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Abstract

Background: Aeromonas veronii is a bacterial pathogen in aquaculture, which produces virulence factors to enable
it colonize and evade host immune defense. Given that experimental verification of virulence factors is time-
consuming and laborious, few virulence factors have been characterized. Moreover, most studies have only focused
on single virulence factors, resulting in biased interpretation of the pathogenesis of A. veronii.

Results: In this study, a PPI network at genome-wide scale for A. veronii was first constructed followed by
prediction and mapping of virulence factors on the network. When topological characteristics were analyzed, the
virulence factors had higher degree and betweenness centrality than other proteins in the network. In particular,
the virulence factors tended to interact with each other and were enriched in two network modules. One of the
modules mainly consisted of histidine kinases, response regulators, diguanylate cyclases and phosphodiesterases,
which play important roles in two-component regulatory systems and the synthesis and degradation of cyclic-
diGMP. Construction of the interspecies PPl network between A. veronii and its host Oreochromis niloticus revealed
that the virulence factors interacted with homologous proteins in the host. Finally, the structures and interacting
sites of the virulence factors during interaction with host proteins were predicted.

Conclusions: The findings here indicate that the virulence factors probably regulate the virulence of A. veronii by
involving in signal transduction pathway and manipulate host biological processes by mimicking and binding
competitively to host proteins. Our results give more insight into the pathogenesis of A. veronii and provides
important information for designing targeted antibacterial drugs.
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Background

Aeromonas veronii is one of the main pathogenic bac-
teria that affect aquatic animals in freshwater and sea-
water [1]. Infections by A. veronii can result in ulcerative
syndrome, hemorrhagic septicaemia and mass mortality
in aquatic animals such as Oreochromis niloticus [2],
which leads to great economic losses to aquaculture
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industry. Humans can also be infected by A. veromii,
hence, it is classified among quarantine objects of water
quality and food safety in some countries [3, 4]. Patho-
gen produced virulence factors play an important role in
the pathogenic process, because they enable pathogens
to adhere to and invade host cells, evade host immune
defenses, and compete for nutrients [5]. Although viru-
lence factors have been identified in many pathogens,
the virulence factors in A. veronii remain elusive.
Virulence factors can be classified into three categories
based on their subcellular localization, including cyto-
solic, membrane associated, and secreted virulence
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factors [6]. Cytosolic virulence factors promote rapid
adaptation of pathogens to metabolic, physiological and
morphological changes, whereas membrane associated
virulence factors contribute to the adhesion and patho-
gen evasion of host cells. On the other hand, secreted
virulence factors play more important roles, as they can
be delivered from pathogen cells into host cells or host
environment [7, 8], allowing them to interact with host
proteins to directly participate in host biological pro-
cesses. Thus, identification of virulence factors, espe-
cially secreted virulence factors, is essential for
understanding the pathogenesis of A. veronii.

Protein-protein interaction (PPI) networks are power-
ful tools in predicting potential virulence factors [9, 10].
For instance, Zheng et al. accurately identified the viru-
lence factors of six species by integrating PPI networks
and known virulence factors [10]. Similarly, integration
of PPI networks, known virulence factors, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
allowed Cui et al. to identify virulence factors of three
species [9]. In terms of network biology, PPI networks
are also fundamental in evaluating the functional im-
portance of proteins. Given that proteins with high de-
gree (hubs) or betweenness centrality (bottlenecks) tend
to be essential proteins encoded by essential genes [11,
12], knockout or mutation of genes encoding hubs or
bottlenecks will affect many phenotypic traits or result
in death. For example, the lethality rate of yeast in-
creases about threefold after knockout of genes encoding
hubs compared with those encoding non-hubs [13].
Thus, many researchers are interested in exploring the
topology parameters of proteins in PPI networks. PPI
networks can be analyzed at the module level [14],
where a module consists of physically or functionally re-
lated proteins that are assembled together to perform a
specific function. Since different modules act synergeti-
cally to fulfill cellular functions, construction of PPI net-
works can assist in identifying key proteins and
understanding pathogenic mechanisms from a systems
perspective [15]. However, A. veromnii PPI network at
genome-wide scale is still not available.

