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Beware of pharyngeal Fusobacterium 
nucleatum in COVID-19
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Abstract 

Background:  Fusobacterium nucleatum (F. n) is an important opportunistic pathogen causing oral and gastrointes-
tinal disease. Faecalibacterium prausnitzii (F. p) is a next-generation probiotic and could serve as a biomarker of gut 
eubiosis/dysbiosis to some extent. Alterations in the human oral and gut microbiomes are associated with viral res-
piratory infection. The aim of this study was to characterise the oral and fecal bacterial biomarker (i.e., F. n and F. p) in 
COVID-19 patients by qPCR and investigate the pharyngeal microbiome of COVID-19 patients through metagenomic 
next-generation sequencing (mNGS).

Results:  Pharyngeal F. n was significantly increased in COVID-19 patients, and it was higher in male than female 
patients. Increased abundance of pharyngeal F. n was associated with a higher risk of a positive SARS-CoV-2 test 
(adjusted OR = 1.32, 95% CI = 1.06 ~ 1.65, P < 0.05). A classifier to distinguish COVID-19 patients from the healthy 
controls based on the pharyngeal F. n was constructed and achieved an area under the curve (AUC) of 0.843 (95% 
CI = 0.688 ~ 0.940, P < 0.001). However, the level of fecal F. n and fecal F. p remained unaltered between groups. Besides, 
mNGS showed that the pharyngeal swabs of COVID-19 patients were dominated by opportunistic pathogens.

Conclusions:  Pharyngeal but not fecal F. n was significantly increased in COVID-19 patients, clinicians should pay 
careful attention to potential coinfection. Pharyngeal F. n may serve as a promising candidate indicator for COVID-19.

Keywords:  SARS-CoV-2, COVID-19, Fusobacterium nucleatum, Faecalibacterium prausnitzii, Metagenomic next-
generation sequencing
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is highly transmissible and pathogenic and has 
caused a pandemic coronavirus disease 2019 (COVID-
19), which threatens human health and public safety. 
According to the World Health Organization (WHO) 
(https://​covid​19.​who.​int/), as of August 13, 2021, there 
have been more than 205 million confirmed cases of 
COVID-19 and more than 4.3 million deaths. COVID-19 

is a complex multisystem disorder [1]. Common symp-
toms of COVID-19 include fever, fatigue and dry cough. 
Severe infections can lead to pneumonia, severe acute 
respiratory syndrome, kidney failure, and even death [2]. 
In addition to respiratory symptoms, COVID-19 can also 
experience oral/pharyngeal manifestations, such as sore 
throat, dry mouth, loss of taste, burning sensation and 
tongue enlargement [3, 4], and gastrointestinal symptoms 
like diarrhea, nausea, and vomiting [5, 6].

The pharynx is one of the main entrance into the gas-
trointestinal tract for microorganisms. Both the phar-
ynx and gastrointestinal tract are recognised as crucial 
sites for the pathogenesis of SARS-CoV-2 infection [7, 
8]. SARS-CoV-2 infection and invasion in these sites 
may cause local microbiome dysbiosis and thus lead to 
secondary bacterial infection [9–11]. The host-microbe 
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interactions in the two sites are complex and key for 
the understanding of the physiology and mechanism of 
the immune response and microbiome during SARS-
CoV-2 infection [8, 12, 13]. Each disease has its own 
specific microbial characteristics. Metagenomic next-
generation sequencing (mNGS) analysis has revealed 
the pharyngeal microbiota alterations of SARS-COV-2 
infected patients [8, 12, 14, 15], and oropharyngeal 
microbiota alterations were associated with COVID-19 
severity [12]. A recent study [7] found that several oral 
microbial markers (like TM7, Haemophilus, Actinomy-
ces, Prevotella, Oribacterium and Fusobacterium) could 
specifically identify patients with COVID-19 from the 
health controls in the random forest model.

