity (Shan-
non Index and Simpson Index) as new features and AUCs 
of re-trained models are shown in Fig. S3 and Table S8. 
Compared with results without microbial diversity fea-
tures (Fig.  2), these two features don’t improve the pre-
diction performance of the machine learning model. For 
models with feature type ‘OTUab’ or ‘Meta-OTUab’, it 
may be the reason that richness and evenness of microbi-
ota have already been implied in OTUs’ abundance infor-
mation fully. For models with ‘OTUoc’ or ‘Meta-OTUoc’, 
one possible reason is that small OTUs have a greater 
impact on prediction performance as shown in Fig.  2, 
and relative abundance of small OTUs can be noisy and 
biased, due to the influence of sequences amplification 
and compositional bias, which limits the utility of abun-
dance information in modeling.

Similarly, one notable result is that, as shown in Fig. 2, 
when we used only gut microbes for disease classification, 
the OTUab achieved better results than that achieved 
using OTUoc, which can be explained by the greater loss 
of information using OTUoc than when using OTUab. 
However, after combination with human variables, the 
performance of Meta-OTUoc surpassed the Meta-
OTUab in most cases. This difference might be caused 
by two reasons. One is that, for disease classification, the 
information provided by human variables and micro-
bial abundance were overlapped. The other is that OTUs 
abundance information is less robust than the occurrence 
which is less affected by the sequencing process.

Conclusions
We evaluated the feasibility of gut microbiota on multi-
ple diseases prediction and compared its predictive valid-
ity with human variables comprehensively. Our results 



Page 11 of 15Zhu et al. BMC Microbiology            (2022) 22:4 	

showed that gut microbiota has distinct performances 
in classifying different diseases. Combining human vari-
ables and gut microbiota achieved the best performances 
in predicting IBD, IBS, CDI, and unhealthy status, indicat-
ing independent associations between gut microbiota and 
these diseases. OTU-based prediction results were similar 
to Meta-based prediction results in predicting IBD and 
CDI, so we can predict these diseases by just measuring the 
gut microbe community. Although gut microbiota is also 

reported to be associated with LI, CD, and MD, they do 
not predict these diseases well. Further investigations about 
associations between gut microbial community and dis-
eases are still necessary, except IBD and unhealthy status, 
and whether gut microbes can be used as biomarkers for 
other diseases still needs to be explored. We have reported 
the top 10 features (microbes or human variables) of these 
diseases and most were supported by previously published 
reports. More researches on these features may improve 

Fig. 4  Performances of four machine learning methods in different characteristics and disease prediction. The color of the open circle represents 
different machine learning methods, and the size represents the standard deviation
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our understanding of the molecular mechanism of human 
diseases.

Materials and methods
Data sources
We downloaded the OTU table (11-packaged/
fecal/100 nt/ag_fecal.biom) and human variables 
(11-packaged/fecal/100 nt/ag_fecal.txt) from the latest 
version (updated in January 2018) of the AGP database 
available at ftp://​ftp.​micro​bio.​me/​Aumer​icanG​ut/​latest. 

The original OTU table was saved as a binary file (.biom), 
which was converted manually to plain text with Python 
Script, which is available at GitHub (https://​github.​com/​
tingl​ab/​kLDM.​git). The original gut microbial abundance 
table (OTU table) contained 15,158 samples and 24,114 
OTUs selected by applying a 97% similarity cutoff with 
SortMeRNA [48] defined by the AGP consortium. The 
OTUs were mapped to the Greengenes Database [49] 
to identify their taxonomy. Each cell in the OTU table 
presents the abundance of its corresponding OTUs in a 

Fig. 5  Changes in the AUC of the optimal model with the number of OTUs. The optimal model for four diseases (IBD: Inflammatory Bowel Disease; 
IBS: Irritable Bowel Syndrome; DI: Diabetes; UH: Unhealthy status)

ftp://ftp.microbio.me/AumericanGut/latest
https://github.com/tinglab/kLDM.git
https://github.com/tinglab/kLDM.git
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specific sample. The original human variables file (Meta 
table) contained 15,158 samples and 523 factors related 
to physicochemical parameters of fecal samples, dietary 
habits, lifestyle choices, and some diseases. Each cell in 
the Meta table presents the measured value of its corre-
sponding meta-data in a specific sample. As the data used 
is publicly available, ethical approval was not required.

