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Abstract 

Background:  Microbiome big data from population-scale cohorts holds the key to unleash the power of micro-
biomes to overcome critical challenges in disease control, treatment and precision medicine. However, variations 
introduced during data generation and processing limit the comparisons among independent studies in respect of 
interpretability. Although multiple databases have been constructed as platforms for data reuse, they are of limited 
value since only raw sequencing files are considered.

Description:  Here, we present MetaGeneBank, a standardized database that provides details on sample collection 
and sequencing, and abundances of genes, microbiota and molecular functions for 4470 raw sequencing files (over 
12 TB) collected from 16 studies covering over 10 types of diseases and 14 countries using a unified data-processing 
pipeline. The incorporation of tools that enable browsing and searching with descriptive attributes, gene sequences, 
microbiota and functions makes the database user-friendly. We found that the source of specimen contributes more 
than sequencing centers or platforms to the variations of microbiota. Special attention should be paid when re-ana-
lyzing sequencing files from different countries.

Conclusions:  Collectively, MetaGeneBank provides a gateway to utilize the untapped potential of gut metagenomic 
data in helping fighting against human diseases. With the continuous updating of the database in terms of data vol-
ume, data types and sample types, MetaGeneBank would undoubtedly be the benchmarking database in the future 
in respect of data reuse, and would be valuable in translational science.
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Background
The microbial cells that colonize the human body, 
such as mucosal and skin environments, are at least as 
abundant as our somatic cells [1], and contain far more 
genes than our human genome. Among them, the gut 
microbiome has gained particular interest due to its 
large volume, high diversity and relevance to human 

health and disease. Thanks to metagenomic approaches 
that allow to study the structure, function and inter-
cellular interactions of gut microbial communities, we 
know that changes in the microbiome, the microbial 
metabolome and their interactions with the immune, 
endocrine and nervous systems are associated with a 
wide array of illness, such as inflammatory bowel dis-
ease [2–5], obesity [6], cancer [7], type 2 diabetes [8, 9], 
and major depressive disordes [10, 11]. Nowadays, gut 
microbiome research is transitioning from a descriptive 
to a causal and finally to a translational science. Numer-
ous independent studies have found specific microbial 
fingerprints that may be useful in providing markers for 
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disease diagnosis and prognosis [12, 13], and new ideas 
for disease intervention and treatment [14–17]. It is 
also reported that a full spectrum of sources generated 
from collaborative projects such as Human Microbi-
ome Project (HMP) [18] can generate meaningful inter-
pretations that are impossible with independent studies 
[19]. Such results indicated that, as a data driven sci-
ence [20], microbiome big data holds the key to unleash 
the power of microbiome to overcome critical chal-
lenges in disease control, treatment and even precision 
medicine [21].

Numerous reports have indicated that comparisons 
among independent studies are limited in respect of 
interpretability due to the batch effects [22] and known 
differences associated with data generation and process-
ing procedures [23–25] utilized in independent studies. 
As a potential solution, multiple databases such as Euro-
pean Bioinformatics Institute (EBI) [26–28], Sequence 
Read Archive (SRA) [29] in National Center for Biotech-
nology Information (NCBI) are available to deposit raw 
metagenomic sequencing files generated in independent 
studies. gcMeta [19], a global catalogue of metagenom-
ics platform developed for archiving, standardization 
and analysis of microbiome data, also provides the link 
address of raw sequencing reads in databases such as 
EBI [26]. However, carrying out meta-analyses using 
metagenomic data deposited in above databases is still 
challenging at present. In metagenomic studies, com-
plex data-generation and bioinformatic processing 
procedures are required preceding the calculation of 
compositional profiles and ecological indices. The data-
generation process consists of multiple steps including 
sample collection, DNA extraction, library preparation 
and sequencing, while the bioinformatic processing pro-
cess involves quality control, removing host contami-
nation, assembly, gene prediction, taxonomical and 
functional annotation and so on [30]. Each of the above 
steps is subject to technical variability [31]. Actually, 
independent studies have almost exclusively used their 
own methodology and a demographically distinct cohort. 
It is therefore necessary to standardize all sequencing 
files with the same pipeline to prelude the variations 
introduced by bioinformatic processing protocols, and 
take a consideration of detailed descriptions on data 
generation process in independent studies in respect of 
meta-analyses. However, existing databases store only 
raw sequencing files. The lack of details on data gen-
eration process and the undone laborious tasks of data 
processing using a unified bioinformatic pipeline weak-
ens the value of them in respect of data reuse. These, in 
together with the ongoing effort to better standardize 
and integrate data resources to better understand micro-
bial dynamics in human systems [32], confirm the urgent 

need of a new curated, standardized and user-friendly 
database.