Fusobacterium nucleatum (F. n), an anaerobic oral 
commensal associated with periodontitis, is usually 
found in respiratory and gastrointestinal tracts [16–19]. 
F. n is considered as a biomarker of chronic obstructive 
pulmonary disease patients’ lung function deterioration 
[20] and the development of inflammatory bowel dis-
ease and even colorectal cancer [21, 22]. Emerging evi-
dence has demonstrated that the culture supernatant 
of F. n induced the up-regulation of ACE2 expression 
in human respiratory epithelial cells and the release 
of pro-inflammatory cytokines IL-6 and IL-8 [23] and 
thus F. n may play a synergistic role in the progres-
sion of SARS-CoV-2 infection [24]. Faecalibacterium 
prausnitzii (F. p) is an beneficial commensal anaerobe. 
Tang L et  al. reported that the abundance of F. p sig-
nificantly decreased in the critical COVID-19 patients 
compared with the general patients [25]. Interestingly, 
some microbes correlated inversely with SARS-CoV-2 
loads in fecal samples from COVID-19 patients could 
downregulate the expression of ACE2 [26], suggesting 
that SARS-CoV-2 may inhibit microorganisms that are 
unfavorable for its infection. The concept of F. n and/
or F. p serving as non-invasive diagnostic tools for spe-
cific diseases has been demonstrated in many studies 
[20, 27]. Act as the “harmful” and “beneficial” bacteria 
respectively [27], the potential roles of F. n and F. p in 
COVID-19 became an interesting future research topic.

In our study, we examined the carriage of F. n in 
pharyngeal swab samples of COVID-19 patients and 
healthy controls by quantitative real-time polymerase 
chain reaction (qPCR). We also investigated the relative 
abundance of F. n and F. p in the SARS-CoV-2 positive/
negative fecal samples of COVID-19 patients. Besides, 
metagenomic next-generation sequencing (mNGS) was 
conducted in 10 randomly selected COVID-19 patients’ 
pharyngeal swabs to characterize the microbial compo-
sition and diversity, and then the correlation of the viral 
loads and the common bacteria were performed.

Materials and methods
Sample collection
A total of 64 laboratory-confirmed COVID-19 cases 
and 19 healthy controls were included in this study. All 
the participants are the local residents of Sichuan prov-
ince, who share similar living environments and dietary 
habits. Eighty-three samples, including 38 pharyngeal 
swab samples (28 COVID-19 patients and 10 healthy 
controls) and 45 fecal samples (36 COVID-19 patients 
and 9 healthy controls) were collected. The samples 
were collected only once for each participant. Of the 36 
fecal samples from patients, 26 were tested positive for 
SARS-CoV-2 and 10 were negative based on our previ-
ous study [28]. All samples were stored in sterile con-
tainers frozen at − 80 °C instantly after heat-inactivated 
[29]. The collection, transportation, storage and test-
ing of samples were strictly managed and conducted 
in the biosafety level-2 (BSL-2) and biosafety level-2 
enhanced (BSL-2 +) facilities of Sichuan Provincial 
Center for Disease Control and Prevention(CDC) with 
full personal protective equipment according to highly 
pathogenic microorganisms of type II according to the 
Protocol on Prevention and Control of COVID-19 (sev-
enth edition) [30].

All the participants were diagnosed after laboratory 
confirmation and categorized into four disease severity, 
i.e., asymptomatic infection (individuals with positive 
detection by reverse transcriptase polymerase chain 
reaction and no symptoms), mild illness (patients with 
mild clinical symptoms and normal CT imaging), mod-
erate illness (Patients with fever and mild respiratory 
symptoms, radiological findings of pneumonia, and 
normal range of vital signs), and severe illness (patients 
with at least one of the the following criteria: respira-
tory distress ≥30/min; oxygen saturation ≤ 93% in rest-
ing state; arterial partial pressure of oxygen [PaO2]/ 
fraction of inspired oxygen [FiO2] ≤300 mmHg), 
according to the guidelines of diagnosis and treatment 
of COVID-19 (trial version 7) [31].

Nucleic acid extraction
All the samples were thawed at room temperature and 
pre-treated as follows. Two hundred milligram of feces 
were suspended in 2 mL TRIzol (Trizol@ Reagent, 
Invitrogen, USA), keep still for 10 min and then the 
supernatant was collected. The pharyngeal swab sam-
ples were oscillated on a shaker for 30 s, and the swab 
lotions were collected. Co-extraction of genomic DNA 
& total RNA from fecal and pharyngeal swab samples 
was carried out with NP968 Nucleic Acid Extraction 
System (Xi’an Tianlong Science & Technology Co., 
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LTD, Xi’an, China). All samples were stored frozen at 
− 20 °C.

