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Abstract 

Background:  Microbe-microbe interactions between members of the plant rhizosphere are important but remain 
poorly understood. A more comprehensive understanding of the molecular mechanisms used by microbes to 
cooperate, compete, and persist has been challenging because of the complexity of natural ecosystems and the 
limited control over environmental factors. One strategy to address this challenge relies on studying complexity in 
a progressive manner, by first building a detailed understanding of relatively simple subsets of the community and 
then achieving high predictive power through combining different building blocks (e.g., hosts, community members) 
for different environments. Herein, we coupled this reductionist approach with high-resolution mass spectrometry-
based metaproteomics to study molecular mechanisms driving community assembly, adaptation, and functionality 
for a defined community of ten taxonomically diverse bacterial members of Populus deltoides rhizosphere co-cultured 
either in a complex or defined medium.

Results:  Metaproteomics showed this defined community assembled into distinct microbiomes based on growth 
media that eventually exhibit composition and functional stability over time. The community grown in two different 
media showed variation in composition, yet both were dominated by only a few microbial strains. Proteome-wide 
interrogation provided detailed insights into the functional behavior of each dominant member as they adjust to 
changing community compositions and environments. The emergence and persistence of select microbes in these 
communities were driven by specialization in strategies including motility, antibiotic production, altered metabolism, 
and dormancy. Protein-level interrogation identified post-translational modifications that provided additional insights 
into regulatory mechanisms influencing microbial adaptation in the changing environments.

Conclusions:  This study provides high-resolution proteome-level insights into our understanding of microbe-
microbe interactions and highlights specialized biological processes carried out by specific members of assembled 
microbiomes to compete and persist in changing environmental conditions. Emergent properties observed in these 
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Background
Similar to other eukaryotic organisms, plants have com-
plex host-associated microbiomes that impact fitness and 
productivity. Microbial interactions within or outside 
plant tissues are intimately connected to essential pro-
cesses including water and nutrient acquisition, stress 
response, and reducing disease or herbivory by priming 
host defenses [1–4]. Extensive research supports the co-
evolution of binary interactions between plants and their 
associated microbes, yet the complex ecological interac-
tions taking place in nature between microbes and the 
evolution of microbe-microbe interaction mechanisms 
remains poorly understood. Furthermore, it remains 
unclear as to what extent inter-microbial interactions 
shape microbial assemblages and function in nature and 
what molecular mechanisms are used by microbes to 
cooperate, compete, and persist in complex microbial 
consortia.

Inter-microbial interactions exist in various forms 
such as resource competition, synergism, antagonism, 
and these interactions can be altered through the envi-
ronment. To fully understand the microbial dynamics 
in its environment, it is crucial to decipher these diverse 
and dynamic interactions and predict their competitive 
and cooperative potentials. Several computational and 
mathematical modeling approaches have been devel-
oped to predict the functional contribution of individ-
ual microbes in a community including their metabolic 
functions, inter-species interactions, and community 
dynamics. Generally, modeling approaches utilize ordi-
nary differential equations (ODEs), annotated genomes 
and sequence read abundances [5]. Generalized Lotka–
Volterra (gLV) models based on ordinary differen-
tial equations have been widely used in understanding 
temporal dynamics of microbial interactions. Compo-
sitional Lotka-Volterra (cLV), a recent non-linear mod-
eling approach based on relative abundances is shown 
to accurately predict microbial trajectories over time in 
a community [6]. Constraint based genome-scale meta-
bolic models are used in predicting the extent of resource 
competition and microbial metabolic interactions, which 
is facilitated by flux balance analysis (FBA) [7]. Besides 
these approaches, data-driven inferences of microbial 
interaction networks, such as ecology guided models that 
predict the metabolite cross-feeding interactions based 
on metagenomic and metabolomic measurements, are 

also valuable in understanding the community dynamics 
[8]. Taken together, microbial modeling approaches pro-
vide a guide to start understanding the functional state 
of microbial communities, as well as of their competitive 
and cooperative metabolic interactions. However, despite 
the usefulness of these tools, the key to fully understand 
the dynamics of microbial communities and the under-
lying principles within them, is to integrate predictive 
models with experimental data such as those obtained 
from experiments using defined microbial consortia 
[5–8].

In general, there are two complementary methodologi-
cal frameworks to study microbial communities: holisti-
cally in natural environments or in laboratory-controlled 
delineated conditions. Both approaches have led to 
important discoveries in plant microbiome research [9]. 
Using the holistic approach to study the total rhizosphere 
proteome can provide fundamental information on envi-
ronment-plant–microorganism interactions, however 
soil protein extraction is extremely challenging due to 
the complexity of soil matrix which led to low quantity 
and quality of the extracted proteins [10]. On the other 
hand, by first building a detailed understanding of rela-
tively simple subsets of a microbial community, emergent 
properties that dictate microbial composition and func-
tion can be tested in more complex systems by adding 
different building blocks (e.g., hosts, community mem-
bers) for different environments (e.g., liquid, soil). As 
more complex systems are studied, certain principles are 
expected to become less relevant, and these realizations 
begin to uncover higher-order interactions.

Cultivated microbes assembled into defined commu-
nities offer a definable landscape to explore microbe-
microbe interactions and microbial mechanism and, 
when coupled to omics-based technologies, presents a 
powerful approach to achieve higher predictive power for 
genotype-to-phenotype associations. Acquiring high-res-
olution, quantitative data reflecting in situ conditions is a 
crucial starting step to understand microbial community 
dynamics. Estimation of microbial community dynamics 
has most commonly been generated by 16 S rRNA gene 
amplicon sequencing; however, these approaches have 
inherent limitations [11]. Microbial community mem-
bers experience active vs. dormancy dynamics in their 
environment. Typically, at any given point in time, only 
a subset of microbial members is active, while others are 

lower complexity communities can then be re-evaluated as more complex systems are studied and, when a particular 
property becomes less relevant, higher-order interactions can be identified.

Keywords:  Rhizospheric microbiome, Microbial consortia, Defined community, Reductionist approach, 
Metaproteomics, PTMs
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in a state of dormancy and behave with strongly reduced 
metabolic rates [12, 13]. It is important to distinguish 
between active and inactive microbial taxa to understand 
their functional contributions to ecosystems. Therefore, 
pairing both 16 S rRNA transcript and 16 S rRNA gene 
sequencing attempts to address this issue by normalizing 
the measured rRNA levels by the abundances of indi-
vidual members [13]. However, given that rRNA content 
or RNA/DNA ratios and growth rates do not always cor-
relate, researchers has suggested that 16  S rRNA/rRNA 
gene sequencing is best interpreted as potential microbial 
activity [13].