Several high-throughput experimental methods, such
as yeast two-hybrid screening and tandem-affinity purifi-
cation coupled with mass spectrometry, have been devel-
oped to identify large-scale PPIs [16]. Due to high cost
and laborious experimental methods, only the PPI net-
works of some model organisms have been reported,
such as Arabidopsis thaliana [17], Saccharomyces cerevi-
siae [18], Caenorhabditis elegans [19], Drosophila mela-
nogaster [20], Escherichia coli [21], and Homo sapiens
[22]. To complement these experimental methods, a
plethora of computational methods have been devel-
oped, including the widely used interolog and domain-
based methods. The interolog method is mainly based
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on the conservation of PPIs in different organisms [23].
Two proteins are predicted to interact in an organism if
they have interacting homologs in another organism. On
the other hand, the domain-based method refers to two
proteins that are more likely to interact if they contain
interacting domains [24]. The PPI networks of many path-
ogens, such as Ustilaginoidea virens [25] and Phomopsis
longicolla [26], have been successfully constructed based
on these two PPI inference methods. In addition, these
two methods have also been successfully applied to pre-
dict host-pathogen interspecies PPIs [25, 27].

In this study, potential virulence factors of the aquatic
pathogen A. veronii were predicted and mapped onto
the PPI network. The importance of the virulence fac-
tors were first evaluated based on network topology
properties. Two modules enriched by the virulence fac-
tors that played important roles in A. veronii infection
were identified. The molecular mechanisms of pathogen-
icity was explored by constructing the interspecies PPI
network between A. veronii and its host O. niloticus.
Three-dimensional structures and interacting sites were
added to the interspecies PPI network to provide more
interaction details that would enhance understanding of
host-pathogen interactions. Finally, key residues of the
virulence factors that are involved in the interaction with
different host proteins were identified. These data could
be leveraged for accelerated development of new anti-
bacterial agents.

Results

A. veronii PPl network

To construct a high coverage PPI network of A. veronii,
the two commonly used interolog and domain-based
methods were applied. With the interolog method, 13,
201 A. veronii PPIs involving 1904 proteins were ob-
tained. Among these, most PPIs (79.74%) were derived
from the model organism E. coli, with only 0.47% consti-
tuting the A. veronii PPIs derived from A. thaliana.
When the domain-based method was used, 8328 A. vero-
nii PPIs among 1479 proteins were obtained after filter-
ing with strict standards. Thus, a total of 21,418 A.
veronii PPIs were predicted by the interolog and
domain-based methods, involving 2494 proteins (Supple-
mentary Table S2).

The A. veronii PPl network was of acceptable reliability

To evaluate the quality of the A. veromii PPI network,
1000 random networks were generated. Semantic simi-
larities of Gene Ontology (GO) terms of the PPIs were
first calculated. The PPIs in the A. veronii PPI network
had significantly higher biological process, molecular
function or cellular component similarities compared
with those in any random network (Wilcoxon test, p <
2.20 x 10 % Fig. 1A-C). Specifically, 22.71% of the PPIs
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in the A. veronii PPI network had a biological process
similarity of 1, whereas in the random networks, the cor-
responding percentage was only 5.52-6.62%. Similar re-
sults were also observed for molecular function and
cellular component annotations. The percentages of PPIs
sharing the same molecular function and cellular com-
ponent annotations were 16.55 and 39.93% in the A. ver-
onii PPl network, respectively. By contrast, the
corresponding percentages in the random networks were
4.01-4.89% and 17.90-20.64%. These results indicate
that the A. veromii PPI network is of acceptable
reliability.

Similarities of gene expression patterns of PPIs were
calculated based on 18 samples. The absolute Pearson
correlation coefficient (PCC) values in the A. veronii PPI
network were significantly higher than those in any ran-
dom network (Wilcoxon test, p<1.00x 10> for any
random network), suggesting that the PPIs in the A. ver-
onii PPI network had the tendency to be co-expressed.
Although the percentages of PPIs decreased as absolute
PCC values increased in both the A. veronii PPI network
and the random networks (Fig. 1D), the random net-
works displayed a steeper decline when the absolute
PCC value was above 0.5. Notably, at high PCC interval

of 0.9-1.0, the percentage of the PPIs in the A. veronii
PPI network was twice as much as that in the random
networks (Fig. 1D). Moreover, when the percentages of
PPIs with the same subcellular localization were calcu-
lated, more than 50% of the PPIs were co-localized in
the A. veronii PPl network, whereas only 38.62-40.33%
of the PPIs co-localized in the random networks (Fig.
1E). These results further indicate that the A. veronii PPI
network is of reasonable reliability.