Quantitative real‑time PCR (qPCR)
qPCR was used to determine the relative abundance of 
bacteria. qPCR was carried out on the ABI 7500 fast 
real-time fluorescent quantitative PCR system (Thermo 
Fisher Scientific) using QIAampDNA Micro Kit (QIA-
GEN Sciences, Maryland USA) following the manu-
facturer’s instructions. The following sequences of 
primers we used were as previously described [32, 33]: 
F. n, forward 5′-CAC​AAG​CTG​ACG​CTG​CTA​GA-3′, 
reverse 5′-TTA​CCA​GCT​CTT​AAA​GCT​TG-3′(232 bp); 
F. p, forward 5′-CCA​TGA​ATT​GCC​TTC​AAA​ACT​
GTT​-3′, reverse 5′-GAG​CCT​CAG​CGT​CAG​TTG​GT-3′ 
(141 bp). The relative abundances of F. n and F. p were 
calculated in reference to universal 16S rDNA, deter-
mined by qPCR using the following primers according 
to Caporaso et al. [34]: forward 5′-GTG​CCA​GCMGCC​
GCG​GTAA-3′, reverse 5′-GGA​CTA​CHVGGG​TWT​
CTAAT-3′ (291 bp). All primers were synthesized San-
gon Biotech (Shanghai, China) Co., Ltd. Each sample 
was analyzed in triplicate in a single batch, and the 
average of the cycle threshold (Ct) values was calcu-
lated for the following analysis. The abundance was 
calculated as a relative unit normalized to the universal 
16S rDNA of the same sample, using the 2−ΔCt method 
(ΔCt = mean Ct the target bacterial gene − mean Ct 16S rDNA) 
[35, 36]. The Ct value is inversely associated with the 
amount of the target bacterial DNA, while the −ΔCt 
value is directly proportional to that; therefore, the 
higher the −ΔCt value, the greater the amount of the 
target bacterium was in the pharyngeal swab samples.

Library construction and sequencing
Pharyngeal swab samples of 10 COVID-19 patients 
were randomly selected for metagenomic sequencing. 
The extracted RNA was quantified using a Qubit RNA 
High-Sensitivity kit (Invitrogen, USA) before library 
construction and sequencing. The library preparation 
was performed by KAPA Stranded RNA-Seq Library 
Preparation Kit (Kapa Biosystems, USA) following the 
manufacturer’s operational manual. Specifically, 10 μL 
total RNA was used as input and was fragmented by 
heating (94 °C, 8 min) into 150 ~ 200 nt fragments. The 
first-strand cDNA was synthesized in the presence of 
specific chemicals to ensure that only RNA was used as 
templates. Double strand cDNA was purified with Agen-
court AMPure XP beads (Beckman Coulter, USA) after 
the reaction DNA library was constructed through end-
repair, dA-tailing, adaptor-ligation, and 15 cycles PCR 
amplification. Subsequently, the resulting libraries were 

denatured, neutralized, and subject to 150 bp pair-end 
sequencing on an Illumina NovaSeq platform (Illumina, 
USA) by Chengdu HitGen Pharmaceuticals Inc., China. 
For each sample, 100 million reads were assigned and the 
Q30 of all runs ranged from 88 to 91%.

Raw reads were preprocessed using the metaWRAP-
Read_qc module [37] with TrimGalore (https://​www.​
bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​trim_​galore/) 
and BMTagger (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​agarw​
ala/​bmtag​ger/) enabled to remove adapters and host 
sequences, respectively. Sequences aligned to the SILVA 
rRNA gene database (https://​acade​mic.​oup.​com/​nar/​
artic​le/​41/​D1/​D590/​10692​77/) were filtered from the 
processed datasets using Bowtie2 [38] before the de novo 
assembly (via MetaWRAP assembly module). Only con-
tigs longer than 500 bp were kept for downstream analy-
sis. Kraken2 [39] was used for taxonomic classification 
on the contigs, followed by Bracken [40] for the calcula-
tion of the species abundance.

Sequence data process
The sequence data were processed through the follow-
ing steps: a) The bacterial operational taxonomy units 
(OTUs) were then compared among samples by mothur 
software [41]. b) The relative abundances of bacterial taxa 
at the species level were calculated. The top 20 bacteria 
species were displayed.

Statistical analysis
All continuous variables were presented as mean ± SD 
and categorical variables as percentage. All statistical 
analyses were carried out using the SPSS 26.0 software 
and GraphPad Prism 8.0 software. Normally distributed 
data were compared by t-test or one-way ANOVA, and 
non-normally distributed data were analyzed by Mann–
Whitney U test. Logistic regression was used to screen 
and verify risk factors for SARS-CoV-2 infection. Pearson 
correlation analysis was used to analyze the correlation 
between the relative abundance of the other bacteria and 
SARS-CoV-2 or F. n. Biomarker performance was ana-
lyzed by calculating the area under the receiver operating 
characteristic (ROC) curve (AUC). Significant differences 
were considered at P < 0.05.