Here, we present MetaGeneBank, a standardized data-
base to study deep sequenced metagenomic data from 
human fecal specimen. The aim of the database is to 
provide a gateway to utilize the untapped potential of 
gut metagenomic data in disease control and treatment. 
To build the database, we collected a total of 4470 deep 
sequenced metagenomic sequencing files from human 
fecal specimen and corresponding details on data genera-
tion process provided in independent studies published 
prior to September 2018. More than 10 types of human 
diseases have been covered in current version of Meta-
GeneBank. In response to the calling to make all scien-
tific data ‘findable, accessible, interoperable and reusable’ 
(FAIR) [33], all sequencing files are scaled by a unified 
bioinformatic processing pipeline and a unified non-
redundant gene list covering genes from all sequenc-
ing files. The resulting multi-level processed data such 
as abundance tables for genes, microbiota and molecu-
lar functions in KEGG orthology (KO) as well as raw 
sequencing files, are available via a web interface (http://​
tcm.​zju.​edu.​cn/​mgb) for free search and download. It 
should be noted that all the processed data in the data-
base are comparable and reusable. The tight connec-
tions with tools that allows user-friendly data search and 
export, data illustration using PCA (principal component 
analysis) makes it a powerful resource for metagenomic 
data integration and reuse.

Construction and content
Design of MetaGeneBank database
The methodology of the data production for MetaGene-
Bank is illustrated in Fig. 1. Figure 1(a) shows the method 
used for collecting, processing, annotating the deep 
sequenced metagenomic sequencing files, and the infor-
mation and tools provided in MetaGeneBank. Figure 1(b) 
illustrates the scheme of the database. The major data 
record types are ‘Studies’, ‘Assays’, ‘Samples’ and ‘Data’. 
‘Studies’ summarizes the details of each study, such as 
article title, article abstract, data repository, and disease 
type. ‘Assays’ illustrates the information of assays that 
have been carried out for each study, including meas-
urement type, technology type, technology platform, 
release date and so on. ‘Samples’ demonstrates the clini-
cal indices of samples used for each assay in each study. 
‘Data’ hosts the details of each data, such as the links of 
raw sequencing data and the summary statistics of bioin-
formatic processing process for each sequencing file. To 
date, MetaGeneBank has archived a total of 4470 deep 
sequenced metagenomic sequencing files in gzip format 
(more than 12 TB) collected from 17 assays of 16 stud-
ies carried out in over 14 different countries to associate 
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human fecal microbiota with more than 10 types of dis-
eases [5, 30, 34–45]. Detailed information about the data 
source is shown in Table 1.

Data acquisition, metadata reconstruction
All the deep sequenced metagenomic datasets were col-
lected by searching PubMed for human gut metagenomic 
articles. Considering that the bioinformatic process-
ing workflow is time-consuming, only references before 
September 2018 were considered in this study. After 
removing articles in which raw sequencing files or group-
ing information were not available, we retrieved study 
accession numbers and metadata from the retained arti-
cles. The study accession numbers were used to retrieve 
sequencing read files deposited in databases such as EBI. 
For samples which have both pair-end and single-end 
sequences, only pair-end sequence files were involved in 
the database. Each raw sequence file consists of one or 
two FASTQ files depending on its library construction 

method. The study metadata contains basic information 
about the biological samples that authors provided. The 
downloaded study metadata was further curated and 
reformatted in txt files based on the information provided 
in ‘Sample’ as shown in Fig. 1(b). Table S1 illustrated the 
distribution of samples per disease and country.