Metaproteomics has been demonstrated to be a pow-
erful method for accurate estimation of biomass from 
viable and functioning cells [14, 15]. Additionally, 
metaproteomics allows the large-scale identification and 
quantification of proteins from microbial communi-
ties which helps to characterize microbial membership, 
their functional roles and interspecies interactions in 
the community [15]. Furthermore, recent advancements 
in optimized bioinformatic pipelines for metaproteom-
ics exploiting de novo peptide sequencing facilitate the 
identification and characterization of post-translational 
modifications (PTMs) in proteins, which provides unique 
insights into a largely unexplored level of microbial regu-
lation/adaptation [16].

Herein, the objective of this study is to integrate a 
reductionist approach with high-resolution metaprot-
eomics to study microbe-microbe interactions during 
the assembly of ten taxonomically diverse bacterial mem-
bers frequently observed in the rhizosphere of Populus 
species. The assemblage process is interrogated for the 
10-member microbial consortia co-cultured in a defined 
(MOPS + glucose) or a complex (R2A) growth medium. 
For this defined community (DefCom), we aim to (i) 
quantify changes in relative microbial population sizes 
for the community when passaged in different growth 

environments, (ii) characterize changes in microbial pro-
teomes during the formation of stable communities, and 
(iii) reveal molecular mechanisms driving the communi-
ty’s assembly and structure.

Results
Metaproteomics reveals details of microbial community 
stabilization and population equilibration as a function 
of growth media
  The ten diverse strains used in DefCom originated 
from roots of Populus deltoides [17–20] (Supplemen-
tal Fig.  1  A). The 10-member DefCom co-culture was 
grown in liquid defined media (MOPS + 0.2 % glucose) 
and complex media (R2A) subjected to growth/dilution 
cycles every two days until the community reached a 
stable state (state with minimal fluctuation of microbial 
community composition and abundance) (Fig. 1). These 
two media were selected to determine the effect of envi-
ronmental filtering based on a single carbon source with 
limited essential nutrients and a more complex media 
with increased carbon resources and nutrients designed 
for long incubation periods.

  Metaproteomic measurements of microbial com-
munities provide a robust and accurate assessment of 
microbial cell population sizes [14] because proteins 
make up 40-60 % of bacterial cell biomass [21] and are 
known to have a linear correlation with cellular mass 
and volume [22]. Relative organism cell population size 
estimates, as determined by summed protein counts 
or protein summed abundances, shows that commu-
nities stabilized, reaching stable population equilibria 
in both growth media, but formed distinct population 
sizes and community structures between the two differ-
ent growth media (Fig. 2 A and Supplemental Fig. 1B). 
Interestingly, three discrete community transition 
phases were observed in R2A media, in which the 
relative abundance and microbial membership were 

Fig. 1  Schematic diagram of study design. Microbial memberswere selected based on phyla level abundance and tax diversity from natural 
P.deltoides (Pd) rhizosphere communities. These members were inoculatedtogether and diluted 1:10 after 48 hours for 15 passages. Samples were 
analyzedby high-resolution metaproteomics to understand the community size andstructure, molecular mechanisms underpinning microbial 
behavior and functions,and post-translational regulations. Created with BioRender.com
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fluctuating systematically before reaching a stable state. 
A principal component analysis (PCA) for the metapro-
teomics dataset supports the observed discrete popu-
lation changes for R2A media by revealing three major 

clusters (R0, R1 to R5 and R10 to R15) over the experi-
mental passages (Supplemental Fig. 2 A). In the defined 
media, the 10-member community only experienced 
two discrete phases, with the community stabilizing 
after the second passage (Supplemental Fig. 2B).

Fig. 2  Assessment of microbial population size. (A) Microbial community composition from cell pellets using metaproteomics was estimated 
by totalprotein count for each community passaged in defined media MOPS + glucose (MOPS) or complex (R2A) media. There was a total of 15 
passages per medium and 3 biological replicates per passage. Individual colors in the stacked bar charts represent each microbial member. (B) 
Cellular estimates of organism relative abundance plotted against extracellular estimates of organism abundance for each passage for MOPS (black 
circles) and R2A (red circles). Each circle represents the averaged abundance across replicates for a single passage. Proteome depth (number of 
proteins identified) is plotted for each microbe per sample measured in the defined microbial community passaged across (C) defined MOPS + 
glucose (black) and (D) complex R2A (red) media
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Organism relative compositions were addition-
ally assessed for extracellular fractions (Supplemental 
Fig.  1  C). The extracellular fraction, though most com-
monly used to characterize proteins secreted from cells, 
has a composition notorious for its abundance of pro-
teins resulting from cell lysis (Supplemental Fig.  1D), 
and therefore provides a useful perspective for detect-
ing recent mortality events. In general, organism rela-
tive abundances were highly similar between cellular and 
extracellular fractions (Fig.  2B). It can be reasoned that 
the measured correlation between these two fractions 
indicates that mortality and growth rates for each mem-
ber in the community are relatively stable at the 48-hour 
sampling point.

Quantifying microbial species reveals functional behaviors 
during community assembly
The ability to holistically study inter-microbial inter-
actions and identify molecular mechanisms used by 
microbes to cooperate, compete, and persist in com-
plex microbial consortia arguably requires expansive 
proteome coverage. Using state-of-the-art techniques, 
proteome coverage for the 10-member DefCom var-
ied between microbes, ranging from tens to thousands 
of proteins per organism (Fig.  2B  C) (Supplemental 
Tables  1 and 2). While the measured proteome depth 
can be affected by growth of microbes and metabolic 
rate, microbes often adapt their behavior to states of 
lower metabolic activity during unfavorable growth con-
ditions [12]. As such, valuation of the completeness of a 
metaproteome measurement is not trivial and should not 
be used as a filter for interpretation.

To identify how members of this DefCom are respond-
ing to changes in the environment, significantly chang-
ing proteins were identified per organism using Student’s 
t-test between consecutive passages for both media. 
In complex media, three organisms, Pseudomonas sp. 
GM17, Pantoea sp. YR343, Bacillus sp. BC15, showed 
major proteome abundance changes across the passages 
(Supplemental Fig. 3). In minimal medium, Pseudomonas 
sp. GM17 was the only organism to show major pro-
teome abundance changes. Given these observations, 
Pseudomonas sp. GM17, Pantoea sp. YR343, Bacillus sp. 
BC15 were further interrogated to identify the proteome-
level changes in biological processes that influenced their 
functional behaviors and abundances in the community.