Results
Characteristics of the participants
For the healthy individuals who contributed pharyn-
geal swab samples, the median age was 43.5 years (inter-
quartile range [IQR]: 31.5 ~ 47.5), with a male:female 
sex ratio of 1; the healthy fecal donors’ median age was 
31.0 years (IQR: 28.0 ~ 44.0), with a male:female sex ratio 
of 0.8. Moderate illness accounted for the largest propor-
tion of all the enrolled cases (66.67% ~ 70.43%), which 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/
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was consistent with actually observed tendency [42, 43]. 
Asymptomatic infection, mild and severe ilness were less 
than 5% each. Data including age, sex, disease severity, 
the date of symptom onset (the day when the symptom 
was noticed), the sampling day and sampling intervals 
of the confirmed patients were registered (Table 1, Sup-
plementary Tables  1–2). Indeed, retrospective cohort 
studies indicate that clinical course provides an objec-
tive basis for the egregation of patients into groups, and 
7 days is an time node of great clinical importance [5, 43, 
44]. Although we intended to group the samples by the 
sampling intervals (intervals from symptom onset to the 
sampling time) as ≤7 d, 7–14 d and > 14 d, the numbers 
of pharyngeal swab samples in the latter two groups were 
too small (n = 3 and 1, respectively) for a proper statisti-
cal analysis. Therefore, the latter two groups were com-
bined and subsequently analyzed as a single group.

Changes of the pharyngeal F. n in COVID‑19 patients
The −ΔCt values of the COVID-19 patients ranged from 
−9.03 to 16.52, and those of the healthy ranged from 
−2.78 to 3.50. As shown in Fig.  1A, the −ΔCt value of 
the confirmed cases (6.33 ± 5.47) was markedly higher 
than that of healthy controls (− 0.12 ± 3.77) (P < 0.05), 
which means that the relative abundance of pharyngeal 

F. n in COVID-19 patients was significantly higher than 
that in healthy controls (Fig. 1B). To analyze the impact 
of sampling intervals on the relative abundance of phar-
yngeal F. n, the patients were divided into two groups 
(≤ 7 d and > 7 d) according to the time interval from 
symptom onset to the sampling time. It was shown that 
within 7 days after the onset, the average − ΔCt value of 
COVID-19 patients was higher than that of healthy con-
trols (P < 0.05). The pharyngeal F. n increased in the first 
week of illness (Fig.  1C, D). Interestingly, sex difference 
was found in the pharyngeal F. n of COVID-19 patients, 
and the average − ΔCt value of F. n in male patients was 
10 times more than that in females (P < 0.05) (Fig. 1E, F). 
Furthermore, to determine the changes of pharyngeal F. n 
in patients with different severity of illness, we compared 
the −ΔCt level (Fig. 1G) and relative abundance (Fig. 1H) 
in those with asymptomatic (n = 4), mild (n = 3) and 
moderate illness (n = 20), and healthy controls (n = 10). It 
revealed that overall comparisons showed significant dif-
ferences, while subsequent pairwise comparisons showed 
no significant differences (P >   0.05). In addition, the −
ΔCt values of confirmed cases from different age groups 
(≤ 30 yrs., 31 ~ 50 yrs., and > 50 yrs) showed no significant 
difference between these groups (P >  0.05).

Relationship between pharyngeal F. n and risk of viral 
infection
In the non-adjusted model, increased abundance of phar-
yngeal F. n was associated with a higher risk of a positive 
SARS-CoV-2 test (odds ratio [OR] = 1.29, 95% confidence 
interval [CI]: 1.06 ~ 1.57, P < 0.05). In the adjusted model 
(adjusted age and sex), the association between −ΔCt 
value and SARS-CoV-2 positive risk had a similar trend, 
but with a slightly raised magnitude (adjusted OR = 1.32, 
95% CI = 1.06 ~ 1.65, P < 0.05), indicating that when the 
−ΔCt value of pharyngeal F. n increased by 1 (the rela-
tive abundance of F. n increased by 2), the risk of SARS-
CoV-2 infection increased by 1.32 times.