Data processing
The primary data processing protocol can be separated 
into two sections. Firstly, procedures including quality 
control, screening and removing of human contamina-
tions, assembly, assembly revision, and gene prediction, 
are carried out for each sequencing file. For read qual-
ity trimming and filtering, FastX program (http://​hanno​
nlab.​cshl.​edu/​fastx_​toolk​it/) was used to remove raw 
reads below quality cutoff 20 and length cutoff 45 bp. 
High quality reads were then mapped to the human refer-
ence genome (assembly GRCh38.p11) to remove reads of 
human origin using SOAPaligner v2.21 with parameters 

Fig. 1  Overview of MetaGeneBank database. a General workflow for acquiring, processing and achiving metagenomic data. The workflow consists 
of four processes. The data acquisiton of raw sequencing files (FASTQ) and the study metadata, followed by data processing and annotation 
procedures. All outputs are integrated into the MetaGeneBank database. Users can browse, search and download the datasets, annotation results 
and corresponding figures. b Database scheme of MetaGeneBank. Main data structure and relationships between the different tables are illustrated
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‘-M 4, -l 30, -r 1, -v 10’ [46]. Reads that passed human 
contamination screening were assembled into scaftigs 
using SOAPdenovo v1.06 with default parameters [47]. 
Kmer size was estimated at run-time for each individual 
metagenome as the closest odd number greater than half 
the average read length. In the following assembly revi-
sion procedure, base errors, short indels and chimeric 
contigs were further corrected, and scaftigs with length 
less than 500 bp were removed. Protein coding genes on 
the metagenomes were predicted from the sequences 
of scaftigs using MetaGeneMark v3.38 [48, 49]. It took 
around 4 h to finish the standardizing process including 
quality control, filtering, assemble, assemble revision, and 
gene prediction for a single dataset (about 4 gigabytes) 
on a high-performance server (Intel Xeon CPU E5-4620, 
memory 754G, CentOS 6). In the second section, 
genes predicted from each sequencing file were pooled 
together and merged with the first integrated gene cata-
log (IGC, including type 2 diabetes [T2D], IBD, human 
microbiome project [HMP] and MetaHIT individuals) 
containing 9879, 896 genes from 1267 gut metagen-
omes [50]. The final non-redundant gene list containing 
14,823,828 genes was obtained using CD-HIT v4.6 [51] 
with parameters of sequence identity threshold 0.95 and 
90% alignment coverage for the shorter sequence. High 
quality reads that passed human contamination screen-
ing were then mapped to the final non-redundant genes 
using SOAPaligner v2.21 with parameters ‘-M 4 -l 30 -r 
1 -v 5’. After filtering with length cutoff 30 bp and 95% 
identity, the mapped reads were utilized to calculate 
gene length-normalized base counts using soap coverage 
script (http://​soap.​genom​ics.​org.​cn/​down/​soap.​cover​age.​
tar.​gz). Eleven M high quality reads were randomly drawn 
without replacement for each sequencing file that passed 

quality control and human contamination removal pro-
cedures to avoid the bias caused by variations in sequenc-
ing depth. Then, the retrieved reads were mapped to the 
final non-redundant genes to form a downsized depth or 
abundance [40, 45]. The abundance table was then nor-
malized to ensure that the total relative abundances for 
all genes in each sample was 100.

Taxonomical and functional annotation
Genes in the final non-redundant gene list were assigned 
taxonomical annotations using MyTaxa [52], a homol-
ogy-based bioinformatics framework to classify metagen-
omic sequences with unprecedented accuracy, based on 
the sequence similarity of each gene to a database of pre-
dicted protein coding genes from 8942 publicly available 
genomes in the National Center for Biotechnology Infor-
mation (NCBI, release 196). The distinguishing aspect of 
MyTaxa is that it provides a likelihood score that meas-
ures the possibility that the query sequence originated 
from that taxon. If the top-scoring taxon at a given rank 
passes the likelihood score cutoff, MyTaxa predicts the 
query sequence to belong to this specific taxon. A like-
lihood cutoff 0.5 was utilized to determine the taxo-
nomical annotation for the query sequence. Functional 
annotation for target genes was achieved by aligning the 
sequences of the genes in the non-redundant gene list 
to KEGG Orthology database (KO) using DIAMOND, 
which is a BLAST-compatible local aligner but about 
20,000 times faster on short reads. A sensitive align-
ment mode with a 16 × 9 seed shape configuration and an 
maximum expected value of 0.00001 was used to keep an 
alignment. The relative abundances of annotated micro-
biome and KO functions were calculated as the total rela-
tive abundance of genes annotated to it.