Pseudomonas sp. GM17 behaves antagonistically 
during the community selection process
Pseudomonas sp. GM17 was the dominant microbial 
member in both R2A and MOPS media, with the highest 
number of significant proteins in the majority of the pair-
wise comparisons (Supplemental Fig.  3). The observed 

proteomes between two media conditions have sub-
stantial protein and functional overlap, with about 79 % 
of the proteins expressed in both media conditions and 
with 17 % uniquely identified in R2A and 5 % uniquely 
identified in MOPS (Fig. 3 A). Additionally, the cluster of 
orthologous groups (COG) based annotation of the pro-
teins showed a similar distribution of functional catego-
ries in both media suggesting similarity in mechanisms 
facilitating its dominance (Supplemental Fig. 4 A).

In general, Pseudomonas species are known to pos-
sess a large repertoire of antibiotics and secondary 
metabolites (SMs) that can equip them with a fitness 
advantage in multi-species consortium [23]. A recent 
study has shown Pseudomonas sp. GM17 to have nega-
tive interactions with majority of the microbial mem-
bers in this 10-member DefCom [24]. In fact, notable 
changes in relative protein abundances were identified 
for a sensor histidine kinase GacS (WP_007927747.1), 
which plays a role in sensing environmental signals and 
GacA (WP_020295157.1), a response regulator activated 
by GacS (Fig.  3B). This two-component system is well 
known for its regulation of biosynthetic gene clusters 
(BGCs) and is involved in the biosynthesis of antibiot-
ics and SMs in Pseudomonas. Based on antiSMASH v5.0 
predictions [25, 26], the Pseudomonas sp. GM17 genome 
is suspected to have 18 BGCs encoding for the antibiotics 
and SMs (Supplemental Table 3). Of these 18 BGC, pro-
teomics analysis identified proteins from 17 BGC in R2A 
and 14 in MOPS media (Fig. 3 C). Several BGCs in both 
media are involved in the biosynthesis of antibiotics such 
as pyrrolnitrin, phenazine, and resorcinol. Pyrrolnitrin 
biosynthesis proteins are involved in converting trypto-
phan to pyrrolnitrin. Pyrrolnitrin has been demonstrated 
to have antimicrobial activity [27]. Similarly, broad-
spectrum antibiotic phenazines are known to enhance 
the competitiveness of Pseudomonas and are involved in 
antagonistic activity [28]. Likewise, resorcinol is also well 
known for fungal antagonism, biofilm formation, and 
biocontrol activity in Pseudomonas [29].

Three BGCs were uniquely identified in R2A media, 
of which two were predicted to encode non-ribosomal 
peptide synthetase (NRPS) and the other encodes for a 
siderophore (Supplemental Fig. 4B). NRPS are multimod-
ular enzymes that can produce products with diverse 
properties such as toxins, siderophores or antibiotics 
[30]. Protein-level interrogation of one of the uniquely 
predicted NRPS BGC suggests involvement in pyover-
dine biosynthesis. Pyoverdine is the fluorescent green-
yellowish pigment produced by Pseudomonas species and 
represents a key siderophore [31]. This siderophore is a 
very efficient iron scavenger and helps Pseudomonas spe-
cies adapt to changing environments and niche coloniza-
tion [32]. Siderophores, in addition to iron scavenging, 
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Fig. 3  Metaproteomics analysis of Pseudomonassp. GM17 functional behavior during community assembly. (A) Overlapof proteins identified 
between both media. Each node represents a uniqueprotein accession, and the color indicates whether the relative proteinabundance changed 
significantly based on ANOVA in one (yellow) or both media(red) or not significant in either (grey). Figure generated using DiVenn 2.0. (B)
Relative protein abundance for the GacS sensor histidine kinase and the GacAresponse regulator in MOPS (black) or R2A media (red). Error bars 
representstandard error for each set of biological triplicates. (C) Heatmap(one-way clustering using ward method) illustration for 18 antibiotic 
andsecondary metabolite gene clusters predicted by antiSMASH v5.0. Color gradientrepresents the percentage of proteins identified for a given 
gene cluster. (D).Heatmap (one-way clustering using ward method) illustration of relative proteinabundances for proteins encoded by the 18 
antibiotic and secondary metabolitegene clusters. Color gradient represents a standardized score calculated perprotein and white represents 
proteins that were not quantified in a particularmedium
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are also involved in the formation of complexes with 
other metals, antagonizing plant root microbes or facili-
tating antimicrobial activity [33]. While the proteomics 
data show that Pseudomonas synthesize multiple anti-
biotics and SMs in both media, few antibiotic- and SM-
related proteins were uniquely identified in R2A, which 
suggests this environment and community is more com-
petitive against Pseudomonas sp. GM17 when compared 
to minimal media (Fig. 3 C and D). Interestingly, the rela-
tive abundance trends of proteins associated with the 
production of antibiotics and secondary metabolites also 
differed between media (Fig. 3D).

Taken together, the proteomics analysis of Pseu-
domonas shows an increase in antibiotics, siderophore, 
and secondary metabolite production during the com-
munity selection process, indicating that Pseudomonas 
sp. GM17 is involved in antagonizing other microbial 
members. Pairwise-microbe interaction screen results 
reinforced these antagonistic properties of Pseudomonas 
by showing a presence of a zone of inhibition for most 
members of the community (Supplemental Fig. 4 C).

Pantoea sp. YR343 is effective at adapting to the changes 
in the community in R2A media
  In the minimal media, Pantoea sp. YR343 represent less 
than 1 % of stable community and most proteins identi-
fied are related to stress response (Fig. 4 A and Supple-
mental Fig.  5). Unlike its behavior in minimal media, 
Pantoea sp. YR343 population size changed substantially 
throughout the R2A passages, with a large reduction in 
size after passage 2 followed by a continuous gain in pop-
ulation size until representing ~31 % of the relative abun-
dance in final stable community (Fig. 4 A). To understand 
how Pantoea sp. YR343 is adapting to the competitive 
or unfavorable environment and becoming a relatively 
abundant member of the community in R2A media, its 
respective proteome expression profile was extracted and 
analyzed (Supplemental Table 4).