The relative abundance of F. n and F. p in the feces 
of COVID‑19 patients didn’t alter much
The relative abundance of fecal F. n and F. p in the healthy 
and confirmed cases was detected by qPCR. Though 
there was no significant difference (P > 0.05), the −ΔCt 
values of fecal F. n and F. p in the confirmed case group 
were slightly smaller than those of healthy controls 
(Fig. 2A, B). As shown in Fig. 2C and D, when comparing 
different severity with healthy controls, no significant dif-
ference in the −ΔCt values of both F. n and F. p was found 
(P > 0.05). Furthermore, we analyzed the 36 COVID-
19 patients with SARS-CoV-2 RNA positive (n = 26) or 

Table 1  Demographics and baseline characteristics of COVID-19 
patients

Abbreviations: COVID-19 coronavirus disease 2019, IQR interquartile range
a  The analysis was unavailable in one of the pharyngeal swab samples and two 
of the fecal samples due to missing data on the onset time or sampling time

Pharyngeal swab
samples (n = 28)

Fecal samples
(n = 36)

Age (yrs) - medium (IQR) 36.0 (28 ~ 49.5) 46.5 (34.3 ~ 56.0)

Age groups – No. (%)
   ≤ 30 yrs 11 (39.29) 8 (22.22)

  31 ~ 50 yrs 10 (35.71) 15 (41.67)

  >50 yrs 7 (25.00) 13 (36.11)

Sex – No. (%)
  Male 20 (71.43) 18 (50)

  Female 8 (28.67) 18 (50)

Severity of illness – No. (%)
  Asymptomatic infection 4 (14.29) 3 (8.33)

  Mild illness 4 (14.29) 4 (11.11)

  Moderate illness 20 (71.43) 24 (66.67)

  Severe illness 0 5 (13.89)

Sampling intervals a –No. (%)
   ≤ 7 d 23 (85.2) 9 (26.5)

   > 7 d 4 (14.8) 25 (73.5)

SARS-CoV-2 RNA detection (%)
  Positive (+) 28 (100) 26 (72.22)

  Negative (−) 0 (0) 10 (27.78)
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negative (n = 10) in feces and found no significant differ-
ence in the −ΔCt values of fecal F. n and F. p among the 
two groups and healthy controls (P > 0.05) (Fig. 2E, F).

Fecal F. n of COVID‑19 patients decreased with sampling 
intervals prolongation
The confirmed cases were divided into two groups (≤ 7 d 
and > 7 d) according to the feces sampling intervals. It was 
shown that the fecal F. n of confirmed cases within 7 days 
after the onset was still at a healthy level (P > 0.05), but 
it was significantly lower after 7 days (P < 0.05) (Fig. 3A). 
In other words, in the cases with shorter feces sampling 
intervals (≤ 7 d), the relative abundance of fecal F. n had 
not changed significantly compared with the healthy 
individuals, but it decreased with the interval prolonga-
tion (Fig.  3B). Whereas, no significant difference was 
found in fecal F. p between the confirmed patients and 
the healthy controls (P > 0.05) (Fig. 3C and D).

Neither fecal F. n nor F. p influenced the results 
of SARS‑CoV‑2 RNA test
Univariate logistic regression models were devel-
oped to explore the influence of fecal F. n or F. p on the 
results of SARS-CoV-2 RNA detection. First, we took 

the SARS-CoV-2 RNA test results in pharyngeal swabs 
of both the patients and the healthy indivduls as the 
dependent variables, and the −ΔCt values of fecal F. n 
or F. p as the independent variable for univariate logis-
tic regression analysis. The results showed that neither 
fecal F. n nor F. p were independent risk factors of posi-
tive pharyngeal swabs (P > 0.05) (Table 2). Moreover, the 
influence of fecal F. n or F. p on the results of fecal SARS-
CoV-2 RNA test in COVID-19 patients (i.e., negative or 
positive) was also analysed. However, it’s found that fecal 
F. n and F. p did not influence the results of fecal SARS-
CoV-2 RNA testing (P > 0.05) (Table 3).