Table 1  Detailed information about the data source collected in the database

Assay Accession number Number of sequencing 
files

Number of paired 
files

Number 
of single 
files

AS1.as1 SRP100575 211 211

ACD1.as1 ERP023788 385 385

CFS1.as1 SRP102150 100 41 59

CC1.as1 ERP008729 310 154 156

IBD1.as1, IBD2.as1, IBD3.as1, IBD4.as1 PRJNA389280; ERA000116; 
PRJEB15371;ERP002061

1476 1476

LC1.as1 ERP005860 237 237

Obesity1.as1 ERP003612 595 595

RA1.as1 PRJEB6997 137 137

T1D1.as1 PRJNA231909 126 126

T2D1.as1, T2D1.as2, T2D2.as1, T2D3.as1 SRA050230; SRA045646; 
ERP004605; ERP02469

807 802 5

NAFLD1.as1 PRJNA373901 86 86

http://soap.genomics.org.cn/down/soap.coverage.tar.gz
http://soap.genomics.org.cn/down/soap.coverage.tar.gz
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Secondary data analysis
PCA was conducted on the abundance tables of anno-
tated microbiota using the prcomp function in R version 
3.5.1 (https://​www.r-​proje​ct.​org/).

System architecture of MetaGeneBank
The MetaGeneBank platform is implemented using 
nodejs and python language. Some scientific function 
is powered by python using scikit-learn/pandas/scipy/
numpy. The nodejs is used as middleware api. The web 
server of MetaGeneBank is nginx.

Utility and discussion
Web‑interface to the MetaGeneBank database
The MetaGeneBank interface (http://​tcm.​zju.​edu.​cn/​
mgb) is designed to enable users to navigate through 
and perform basic operations, such as browsing, search-
ing and downloading data. No login is required for any 

users, and all the multi-level processed data are ready for 
download. The user-interface is divided into the follow-
ing sub-pages.

The ‘Home’ page
This page gives a general description about the data 
sources, brief usage and key features of the database.

The ‘Datasets’ page
This page deposits all the data sources provided in the 
database, and can be divided into five sub-views includ-
ing ‘Metagenomic Studies’, ‘Metagenomic Assays’, 
‘Metagenomic Samples’, ‘Metagenomic Data’ and ‘Supple-
mental Materials’.

(1)	 ‘Metagenomic Studies’ view: this view gives a gen-
eral description of each metagenomic study in the 
database (Fig.  2a). It provides information such as 

Fig. 2  The ‘Dataset’ page in MetaGeneBank database. An illustration of a ‘Metagenomic Studies’, b ‘Metagenomic Assays’, c ‘Metagenomic Samples’, d 
‘Metagenomic Data’ views, respectively

https://www.r-project.org/
http://tcm.zju.edu.cn/mgb
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the title of the main article publication, the dataset 
summary which illustrates the aim of the dataset 
and how it has been generated, the abstract of the 
main article publication, the link to the PubMed 
record and DOI (digital object identifier) of the 
published article, the type of disease surveyed in 
the study, the link to the public data repository, the 
metadata provided by authors before curation for 
downloading, and the PCA plots for all samples in 
each study in terms of annotated microbiota. Users 
are able to use ‘Disease Filter’ to access detailed 
information of target studies from this view directly. 
For a disease type with multiple studies, all related 
studies are displayed in the left most column after 
filtering. Users can get detailed information about 
each study after clicking them.

(2)	 ‘Metagenomic assays’ view: This view shows the 
detailed information of data-generation process for 
each assay carried out in each study, such as meas-
urement type, organization, center name, technol-
ogy type, technology platform, release date, acces-
sion number and so on (Fig. 2b). Users can search 
for target assays by filtering diseases using ‘Dis-
ease Filter’. Some studies can have more than one 
assays. In this case, all related assays are displayed 
in the left most column after filtering. Users can 
get detailed information about each assay aftering 
clicking them.