Overall, Pantoea sp. YR343 was observed to effectively 
adapt to the changes in the community grown in R2A 
media by increasing the abundance of proteins related to 
stress responses, antibiotic resistance, motility, as well as 
shifting metabolism from aerobic to anaerobic processes. 
Increasing the relative abundances of proteins related to 
carotenoid biosynthesis, such as geranylgeranyl pyroph-
osphate synthase (J2V561) and phytoene desaturase 
(J2V5J0), helps to modulate membrane fluidity and aid in 
the Pantoea’s survival against oxidative stress, extremes 
pH, and toxins (Fig. 4B) [34–36]. Population size increase 
coincided with changes in chemotaxis and motility-
related proteins; a behavior used to find environmental 
niches for optimal survival and growth. In an environ-
ment seemingly limited in oxygen, notable changes were 

observed in proteins related to anaerobic growth such 
as nitrate reductase (Accession ID: J3HM00, J3BZ11) 
and anaerobic dehydrogenase (Accession ID: J2VI80, 
J3HP12), suggesting Pantoea sp. YR343 survival bene-
fited from an augmented metabolism (Fig. 4 C).

In response to the antagonistic behavior of Pseu-
domonas sp. GM17, Pantoea sp. YR343 effectively 
increased the abundance of several crucial defense pro-
teins that protect against inhibition (Supplemental 
Fig.  4B). Relative protein abundances for several antibi-
otic/drug resistance proteins, such as multidrug resist-
ance protein MdtF (J3HB42), response regulator ArlR 
(J3HGU6), bifunctional polymyxin resistance protein 
ArnA (J3BZA2) and multidrug resistance efflux pump 
(J3HPW6), increased across passages (Fig.  4D). Multid-
rug resistance protein MdtF and response regulator ArlR 
provide protection against a broad range of antibiotic 
compounds. Similarly, bifunctional polymyxin resistance 
protein ArnA helps in the resistance against polymyxin 
that breaks up the bacterial cell membrane and cationic 
antimicrobial peptides.

Bacillus sp. BC15 sporulates as an adaptive response 
to nutritional competition
Based on protein content, Bacillus sp. BC15 was also a 
relatively abundant member in R2A media, but not in 
minimal media. Therefore, Bacillus sp. BC15 proteins 
were further investigated to identify which adaptive 
mechanisms were employed for these cells to thrive in 
R2A media (Supplemental Table 5).

  Using a rank-based distribution of Bacillus pro-
teins based on abundance, spore-related functions were 
among the most abundant proteins observed (Sup-
plemental Fig.  6). Bacillus species are known to cease 
growth and initiate sporulation under nutrient-limiting 
conditions and also in the presence of siderophores in the 
surrounding environment [37]. During sporulation, ini-
tially, an asymmetric cell division generates a smaller cell 
(forespore) and a larger cell (mother cell). The mother 
cell engulfs the forespore and mediates the development 
of the forespore into the spore through the production of 
the spore cortex and the inner and outer coat [37]. Upon 
spore maturation, the mother cell lyses, releasing the 
mature spore. This process is achieved in several develop-
mental stages (Fig. 5 A). Metaproteomic results identified 
several Bacillus proteins from each stage of sporulation 
in R2A media, including stage 0 sporulation protein A 
(Spo0A; A0A1M7EFS7) (Fig. 5B) (Supplemental Table 5). 
Spo0A is a master transcription factor that binds to the 
promoters and regulates gene expression, driving the 
sporulation events [38]. Moreover, endospore proteins 
such as spore coat proteins (A0A1M7B6S6, A0A1M-
7DEY3 etc.), small acid-soluble proteins (A0A1M7C0T3, 
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A0A1M6VBR5 etc.) were significantly upregulated in 
complex media (Fig. 5 C). Spore coat plays an important 
function in preventing spore degradation. Small acid-
soluble proteins are found in the spore core and help to 
maintain the chromosomal DNA in a compact state [37].

Next, we assessed whether Bacillus sp. BC15 is 
becoming more or less metabolically active across the 
R2A passages. Overall, ~45 % of the Bacillus proteome 
expressed in early passages represents proteins associ-
ated with spores or sporulation processes (Fig. 5D) and 
this shifts to less than 10 % in passages 10 and 15. As 

the total abundance of spore-related proteins decrease 
with increasing passages, proteins associated with 
translation, ribosome biogenesis, and cellular metabolic 
and catabolic process increase in the final passages 
(Fig. 5E). In general, these results suggest that Bacillus 
sp. BC15 was not actively growing but rather existing in 
dormancy to survive during unfavorable conditions and 
persisted in the community by adapting differently until 
it could become more metabolically active, as repre-
sented by increased abundances in major cellular pro-
cesses in the final passages.

Fig. 4  Metaproteomics analysis of Pantoea sp.YR343 functional behavior during community assembly. (A) Relativeabundance of Pantoea organism 
abundance in MOPS and R2A media based onmetaproteomics data. (B) Relative abundance across R2A passages forgeranylgeranyl pyrophosphate 
synthase and phytoene desaturase, two key proteinsinvolve in carotenoid biosynthesis. Error bars represent standard error foreach set of biological 
triplicates. The dashed arrow in the flow diagramrepresents multiple steps in biosynthesis. (C) Heatmap of relative proteinabundance for proteins 
involved in aerobic/anaerobic respiration and motility.(D) Relative abundances for proteins associated with defense responsesto antagonist 
behaviors. Error bars represent standard error for each set ofbiological triplicates
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Post‑translational modifications offer critical insights 
into how microbes are adapting to changing communities 
and environments
Post-translational modifications (PTMs) of proteins 

represents one of the most important yet understud-
ied mechanism that microbes use to rapidly perceive 
and respond to changing conditions [39–42]. Recent 
advancements in metaproteomic experimental workflows 

Fig. 5  Metaproteomicsanalysis of Bacillus sp. BC15 functional behavior during communityassembly. (A)Developmental stages of sporulation in 
Bacillus sp BC15. Underenvironmental stress or nutrient limited condition, Bacillus undergoesendospore formation which is accomplished across 
multiple stages ofmorphogenesis. Relative abundance of the proteins identified (B) acrossall stages and (C) free spores. Abundance shown are 
the average of threebiological replicates. The color gradient represents the abundance in Log2scale. (D)Proteome-wide relative abundance 
distribution ofspore-related proteins compared to all other proteins. (E) The pie chartshows the enriched biological processes (p-value<0.05) of “all 
other”proteins. Gene ontology enrichment analysis was done using ClueGO
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now afford the ability to broadly study PTMs in bacterial 
isolates and communities [43–47]. Therefore, we further 
interrogated the data to demonstrate that the analysis of 
PTMs offers new insights into the function and behav-
ior of individual microbial community members as they 
respond to changing communities and surrounding 
environments.

In general, PTMs were identified on ~40 % of proteins 
observed in this study (Supplemental Table  6) Modified 
proteins are expected to include both biologically rel-
evant PTMs as well as those that are direct products of 
sample preparation procedures (e.g., carbamidometh-
ylation on cysteine residues and methionine oxidation). 
Therefore, all observed PTMs were annotated as either 
a natural or artificial modification using a standardized 
nomenclature from the Unimod database as a guide (see 
Materials & Methods section) [48, 49]. Following this 
step, we observed that ~10 % of proteins identified in this 
study were proteins that contained biologically meaning-
ful PTMs.