Identification of a microbial classifier for COVID‑19 based 
on the microbial candidates
A classifier to distinguish COVID-19 patients from 
the healthy controls based on the pharyngeal F. n 
was constructed and achieved an AUC of 0.843 (95% 
CI = 0.688 ~ 0.940, P < 0.001) (Fig. 4A). A value of 0.60 to 
0.70 for AUC indicates that the predictive ability of the 
model is poor, and 0.8 to 0.9 is considered excellent [45]. 
Our data reveal that the pharyngeal F.n possessed a good 
accuracy in distinguishing COVID-19 patients from the 
healthy controls, the cutoff -ΔCT value for maximum 

Fig. 1  Quantitative detection of pharyngeal F. n in COVID-19 patients and healthy controls. The −ΔCt values and the relative abundance of 
pharyngeal F. n in the confirmed cases were compared with those in healthy controls (A, B), and were compared according to the sampling 
intervals (C, D), sex (E, F), and severity of illness (G, H). *P < 0.05
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sensitivity (71.43%) and specificity (100%) was 3.50. The 
sensitivity and specificity of various pharyngeal F.n cut-
off -ΔCT values and 95% CI are shown in Table 4. How-
ever, the fecal F. n (Fig. 4B) and F. p (Fig. 4C) cannot be 
used for prediction because of their poor discrimination 
ability.

Enrichment of opportunistic pathogens in the pharyngeal 
swabs of COVID‑19 patients
The number of OTUs in 10 COVID-19 patients was 
613 ± 266. And the relative abundance of SARS-CoV-2 

was 0.077% (9#), 0.017% (12#), 0.008% (17#), 0.012% (19#), 
0.002% (23#), 0.029% (25#), 0.021% (30#), 0.009% (31#), 
and 1.982% (32#), respectively. The pharyngeal microbi-
ome of each COVID-19 patient was dominated by the 
top 20 species, accounting for 28.12 to 58.55% of the total 
richness (Fig.  5A). The predominant bacterial composi-
tion in the pharyngeal swabs of the confirmed patients 
included Prevotella melaninogenica (4.62% ± 3.17%), 
Schaalia odontolytica (3.85% ± 3.78%), Rothia mucilagi-
nosa (3.62% ± 3.24%), Neisseria subflava (3.06% ± 3.33%), 
and Veillonella dispar (2.89% ± 2.29%). Interestingly, 7 

Fig. 2  Quantitative detection of fecal F. n and F. p in COVID-19 patients and healthy controls. The −ΔCt values of fecal F. n and F. p in the confirmed 
cases were compared with healthy controls (A, B), and were compared according to the severity of illness (C, D). COVID-19 patients with either 
negative (−) or positive (+) SARS-CoV-2 RNA in the feces were compared with the healthy controls (E, F)
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out of 10 samples harbored a high abundance of Delftia 
acidovorans (6.65% ± 13.24%), especially for sample 24#, 
which showed the least amount of OTUs and the highest 
relative abundance of Delftia acidovorans (38.87%).

To explore the relationship of the viral loads with the 
common bacteria in the pharynx of COVID-19 patients, 
Pearson’s correlation analysis was performed. As shown 
in Fig.  5B, the viral loads in the pharyngeal swabs of 
COVID-19 patients showed a positive linear correla-
tion with the abundance of Streptococcus pneumoniae, 
Streptococcus thermophilus, Acinetobacter baumannii, 
and Streptococcus constellatus (P < 0.05). Besides, the 
abundance of F. n correlated with Treponema denticola 
(P < 0.05).

Discussion
Virus-bacteria interactions are complicated. Our study 
reveal that the pharyngeal F. n of COVID-19 patients 
was increased, which deserves special attention. The 
increased abundance of pharyngeal F. n may promote 

Fig. 3  Quantitative detection of fecal F. n and F. p in different sampling intervals. The −ΔCt values and relative abundance of fecal F. n (A, B) and F. p 
(C, D) in different sampling intervals were analyzed. *P < 0.05

Table 2  Influence of fecal F. n and F. p on the results of 
pharyngeal swab SARS-CoV-2 RNA detection

Abbreviations: F. n Fusobacterium nucleatum, F. p Faecalibacterium prausnitzii, 
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, OR odds ratio, CI 
confidence interval

Variables OR 95%CI for OR P value

F. n 0.88 0.75 ~ 1.04 0.125

F. p 0.87 0.73 ~ 1.051 0.151

Table 3  Influence of fecal F. n and F. p on the results of fecal 
SARS-CoV-2 RNA detection

Abbreviations: F. n Fusobacterium nucleatum, F. p Faecalibacterium prausnitzii, 
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, OR odds ratio, CI 
confidence interval