(3)	 ‘Metagenomic samples’ view: As shown in Fig.  2c, 
this view illustrates the metadata of biological sam-
ples utilized in each assay, including sample id, 
assay id, sample location, country, group, gender, 
age, BMI (body mass index), ALT (alanine transam-
inase), AST (aspartate transaminase), ALB (albu-
min), creatinine, triglyceride, etc. Users can browse 
samples in this view by restricting diseases using 
‘Disease Filter’ and selecting interested columns 
using ‘Column Filter’ since the complete informa-
tion is too large to be displayed in a page.

(4)	 ‘Metagenomic data’ view: This view (Fig.  2d) dem-
onstrates the links of raw sequencing files, and sta-
tistics of data processing pipeline for each sequenc-
ing file such as read length, the number of raw reads 
(‘nReads Raw’), the number of clean reads (‘nReads 
Clean’), the number of contigs (‘nContigs’), N50 
length (‘N50 Length’), the number of open reading 
frames (‘nORFs’) and so on. Users can filter for data 
by restricting diseases using ‘Disease Filter’ in this 
view. After selecting a disease type, all related assays 
will be illustrated in the left most column. Users can 
obtain detailed information about each assay after 
clicking it in the left most column. Since the table is 
too large to be displayed in a page, ‘Column Filter’ 

is also provided to allow users to select and display 
interested information.

(5)	 ‘Supplemental materials’: This view provides the 
sequences, the taxonomical and functional anno-
tation results of the unified non-redundant genes. 
The references for microbiota (phylum, class, order, 
family, genus, species) and KO functions (hierar-
chies A to D) used for searching are also provided. 
Users can obtain details about the possible search 
terms from here.

The ‘Search’ page
Two steps of filtering shown in sections I and II of Fig. 3 
are provided in this page to allow users to search for tar-
get data. As the first step, parameters provided in section 
I allow users to search by general descriptive attributes, 
including ‘Disease’, ‘Study’, ‘Assay’, ‘Technology Plat-
form’, ‘Library Layout’, ‘nReads Clean (M)’, ‘Age’, ‘Gender’, 
and ‘BMI’. All above parameters can be restricted at the 
same time if needed. If left blank, the parameters will 
not be restricted in this search. The minimal informa-
tion required for search is ‘Disease’ and ‘nReads Clean 
(M)’ (default 11 M). The candidate values for each param-
eter that can be used in searching is shown in Table S2. 
In section II, four search modes (General, Gene, Micro-
biome, Function) are provided to allow users to search 
by general descriptive information, genes, microbiota 
and functions of interest, respectively. When ‘General’ is 
selected (Fig. 4a), no further information is required. The 
output includes metadata meeting the searching require-
ments provided in section I, and a series of abundance 
tables for genes, microbiota (6 levels) and functions 
(4 hierarchies). All tables can be downloaded directly. 
Moreover, a PCA plot for resuting phylum is also illus-
trated. When ‘Gene’ is selected (Fig.  4b), users should 
also provide the sequences of target genes except those 
provided in section I. Other than the associated metadata 
(marked by ‘Download Metadata MGB_V1’), the search-
ing output includes the alignment information of top 5 
matches (marked by ‘Blast Match’) and the abundance 
table of them in target populations (marked by ‘Gene’), 
which can be downloaded directly. A summary table 
containing statistics of target genes (marked by ‘Statis-
tics’) including the mean, standard deviation, median and 
95% confidence intervals (CI) is also illustrated. When 
‘Microbiome’ is selected (Figure S1a), users must select a 
target level (such as Class) and fill in the names of target 
microbiota, other than the requirements provided in sec-
tion I. After searching, the associated metadata (marked 
by ‘Download Metadata MGB_V1’) and abundance 
table of target microbiota in target populations (marked 
by ‘Phylum’, ‘Class’, ‘Order’, ‘Family’, ‘Genus’ or ‘Species’ 
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according to the level of input microbiota) are generated 
for downloading. The summary table (marked by ‘Statis-
tics’) containing mean, standard deviation, median and 
95% CIs of target microbiota is also demonstrated. When 
‘Function’ is selected (Figure S1b), users must also choose 
a target hierarchy (A, B, C, D) and fill in the names of 
target functions besides those requirements provided in 
section I. Here, the functions of genes in MetaGeneBank 
were annotated using KEGG orthology (KO), a database 
of molecular functions represented in terms of functional 
orthologs. Functional orthologs are organized in several 
hierarchies (such as A, B, C, D), which represent differ-
ent levels of functional annotations for each KO in KEGG 
database (Figure  S2). Moreover, we have provided the 
document associating KO annotations with GO Terms 
(Table S3) in the revised manuscript for users who need 
the functional information based on GO Terms. Based 
on the association file, users can convert the target GO 
Terms to KOs, and retrieve corresponding abundance 
table and statistic information for target GO terms from 
the website using KO annotations. The searching results 
will be the associated metadata (marked by ‘Down-
load Metadata MGB_V1’) and abundance table of target 
functions in target populations (marked by ‘FunctionA’, 
‘FunctionB’, ‘FunctionC’ or ‘FunctionD’ according to the 
hierarchy of input functions) for downloading, and the 
summary table (marked by ‘Statistics’) including mean, 
standard deviation, median and 90% CI for target func-
tions demonstrated in the page. Multiple inputs are sup-
ported in ‘Microbiome’ and ‘Function’ modes in section 
II. By using the abundance table for queried features 