Amongst the biologically relevant PTMs observed in 
this study, the most frequently occurring types of PTMs 
were methylations, dehydrations, and oxidations/hydrox-
ylations. Previous studies have shown these modifications 
to be quite abundant in proteomes from bacterial isolates 
as well as environmental communities [43, 45, 47]. The 
impact that these types of modifications have on proteins 
can be quite diverse but are frequently associated with 
altering protein-protein interactions or activity [50–52]. 
Based on annotations provided by cluster of ortholo-
gous groups (COG) categories, PTMs observed across 
this study impact many prominent cellular processes, 
including translation, ribosomal structure and biogen-
esis, energy production and conversion, protein turnover, 
and chaperon functions as well as amino acid metabo-
lism and transport. Proteome-wide analysis of an abun-
dant member of the community, such as Pseudomonas 
sp. GM17, suggests that changes in communities or the 
environment do not affect which types of PTMs are pre-
dominant or what cellular processes are being modified 
(Supplemental Figs. 7 and 8). Shifting our analysis from a 
proteome-wide to a protein-centric perspective allowed 
us to identify PTMs that occur at conserved residues 
in bacterial proteins (Supplemental Table  7) [39]. This 
examination revealed two types of modifications: pro-
teins having static, seemingly always modified positions; 
and proteins with positions that are dynamic and reversi-
ble. Evidence for site-specific modifications that are static 
are interesting because they suggest a role critical to a 
protein’s primary function. In this study, one example is 
a β-methylthiolation modification in ribosomal protein 
S12 (Supplemental Fig. 9). This modification is localized 
on an aspartic acid residue universally conserved within 

bacteria and presumed to be structurally or functionally 
important because substitutions at this position are lethal 
[53–57]. All bacterial ribosomal S12 proteins sequenced 
across this entire study contained this modification, 
reinforcing previous findings that this modification is a 
static feature of the ribosome S12 protein. Beyond this 
well-known PTM, we also observed other proteins that 
have evidence for static modifications and warrant fur-
ther interrogation to evaluate their essentialities (Supple-
mental Table 8).

  Unlike static modifications, dynamic modifications 
are greatly influenced by experimental design and require 
adequate sampling to identify their roles. The identifica-
tion and tracking of protein positions that are reversibly 
modified not only provides insights into a changing func-
tional or structural state of a particular protein, but an 
extended understanding of how the organisms is perceiv-
ing or altering its behavior to changing conditions. For 
example, we observed a dynamic methylation on a lysine 
position in the elongation factor thermo unstable protein 
(EF-Tu) that could imply an organism is experiencing 
nutrient deprivation. EF-Tu proteins are one of the most 
conserved and abundant proteins expressed by bacte-
ria [58, 59]. First reported in E. coli, the EF-Tu protein is 
hypermethylated at a lysine residue at position 56 under 
nutrient deprivation conditions and this modification is 
expected to reduce protein synthesis by affecting the abil-
ity of the protein to bind and hydrolase GTP [60–63]. 
Across this study, EF-Tu was predominately methylated 
at the conserved lysine position in Pantoea (Accession 
ID. J3HLV4) and Rhizobium (Accession ID. J1SLR3) 
(Fig.  6  A and B), however this modification was absent 
in EF-TU proteins observed in Pseudomonas, Bacillus, 
Sphingobium, Caulobacter, and Duganella. Based on the 
relative abundance of these microbes across different 
passages, we hypothesize that Pseudomonas maintains a 
relatively active protein synthesis rate across the entire 
experiment, whereas others like Pantoea and Rhizobium 
have a PTM-modified EF-Tu with reduced activity due to 
a lack nutrients. The lack of a modification in this protein 
for other members like Bacillus and Sphingobium is likely 
due to the presence of arginine residues at this position 
(Fig.  6  C), which seems to be the main reason behind 
the absence of this modification in some bacteria [62]. 
Although, it is possible that the EF-Tu methyltransferase 
does not function in these microbes. For other mem-
bers like Duganella and Caulobacter, we believe that the 
detection limits of our instrumentation may preclude the 
observation of the methylated Lys residue, but we cannot 
completely discard the presence of this modification on 
their proteins.
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Discussion
In addition to plant-associated lifestyles, members of 
the rhizospheric microbiome adapt to local changes in 
environmental variables, such as resource availability, 
that shape the growth of individual populations and 
the interactions between species. Stochastic changes 
in the relative abundance of individual members have 
been demonstrated to have large downstream effects 
on community composition that can alter ecological 
dynamics [64]. The difference in stable microbial com-
munity composition observed in this study in different 
growth media could be due to the change in the chemi-
cal environment which largely affects the growth rate of 
microbial members. Interestingly, discrete community 
transition phases were observed across the passages 
in R2A media where the membership, as well as their 
relative abundance fluctuate suggesting the dynamic 
interaction between microbial members during the 
community assembly and selection process. Although 

this study provides the foundational understanding of 
rhizospheric-associated microbial community, dynamic 
interactions observed in the synthetic media may not 
be exact in the rhizospheric environment where fac-
tors like root exudates and other microbes effect the 
community assembly and selection process. Microbes 
interact with each other in a variety of ways, these 
interactions can be positive such as mutualism, syn-
ergism, and commensalism; or be negative such as 
antagonism, parasitism, predation, or competition [65]. 
Metaproteomics results allowed us to understand the 
microbe-microbe interactions in the DefCom and the 
molecular mechanisms driving the community level 
outcome.