Variable OR 95%CI for OR P value

F. n 1.08 0.92 ~ 1.26 0.386

F. p 1.00 0.85 ~ 1.19 0.965
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SARS-CoV-2 infection, for F. n can induce ACE2 
expression and proinflammatory cytokine production 
and thus promote SARS-CoV-2 invasion and infection 
in oral, respiratory and intestinal epithelial cells [23]. 
Dysbiosis of microbiome in the oral cavity may impact 
distant microbiomes via the oral–lung or oral–gut axis 
[46]. Several studies reported that F. n was detected in 
the lungs of ICU patients [47, 48]. Increasing evidence 
has shown that F. n is closely related to the develop-
ment of inflammatory bowel disease and even colorec-
tal cancer [21, 22]. Hence, we can rationally infer that 
bacterial coinfection after translocation of F. n would 
aggravate COVID-19. SARS-CoV-2 infection of oral 

cavity would lead to local microbial dysbiosis [7], and 
thus make the oral cavity as a reservoir for pathogens. 
Since the abundance of pharyngeal F. n in COVID-19 
patients increased, more focus should be given to pre-
venting periodontal diseases and systemic diseases [49].

Epidemiological data have shown that the morbidity, 
severity and mortality rates of COVID-19 are higher in 
males than females [50]. Several possible factors such as 
the higher expression of ACE2 in male, and sex-based 
immunological differences driven by sex hormone and X 
chromosome may be involved [51]. Besides, studies have 
revealed significant sexual differences in oral hygiene 
worldwide [52–54]. Importantly, we found that the phar-
yngeal F. n of SARS-CoV-2-positive males was higher 
than that of females. Based on the above researches and 
our findings, we speculate that poor oral health may lead 
to higher morbidity and mortality of COVID-19 in men.

Retrospective cohort studies suggested that 1 week 
after onset of symptoms, patients with COVID-19 may 
deteriorate rapidly [5, 43, 44]. Notably, the highest SARS-
CoV-2 load was detected in the upper respiratory tract 
at the time of symptom onset or in the first week of ill-
ness [55]. Interestingly, in our results, the pharyngeal F. n 
was higher than that of healthy controls in the first week 
of illness. We speculate that pharyngeal F. n may associ-
ated with the severity or viral load. Unfortunately, our 
sequencing data did not reveal the correlation. Further 
large-sample longitudinal studies are required to con-
firm this speculation. What’s more, our findings valu-
able information for the analysis of the pharyngeal and 
gut microbiota profiles of COVID-19 patients at differ-
ent time points after SARS-CoV-2 infection. However, 
understanding whether F. n or F. p alters in the course of 

Fig. 4  Diagnostic outcomes for F. n and F. p in the diagnosis of COVID-19. ROC curves for the diagnostic strength to identify COVID-19 from healthy 
controls with indicator of pharyngeal F.n (A), fecal F. n (B), and fecal F. p (C), respectively. AUC, area under the curve

Table 4  Sensitivity and specificity according to various cutoff 
values for the -ΔCt of pharyngeal F.n in qPCR to predict COVID-19

Abbreviations: Ct cycle threshold, F. n Fusobacterium nucleatum, qPCR 
quantitative real-time polymerase chain reaction, COVID-19 coronavirus disease 
2019, CI confidence interval

-ΔCt cutoff Sensitivity (95% CI) Specificity (95% CI)

≥ −9.41 100 (87.7 ~ 100.0) 0 (0.0 ~ 30.8)

> − 9.41 100 (87.7 ~ 100.0) 10 (0.3 ~ 44.5)

> − 9.03 96.43 (81.7 ~ 99.9) 10 (0.3 ~ 44.5)

> − 2.78 96.43 (81.7 ~ 99.9) 20 (2.5 ~ 55.6)

> − 1.42 89.29 (71.8 ~ 97.7) 20 (2.5 ~ 55.6)

> − 1.27 89.29 (71.8 ~ 97.7) 30 (6.7 ~ 65.2)

> − 0.88 85.71 (67.3 ~ 96.0) 30 (6.7 ~ 65.2)

> 0.27 85.71 (67.3 ~ 96.0) 50 (18.7 ~ 81.3)

> 1.91 78.57 (59.0 ~ 91.7) 50 (18.7 ~ 81.3)

>  2.40 78.57 (59.0 ~ 91.7) 90 (55.5 ~ 99.7)

>  2.96 71.43 (51.3 ~ 86.8) 90 (55.5 ~ 99.7)

>  3.50 71.43 (51.3 ~ 86.8) 100 (69.2 ~ 100.0)
>  16.52 0 (0.0 ~ 12.3) 100 (69.2 ~ 100.0)
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Fig. 5  The pharyngeal microbiome analysis of patients with COVID-19. The top 20 pharyngeal microbial species composition in each pharyngeal 
sample (A). Correlation between pharyngeal bacteria and viral loads in COVID-19 patients (B)
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COVID-19 will require larger cohort studies, with a focus 
on longitudinal responses following initial infection.