(such as ‘abundance.Microbiome.Class.MGB_V1.csv’), 
users can also evaluate the difference among groups 
using Wilcoxon rank-sum test or Kruskal-wallis test.

The ‘User guide’ and ‘About’ pages
The ‘User guide’ page illustrates the details on how to 
browse metagenomic studies, metagenomic assays, 
metagenomic samples and metagenomic data provided 
in the database. Taking inflammatory bowel disease 
(IBD) as an example, the ‘User guide’ page also gives a 
detailed description on how to search for target data 
based on general descriptive information alone using 
‘General’ mode, and for interested genes, microbiota 
and functions based on sequences of targe gene, names 
of target microbiota and functions together with general 
descriptive information using ‘Gene’, ‘Microbiome’ and 
‘Function’ modes, respectively. The ‘About’ page provides 
details about the data sources provided in the database 
and the contact information.

Application scenario
Based on the huge amount of data that have been scaled 
with the unified bioinformatic processing pipeline and 
the unified nonredundant genes covering all sequencing 
files in the database, we retrieved the abundance table 
of microbiota in phylum level from all healthy controls 
(1056), and evaluated the variations among independ-
ent studies. It is revealed by the score plot of PCA that 
apparent differences exist among independent stud-
ies (Fig. 5a), which might be explained by the variations 
introduced during sample collection, data-generation 

Fig. 3  The ‘Search’ page in MetaGeneBank database. An illustration of descriptive attributes (I) and search modes (II)
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and data-processing procedures. Since the variations 
due to data processing protocols have been precluded 
by using a unified bioinformatic processing pipeline, the 
above results indicate that variations due to sample col-
lection and/or data-generation procedures cannot be 
neglected in respect of meta-analysis. Considering that 
protocols for data generation such as DNA extraction, 
library preparation and sequencing might be different in 
each center, we then assigned the data to corresponding 
centers. As shown in Fig.  5b, variations among centers 
is far less apparent than those among studies, implying 
that variations introduced by data-generation process 
may not be the most important reason to the differences 
among studies. It is therefore not surprising to see that 
no evident differences exist among data generated using 
different sequencing platforms (Figure  S3a). Finally, we 
evaluated the impact of sample collection process. As 
shown in Fig. 5c, the impact of sample collection strategy 
(at home or at hospital) is not apparent, while obvious 
difference is observed for data generated from samples 

collected from different countries (Fig. 5d). Moreover, the 
pattern of variation in Fig. 5d is similar to that in Fig. 5a, 
implying that the source of samples is the most impor-
tant reason to the variations among different studies. As 
a confirmation, we further selected a subset of data (461) 
sequenced by HiSeq 2000 in Beijing Genome Institute 
(BGI) to preclude the effect of sequencing centers and 
platforms. Figure  S3b confirms the apparent variations 
among independent assays and among specimen col-
lected from different countries (Figure  S3d), while the 
difference related to sampling strategies is not so appar-
ent (Figure  S3c). Such results indicate that variations 
caused by source of specimen are more significant than 
those by data generation procedures such as sequencing 
centers and platforms. Special attention should be paid 
when re-analyzing sequencing files generated from speci-
men collected in different countries.