Data preprocessing
We selected 30 items of human variables to classify disease, 
including individuals’ physiological characteristics, lifestyle, 
location, and diet. Among these 30 items, six were related 
to physiological characteristics; two were associated with 
lifestyle choices; three were associated with location; the 
remaining 19 related to diet (frequencies of fermented plant, 
frozen dessert, fruit, high-fat red meat, home-cooked meals, 
alcohol, red meat, meat eggs, milk substitute, milk cheese, 
olive oil, probiotics, salted snacks, seafood, vegetable, vita-
min D supplement, vitamin B supplement, whole grain, and 
whole eggs). The values of frequency-related human vari-
ables were categorized as follows: ‘Never’, ‘Rarely’ (less than 
once/week), ‘Occasionally’ (1–2 times/week), ‘Regularly’ 
(3–5 times/week), and ‘Daily’. For convenience, these catego-
ries were recoded as integers from 1 to 5 (where 1 represents 
‘never’ and 5 represents ‘daily’) according to their frequen-
cies (Table S1). The values of human variables were missing 
for some samples; therefore, the samples with complete sets 
of 30 human variable data items were selected for the follow-
ing analysis. Samples with huge (first 1%) and small (last 2%) 
reads, as well as those with evenness < 2 were removed. For 
all selected samples, OTUs were selected from the top 50% 
based on their average abundance in nonzero samples. An 
additional filtration step was then performed to remove the 
rarefied microbes that appeared in less than 20% of the total 
samples. We used the relative abundance of OTUs and per-
formed log conversion to reduce the data range, followed by 
normalization. Finally, 7565 samples with 518 OTUs and 30 
human variables were retained for further analysis.

Eight diseases (CD, SIBO, MD, LI, DI, IBD, IBS, CDI, 
and DI) that have been reported in previous studies to 
be related to gut microbiome were selected. The sam-
ples from individuals affected by any of these eight dis-
eases were treated as unhealthy (UH). Information about 
individuals’ disease status was extracted, and the samples 
from individuals with diseases were labeled. The charac-
teristics of the dataset, the demographic details of sam-
ples, and the number of male and female patients for 
each disease are shown in Table S2.

Machine learning models training and evaluation
To evaluate the confound association between disease 
with gut microbiota and human variables, four machine 

learning (ML) techniques (RF, Random Forest; GBDT, 
Gradient Boosting Decision Tree; LR, Logistic Regres-
sion; XGBoost, eXtreme Gradient Boosting) were used 
to build the model, and the AUC scores were calculated 
to compare their performance (Fig.  1). All models were 
implemented using Python 2.7 and scikit-learn (version 
0.16.1) and xgboost (version 0.82) libraries. For every dis-
ease, four types of ML models were trained with five-fold 
cross-validation using training data, including 80% of all 
samples, and the model providing the best performance 
was selected based on the maximal AUC. Considering 
that the positive samples labeled with diseases occupied 
a tiny proportion, an equal number of negative samples 
were randomly selected for model training. The optimal 
model was then evaluated and compared using the vali-
dation dataset comprising the remaining 20% of samples.

In addition to the different model types, five combi-
nations of features were used to construct the follow-
ing separate models to capture the best features for 
classifying each disease: human variables only (Meta), 
OTU abundance only (OTUab), OTU occurrence only 
(OTUoc), both human variable data and OTU abundance 
(Meta-OTUab), and both human variable data and OTU 
occurrence (Meta-OTUoc). The OTU occurrence was 
determined based on the existence of OTUs only. Mod-
els using different combinations of features were trained 
and compared using an identical dataset. For each type of 
feature, the best model with the maximal AUC score was 
selected from the four types of models.

To assess the significance of differences in the model 
performance among the five types of features, the model 
training process was repeated 10 times with a random 
selection of training data. The AUC scores were pre-
sented as the mean ± standard deviation. For each dis-
ease, paired sample t-tests were used to compare the 
differences in AUC values between the feature type 
‘Meta’ and the four other feature types (‘OTUab’, ‘OTUoc’, 
‘Meta-OTUab’ and ‘Meta-OTUoc’). In the statistical 
analysis, Bonferroni correction was used to adjust for 
the multiple testing error. In considering nine diseases 
and four comparisons, we tested 36 independent hypoth-
eses using the same data at the 0.05 significance level, 
and instead of using a P-value threshold of 0.05, we use a 
stricter threshold of 0.0014.

Identification of microbial biomarkers of diseases
For the best-performing model of each disease, the 
weights of each feature were calculated. The top ten fea-
tures (OTUs or Meta) with the highest absolute weights 
were selected as the biomarkers for the disease. We then 
obtained the taxa of these OTUs and verified their rela-
tionships to the disease by searching published literature 
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or databases. In this study, we used the Human Microbe-
Disease Association Database (HMDAD) (http://​www.​
cuilab.​cn/​hmdad), which is a curated collection of 
microbe-disease associations from previous microbiota 
studies. The OTUs with high weights that were verified 
were treated as microbial biomarkers of the disease.
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