Our metaproteomics analysis identified Pseudomonas 
sp. GM17 to be the dominant member of the community 
regardless of the chemical environment and environmen-
tal disturbances. The genus Pseudomonas are ubiquitous 
γ-proteobacteria well known for extreme versatility and 

Fig. 6  Dynamic regulation of methylationmodification in lysine (K) residue of EF-Tu in nutrient-deprived organisms. Percentageabundances of 
K-methylated modified and unmodified peptides in the Elongationfactor Tu proteins of (A) Pantoea sp. YR343 and (B) Rhizobium sp. CF142 in 
R2Amedia. (C) Multiple sequence alignment was performed for all Elongation Factor Tuproteins identified by metaproteomics in this study. The 
lysine amino acidposition where the modification occurs in this study is highlighted with a redarrow. Unlike other organisms, Bacillus sp. BC15 and 
Sphingobium sp. AP49 have anarginine (R) residue at this position and no methylation modifications wereobserved for these protein sequences. For 
reference, the Elongation factor TUsequence of E. coli (strain K12) was added for comparison
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adaptability [66]. The higher growth rate of Pseudomonas 
sp. GM17 in both media could have provided an ini-
tial competitive advantage that led to its dominance. 
Although Pseudomonas sp. GM17 was one of the fast-
growing microbes, other microbes such as Sphingobium 
sp. AP49, Paraburkholderia sp. BT03 also has a similar 
growth rate [24]. However, these microbes did not rep-
resent a significant portion of the stable community. 
The proteome-wide analysis revealed that Pseudomonas 
expressed multiple proteins involved in the biosynthesis 
of siderophores that provide fitness advantage as well as 
antibiotics and secondary metabolites which are known 
to have biocontrol activity and facilitate antagonistic 
behavior. During antagonistic interaction the first popu-
lation that produces inhibitory substances are unaffected 
or even gain a competitional advantage and survive in 
the habitat while other populations get inhibited. High 
growth rate as well as antagonistic behavior due to pro-
duction of antibiotics and secondary metabolites helped 
in Pseudomonas sp. GM17 dominance by outcompeting 
or preventing the growth of other microbes [67].

As members of the community are challenged with 
unfavorable conditions created either intentionally by 
other members of the community (e.g., production 
of antibiotics from Pseudomonas) or unintentionally 
through the collective activity of community metabo-
lism (e.g., limited nutrients, lower oxygen levels, etc.), 
microbial persistence requires the expression of neces-
sary coping mechanisms. The proteome-wide analysis 
of Pantoea revealed a significantly higher proportion of 
proteins related to stress responses in minimal media 
but not necessarily of proteins related to coping mecha-
nisms (Supplemental Fig. 5). Instead, in complex media, 
Pantoea sp. YR343 still experienced the stressful envi-
ronment created by Pseudomonas and other members 
of the community but it was able to cope by increasing 
the abundance of proteins related to carotenoid biosyn-
thesis, motility, and antibiotics resistance. Carotenoids 
are sterol analogs and studies have shown its ability to 
modulate membrane fluidity and role in the formation 
of membrane domains [68, 69]. Carotenoids aid in the 
survival of cells under harsh conditions, such as oxida-
tive stress, extreme pH, and presence of toxins [34–36]. 
In Pantoea sp. YR343, carotenoid is required to regulate 
the sensitivity to reactive oxygen species, secretion, bio-
film formation, and rhizosphere survival [70]. The defect 
in the gene involved in synthesizing carotenoids has been 
shown to affect the microbe’s growth, biofilm formation, 
and phytohormone production [70]. Similarly, motility 
directed by chemotaxis is an important means by which 
microbes avoid adverse conditions in their environment 
[71]. Microbes sense the presence of nutrients or other 
harmful chemicals in the environment with the help of 

chemotaxis related proteins which play an important role 
in environmental adaptation. Moreover, Pantoea’s ability 
to develop resistance against antibiotic and toxic com-
pounds further helped to adapt in the changing environ-
ment. Pantoea is a facultative anaerobe that can grow in 
the presence and absence of oxygen, and our proteomics 
results also showed the shifting from aerobic to anaero-
bic respiration/metabolism as one of the coping mecha-
nisms of Pantoea in R2A media.

While Pantoea effectively adapts to the changes in the 
environment of R2A media in the DefCom by increasing 
the abundance of proteins related to antibiotic resistance 
and motility as well as shifting metabolism from aero-
bic to anaerobic processes, Bacillus on the other hand, 
sporulated as an adaptive response. Endospores formed 
from the process of sporulation are morphologically dis-
tinct, metabolically dormant, and environmentally resist-
ant, capable of surviving extreme environments [37, 72]. 
The identification of endospore proteins and sporulation 
proteins from various developmental stages implies that 
although Bacillus sp. has been identified as a key mem-
ber of a stable community in R2A media, it is experi-
encing severe nutrient stress. A recent study has shown 
that siderophores can also act as interspecies cues that 
alter cellular development and accelerate sporulation in 
Bacillus subtilis [73]. Our results have shown that sidero-
phore-related proteins from Pseudomonas were highly 
abundant, thus it is plausible that Bacillus sp. is sporu-
lating in R2A media in the response of siderophores pro-
duced by the former.

Bacterial members within microbial communities adapt 
to their environmental conditions not only by modulat-
ing the abundance of the proteins they produce, but also 
by regulating the functions of these molecules. PTMs can 
modulate protein activity, conformation states, localiza-
tion, and interactions. PTMs of proteins represents one 
of the most important, yet understudied mechanism that 
microbes use to rapidly perceive and respond to changing 
conditions [39–42]. PTM information allows an extended 
understanding of how an organism is perceiving or regu-
lating its behavior to changing conditions. For example, 
the dynamic lysine methylation identified here in EF-Tu 
proteins has been suggested to reduce the rate of protein 
synthesis by affecting the ability of the protein to bind 
and hydrolase GTP under nutrient deprivation condi-
tions [60–63]. Proteome-wide as well as protein-centric 
(i.e., static and dynamic) modifications identified in this 
study provide the proof of concept that optimized bioin-
formatics pipelines and high-resolution mass spectrom-
etry not only affords the ability to broadly characterize 
PTMs in a biological system but also provides a level of 
sensitivity capable of revealing regulatory mechanisms 
influencing the activity of single proteins and we expect 
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to continue mining this wealth of information to find 
novel and/or less-studied PTM regulatory mechanisms.

Conclusions
The understanding of intricate ecological interactions 
between microbes, the extent to which inter-microbial 
interactions shape microbial community, and the com-
prehensive understanding of the mechanisms driving 
the microbe-microbe interaction represent key aspects 
of microbial ecosystem, yet these remain not well under-
stood. The reductionist approach presented here pro-
vided an informative and useful opportunity to study 
naturally occurring complex microbial communities in a 
controlled and tractable laboratory setting. Together with 
high-resolution metaproteomics, an accurate assess-
ment of microbial population sizes was obtained for this 
10-member DefCom while simultaneously providing 
detailed understanding of proteome- and protein-level 
changes that help elucidate the biological process under-
pinning community assembly across two distinct growth 
conditions. By identifying building blocks of complex 
microbial behaviors that exist in defined communities, 
mechanisms underlying microbe-microbe offer some 
degree of prediction that can be further tested as more 
natural settings become integrated into experimental 
design. Moving forward, we envision data-rich metapro-
teomics datasets will become an integral source of infor-
mation in modeling microbe-microbe interactions and 
a valuable datatype in predictive biology and discovery-
based research environments, like The Department of 
Energy Systems Biology Knowledgebase (KBase) [74].