Microbiome analysis is now revolutionizing clinical 
investigations by providing greater patient stratifica-
tion and novel biomarkers of disease [53]. However, it 

Fig. 4  An illustration of ‘General’ (a) and ‘Gene’ (b) search modes and corresponding outputs
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is a brave new world, one where there is still a great gap 
between microbial analysis and microbiome-informed 
or microbiome-based medicine. Integrated efforts from 
ecologists, data scientists and clinical researchers are 
therefore urgently needed to realize the full potential of 
microbiome science. MetaGeneBank, the first standard-
ized database that provides details on data-generation 
process and scaled multi-level processed metagenomic 
data from independent studies associating gut micro-
biome with human diseases, is destined to be a valuable 
platform for collaborations from scientists who are dedi-
cated to move closer to the realization of more effective 
diagnosis, treatment and prevention strategies against 
human diseases.

Till now, a huge amount of whole-genome metagen-
omic and 16S sequencing data have been generated. Mul-
tiple databases such as EBI [26–28], SRA [29] and gcMeta 
[19] have been constructed to deposit the raw 16S and 
whole-genome metagenomic sequencing files. Consider-
ing the challenges including analyzing Gigabyte (GB) to 
Terabyte (TB) scale data on a single computer, gcMeta 
also provided online tools for processing 16S sequencing 
data, which made it possible for the meta-analyses of 16S 

sequencing data. However, no such databases are avail-
able for reuse of whole-genome metagenomic sequenc-
ing data, partially due to the fact that whole-genome 
metagenomic data are storage space intensive and the 
data analysis pipeline such as the assembly procedure 
is very computationally expensive. Moreover, whole-
genome metagenomic sequencing data can provide more 
detailed information about gut microbiota such as func-
tions compared to 16S sequencing data. Therefore, we 
selected whole-genome metagenomic sequencing data 
as the first batch of sequencing files to be collected and 
standardized in current version of MetaGeneBank.

Compared to databases such as EBI which deposit 
only raw sequencing reads, a key feature of the database 
is that all sequencing files in the database are processed 
with a unified bioinformatic processing pipeline, and 
the resulting multi-level processed data, such as abun-
dance tables for genes, annotated microbiota and KO 
functions, are readily reusable and comparable. Another 
key feature of the database is that details on metadata of 
biological samples and data-generation procedures are 
also hosted. The tight connections with tools that allows 
user-friendly data brose, search and export makes it a 

Fig. 5  The PCA score plots for all healthy controls based on the microbial abundance in phylum level. The solid circles in (a-d) are colored 
according to studies, sequencing centers, sample collection strategies, and sample collection countries, respectively
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powerful resource for metagenomic data integration and 
reuse. Base on the database, we found that the variations 
of microbiota caused by source of specimen are more sig-
nificant than those by sequencing centers or platforms. 
Such results indicated that special attention must be paid 
to sequencing files from fecal specimen collected from 
different countries in case of data reuse.

Conclusions
Although there is still a long way to go before the value 
of microbiome can be fully realized [32], with MetaGene-
Bank keep providing standardized data that are needed to 
test the hypotheses, more and more gaps will be possible 
to be closesd in future studies when the database is huge 
enough. Over the next few years, we will keep updating 
the database as soon as seminal studies are published 
and following requests from users. We plan to incorpo-
rate metagenomic data from other body parts of human, 
such as mouth, stomach, blood, urine and so on, and 
other types of data from 16S sequencing and metatran-
scriptomics assays in future update of the database. 
Moreover, the database design of MetaGeneBank will be 
scale-up to meet the increasing demand of microbiome 
research. With the continuous updating of the database 
in terms of data volume, data types and sample types, we 
believe that MetaGeneBank will be an valuable resource 
for the metagenomics research community in respect of 
meta-analysis.
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