A diverse gut microbiome promotes the host health, 
and commensal microbiota can inhibit the invasion and 
growth of pathogens [56]. Previous studies showed that 
COVID-19 patients demonstrated a depletion of F. p [25], 
and the abundance of F. p was inversely correlated with 
disease severity [26]. Our study, however, found that the 
abundance of fecal F. p in the infected individuals was not 
significantly different from those of the healthy, which 
may partially due to the distinct clinical classification and 
sampling time.

The dominant oral commensal bacteria in the phar-
yngeal swabs of the confirmed patients, like Prevotella 
melaninogenica, Schaalia odontolytica, Rothia muci-
laginosa, Neisseria subflava, and Veillonella dispar, was 
consistent with what previous studies reported [57, 58]. 
Notably, Prevotella melaninogenica and Rothia mucilagi-
nosa were found overrepresent in the lungs of COVID-
19 patients [58, 59]. Additionally, functional enrichment 
analysis found that over-expressed Prevotella proteins 
were related to the aggravation of COVID-19 [60], sug-
gesting that Prevotella might play an important role in 
the progression of COVID-19. Rothia mucilaginosa was 
reported to be associated with pneumonia in patients 
with chronic obstructive pulmonary disease (COPD) 
[61]. Unsurprisingly, opportunistic respiratory patho-
gens, including Streptococcus pneumoniae, Streptococcus 
thermophilus, Acinetobacter baumannii, and Streptococ-
cus constellatus, were found to be positively correlated 
with viral loads, which in turn explains the respiratory 
disorders following viral infection. These results dem-
onstrate that vigilance should be maintained when res-
piratory virus infection occurs, and attention should be 
paid to the secondary bacterial infection. We also found 
that the relative abundance Delftia acidovorans signifi-
cantly increased in the pharyngeal swabs of SARS-CoV-
2-infected individuals, and it was dominant (38.87%) in 
sample 24. As reported, Delftia acidovorans was found 
in tracheal lavage samples of COVID-19 patients admit-
ted to intensive care units, with abundance of almost 
6% [62]. It is usually nonpathogenic, yet catheter-related 
infection and pneumonia with lung cavity formation have 
been reported [63, 64]. Further studies are needed to 
explore the correlation between Delftia acidovorans and 
symptoms of COVID-19 such as coagulopathy and dis-
seminated intravascular coagulation, and to illustrate the 
potential mechanism of this dominant species and the 
decrease of OTUs.

Moreover, our study suggested that the pharyngeal 
F. n could specifically identify patients with COVID-19 
from the healthy controls, and thus it may be a promis-
ing candidate indicator (AUC = 0.843) for SARS-CoV-2 

infection. Similar to our study, a recent study [7] ana-
lysed tongue-coating samples and found that several oral 
microbial markers (like TM7, Haemophilus, Actinomy-
ces, Prevotella, Oribacterium and Fusobacterium) could 
serve as an auxiliary tool for the non-invasive diagnosis 
of COVID-19. Previous investigations have demonstrated 
the diagnostic value of oral microbiome for colorectal 
cancer [27], rheumatoid arthritis [65] and even viral dis-
eases [12]. Meanwhile, we first proposed that the phar-
yngeal F. n could be a reliable indicator for prospective 
epidemiological monitoring and large-scale screening of 
COVID-19. We concede that large prospective cohort 
studies, which account for possible confounders such as 
age, sex, systemic diseases and oral microbiota composi-
tion, are needed to verify the diagnostic efficacy.

Conclusions
In summary, the present study provide potentially signifi-
cant clinical findings. We reported that the pharyngeal 
F. n was significantly increased in COVID-19 patients. 
Thus, more attention from the public and medical com-
munities is warranted for the alterations in the oral 
microbiome of COVID-19. Effective oral hygiene meas-
ures and promotions are necessary to avoid the coinfec-
tion by oral microorganisms and the following disease 
aggravation.
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