Materials and methods
Preparation of 10‑member microbial communities.
Bacterial strains used in this study are Populus deltoides 
derived Bacillus sp. BC15, Caulobacter sp. AP07, Duga-
nella sp. CF402, Pantoea sp. YR343, Paraburkholderia 
sp. BT03, Pseudomonas sp. GM17, Rhizobium sp. CF142, 
Sphingobium sp. AP49, Streptomyces sp. YR139, and Var-
iovorax sp. CF313 [17, 20, 24, 70, 75–80] (Supplemental 
Fig. 1 A). The growth rates (OD600nm) for these 10 micro-
bial strains has been previously measured in R2A and 
MOPS+ 0.2 % glucose media [24]. Equal volumes of all 
10 isolates with the same normalized OD600 were mixed 
in 10 mL of R2A complex medium (Teknova, # R0005) 
[81] and 10 mL of MOPS minimal medium [82] sup-
plemented with 0.2 % glucose at 30  °C with shaking at 
200 rpm. The cultures were transferred into fresh media 
by diluting 1:10 every 48  h for a total of 15 passages. 
The remaining cultures were pelleted by centrifugation 
at 12,000  rpm for 15  min, and the spent culture super-
natants were stored at -80  °C. Based on the 16  S rRNA 
gene amplicon sequencing results, 8-passages (0, 1, 2, 3, 

4, 5, 10, 15, note: Passage 0 is after 48-hour growth in 
media) with three biological replicates for both R2A and 
MOPS+glucose were analyzed for proteomic analysis 
[24].

Cellular protein extraction
Cell pellets were solubilized in 600 µL of lysis buffer 
(4 % sodium dodecyl sulfate (SDS) (Sigma-Aldrich, 
#L6026, USA) in 100 mM Tris, pH 8.0) supplemented 
with 1x Halt Phosphatase Inhibitor Cocktail (Thermo 
Scientific, #78,426, USA). Samples were vortexed and 
then further disrupted with a Bullet Blender storm 24 
(Next Advance) for 5 min at setting #10 using 0.15mm 
Zirconium oxide beads (Next Advance, #ZROB015) 
at 3:1 sample to bead ratio. Samples were then placed 
in a heat-block for 10 min at 90  °C and centrifuged at 
maximum speed for 2 min to get rid of the foam. Pro-
tein concentration was measured using a Nanodrop 
One spectrophotometer (Thermo Scientific). Samples 
were centrifuged again at maximum speed for 10 min. 
The cell lysates were transferred into fresh Eppendorf 
tubes. Samples were reduced with 10mM dithiothreitol 
(DTT) (Sigma Life Science, #43,815, USA) and incu-
bated at 90  °C for 10  min and then alkylated with 30 
mM iodoacetamide (IAA) (Sigma Life Science, #I1149, 
USA) for 15  min in dark to prevent the reformation 
of disulfide bonds. In fresh tubes, Sera-Mag beads 
(GE Healthcare Life Sciences, #GE45152105050250, 
UK) were added at the 1:1 protein to beads ratio and 
proteins were extracted by protein aggregation cap-
ture method as described previously [83]. Beads were 
washed with acetonitrile (ACN), LC-MS grade (EMD 
Millipore Corp., #AX0156-1) on a magnetic rack, after 
removal from the magnetic rack, samples were added 
to tubes and then adjusted to 70 % ACN. At this point, 
proteins started to precipitate and bind to the beads. 
Samples were let to settle for 10  min. After 10  min, 
settled beads were gently resuspended. Samples were 
again let to settle for another 10  min. Samples were 
then placed on a magnetic rack. The supernatant was 
removed using a vacuum system. Samples were further 
washed with 1 mL ACN and 1mL of 70 % ethanol (EMD 
Millipore Corp., #EX0278-1) while on a magnetic rack. 
A total of 1mL volume of Tris buffer were added to the 
sample tubes with proteins bound to magnetic beads. 
The samples were removed from the magnetic rack. 
Proteins were digested with two separate and sequen-
tial aliquots of sequencing grade trypsin (Thermo Sci-
entific, #90,057, USA) at 1:75 (wt/wt) protein:trypsin 
ratio for overnight, followed by 3 h at 37 °C at constant 
shaking. The samples were then adjusted to 0.1 % TFA 
(Sigma-Aldrich, #302,031, USA), vortexed, and cen-
trifuged at max for 10  min. Vivaspin 500,10  kDa MW 
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cutoff filters (Sartorius, #VS0102) were equilibrated 
with 500 µL of Tris buffer and centrifuged at 12,000 g 
for 15 min. After equilibrating, the samples were added 
to the Vivaspin columns and centrifuged at 12,000  g 
for 15  min. Tryptic peptides flow-through were col-
lected and desalted on Pierce peptide desalting spin 
column (Thermo Scientific, #89,852, USA) as per the 
manufacturer’s instructions. Desalted peptides were 
vacuum dried with a SpeedVac Concentrator (Thermo 
Scientific) and then resolubilized in 0.1 % formic acid 
(Fisher Chemical, #A117-50). Peptide concentrations 
were measured using the Nanodrop instrument and 
transferred to the auto-sampler vials for LC-MS/MS 
measurement.

Extracellular protein extraction
Spent media samples were adjusted to 2mM EDTA 
(Thermo Fisher Scientific, #R1021) on ice. The samples 
were filtered using Vivaspin 20mL Centrifugal Con-
centrators with 5000 Da molecular weight cut off (Sar-
torius, #VS2012) by spinning at 4,000  rpm at 4  °C for 
30 min. The Vivaspin 5000 Da molecular weight cut-off 
filters were washed with 1 mL of 4 M urea (Sigma Life 
Science, #51,456, USA) in Tris buffer. The proteins were 
resuspended on the filter membrane with a final vol-
ume of 500 µL 4 M urea in Tris buffer. DTT was added 
to a final concentration of 10 mM for reduction of 
disulfide bonds and incubated samples at room temper-
ature for 30 min. Samples were then alkylated by add-
ing IAA to a final concentration of 30 mM and placed 
at room temperature in the dark for 15  min. Protein 
concentrations were measured by Nanodrop. Proteins 
were digested with Pierce Trypsin Protease, MS-grade 
at 1:75 wt/wt protein to trypsin ratio, overnight at 37 °C 
with constant shaking. Samples were diluted with Tris 
buffer to a final concentration of 2  M urea and a sec-
ond 3  h digestion with trypsin was performed using 
the same conditions. The tryptic peptide flow throughs 
were collected by spinning at 4,000 rpm for 15 min. The 
samples were acidified with 0.5 % formic acid and then 
desalted using Pierce peptide desalting spin column as 
per the manufacturer instructions. Desalted peptides 
were vacuum-dried with a SpeedVac Concentrator and 
then resolubilized in 0.1 % formic acid. Peptide con-
centrations were measured using the Nanodrop instru-
ment and transferred to auto-sampler vials for LC-MS/
MS measurement.

Protein identification and quantification
Each sample was analyzed using two-dimensional (2D) 
liquid chromatography (LC) on an Ultimate 3000 RSLC-
nano system (Thermo Fischer Scientific, USA) coupled 

with a Q Exactive Plus mass spectrometer (Thermo 
Fischer Scientific, USA). For each sample, an aliquot 
of digested peptide mixture was injected across an in-
house built strong cation exchange (SCX) Luna trap 
column (5  μm, 150  μm X 50mm; Phenomenex, USA) 
followed by a nanoEase symmetry reverse phase (RP) 
C18 trap column (5 μm, 300 μm X 50mm; Waters, USA) 
and washed with an aqueous solvent. Cellular peptide 
mixtures were separated and analyzed across three suc-
cessive SCX fractions of increasing concentrations of 
ammonium acetate (35mM, 50mM, and 500mM), each 
followed by a 100-minute organic gradient (250nL/min 
flow rate) to separate peptides across an in-house pulled 
nanospray emitter analytical column (75 μm X 350 mm) 
packed with Kinetex RP C18 resin (1.7 μm; Phenomenex, 
USA). The extracellular peptide mixtures were separated 
using the same separation regime, albeit with only one 
SCX fraction. All MS data were acquired with Thermo 
Xcalibur (version 4.2.47) using the topN method where 
N could be up to 10. Target values for the full scan MS 
spectra were 3 × 106 charges in the 300 – 1,500 m/z range 
with a maximum injection time of 25 ms. Transient times 
corresponding to a resolution of 70,000 at m/z 200 were 
chosen. A 1.6 m/z isolation window and fragmentation of 
precursor ions were performed by higher-energy C-trap 
dissociation (HCD) with a normalized collision energy of 
27  eV. MS/MS scans were performed at a resolution of 
17,500 at m/z 200 with an ion target value of 1 × 105 and 
a maximum injection time of 50 ms. Dynamic exclusion 
was set to 20 s to avoid repeated sequencing of peptides. 
All MS raw data files were analyzed using the Proteome 
Discoverer software (version 2.3, Thermo Fischer Scien-
tific, USA). Each MS raw data file was processed by the 
SEQUEST HT database search algorithm [84] and con-
fidence in peptide-to-spectrum (PSM) matching was 
evaluated by Percolator [85]. Peptide and PSMs were con-
sidered identified at q<0.01 and proteins were required 
to have at least one unique peptide sequence. Protein 
relative abundance values were calculated by summing 
together peptide extracted ion chromatograms.

Proteins with at least one unique peptide were 
exported from Proteome Discoverer. Protein abundances 
were log2-transformed, LOESS normalized and mean-
centered across the entire dataset using InfernoRDN 
software [86]. From this normalized dataset, protein 
abundances subset for each microbe were extracted and 
further mean-centered by InfernoRDN. For this study, 
pairwise comparisons were performed across differ-
ent passages (i.e., Passage 0 vs. Passage 1, Passage 1 vs. 
Passage 2, etc. for R2A and MOPS+glucose) to identify 
the differences between the passages. The analysis was 
limited to proteins that were identified in at least two 
out of three biological replicates of at least one sample 
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to improve the robustness of the downstream analysis. 
The abundance values for proteins with missing values 
were imputed with random values drawn from the nor-
mal distribution (width 0.3, downshift 2.8) using Perseus 
software v.1.6.12.0 [87]. Student’s t-tests were performed 
to identify the differences in protein abundance values 
between different passages. Proteins are characterized as 
significantly differentially abundant if they pass the sig-
nificance threshold of p-value ≤0.05 and absolute log2 
fold-change difference greater than 1.

PTM identification by PEAKS
Raw spectral data collected from both complex and 
minimal media sample sets were re-searched by de 
novo-assisted database searches against the 10-mem-
ber community proteome accompanied with common 
contaminant proteins using PEAKS DB, PEAKS PTM, 
and PEAKS SPIDER in PEAKS X Studio (Bioinformatics 
Solutions, Waterloo, Canada). The peptide and fragment 
ion mass tolerances were set to ±10 ppm and ±0.02 Da, 
respectively. “Trypsin” was set as the enzyme parameter. 
Features associated with chimera scan were enabled. De 
novo ALC score was set at >90 %. A false discovery rate 
of 1 % was applied to accept the peptide sequences and 
a minimum of three peptides were required to identify a 
protein. For PEAKS DB, carbamidomethylation (+57.02) 
of cysteine was set as fixed modification and oxidation 
(+15.99) of methionine was set as a variable modification. 
The PEAKS PTM algorithm was used to identify other 
types of modifications by allowing the search against all 
possible modifications from the Unimod database [88]. 
Similarly, PEAKS SPIDER algorithm was used to detect 
any possible de novo sequencing errors and homology 
peptide mutations.

To report the number and percentages of modified 
proteins, only proteins with unique peptide sequences, 
that is, without any modifications, that were present in 
at least two out of three biological replicates per passage 
were considered. Peptide uniqueness was verified with 
the Protein Coverage Summarizer Tool (https://​omics.​
pnl.​gov/​softw​are/​prote​in-​cover​age summarizer) and the 
data filtered using the Perseus software (http://​www.​
perse​us-​frame​work.​org) [87]. Unimod categories used to 
discriminate biologically relevant PTMs to those PTMs 
that can be the products of sample preparation/handling 
were: “Post-translational”, “Multiple”, “N-linked glycosyla-
tion”, and “O-linked glycosylation”.

The PTM profile tables reported by the PEAKS soft-
ware were used to interrogate individual proteins and 
their PTMs. These tables list the summed abundance of 
modified and unmodified versions of unique and shared 
peptides that fall within a modified peptide sequence 

window in a protein. Only summed abundances reported 
in at least two out of three biological replicates per pas-
sage and conditions we considered. Summed abundance 
values were averaged per passage, and the percentage 
abundance ratios of modified to unmodified peptides 
were calculated from them. All PTM related figures pre-
sented with the manuscript were created with JMP Pro 
14 (https://​www.​jmp.​com/​en_​ca/​softw​are/​predi​ctive-​
analy​tics-​softw​are.​html).
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