Virulence factors had higher degree and betweenness
centrality in the A. veronii PPl network

A total of 242 potential virulence factors were predicted,
of which 195 were mapped onto the A. veronii PPI net-
work. When the degree and betweenness centrality were
compared between the virulence factors and other pro-
teins in the A. veronii PPI network, the results showed
that the virulence factors had significantly higher degree
and betweenness centrality than the other proteins (Wil-
coxon test, p=9.33 x 10~ ° for degree, Fig. 2A and p =
3.04 x 10™ ' for betweenness centrality, Fig. 2B). Average
degree and betweenness centrality of the virulence fac-
tors were 2675 and 3.00x 107 % respectively. By
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contrast, the corresponding values for the other proteins
were 16.36 and 1.00 x 10~ %, respectively.

Virulence factors were enriched in two modules

Although a total of 486 PPIs were formed by 195 viru-
lence factors, when 195 proteins were randomly selected
from the A. veronii PPI network, they formed at most
261 PPIs and at least 49 PPIs in 1000 trials (Fig. 2C),
which was much less than the real number of PPIs
formed by the virulence factors. These results suggest

that the virulence factors have the tendency to interact,
which made us speculate that the virulence factors were
enriched in certain network modules. To ascertain this,
the A. veronii PPI network was divided into 90 modules,
involving 1331 proteins and 100 virulence factors. Two
modules were found to be significantly enriched by the
virulence factors (Fisher’s exact test, p =2.36 x 10~ and
8.82 x 10~ % Fig. 3).

Among the two modules, one consisted of 57 proteins,
33 of which had biological process annotations and 17
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were virulence factors (Fig. 3A). This module was signifi-
cantly associated with the terms “phosphorelay signal
transduction system”, “regulation of transcription, DNA-
templated” and “signal transduction by phosphorylation”
(Fisher’s exact test, p=1.80x1072%, 1.30x 10" ** and
5.56 x 10~ %, respectively). Notably, 16 and 15 out of the
17 virulence factors were annotated with the terms
“phosphorelay signal transduction system” and “regula-
tion of transcription, DNA-templated”, respectively (one
virulence factor was not annotated with any term).
When the topology characteristics of the module in the
A. veronii PPI network was analyzed, an average degree
of the proteins in the module was 23.61, which was
higher than that in the A. veronii PPI network (17.18).
After removing the 17 virulence factors, the average de-
gree of the proteins in the module increased (24.38).
These results indicate that the module connect other
modules and has a great effect on the A. veronii PPI
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network. Analysis of the other module revealed that it
was enriched by the virulence factors (Fig. 3B), and con-
sisted of seven proteins, four of which were virulence
factors and could be secreted by type VI secretion sys-
tem. The specific functions of these proteins in the mod-
ule is however unknown.

Virulence factors may manipulate host biological
processes by mimicking and binding competitively to
host proteins

Although virulence factors could promote bacteria entry
into host cells, evade or inhibit host immune responses,
and obtain nutrients from hosts, it is not clear which
virulence factors directly interact with host proteins. To
this end, 40 (20.51%) secreted virulence factors were first
predicted, out of which, 36 virulence factors were found
to interact with 1461 O. niloticus proteins, forming 2200
interspecies PPIs (Fig. 4; Supplementary Table S3). In
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C4 1674 C4 1128

Fig. 4 Interspecies protein-protein interaction (PPIs) between Aeromonas veronii and Oreochromis niloticus. The interspecies PPl network consisting
of 36 virulence factors and 1461 O. niloticus proteins. The green and white nodes represent the virulence factor and the O. niloticus protein,
respectively. The larger node represents the protein with higher degree, such as C4_2085 (succinate dehydrogenase flavoprotein subunit),
C4_4642 (thioredoxin 1), C4_2063 (thioredoxin 2), C4_1128 (S-adenosylmethionine synthetase), C4_0270 (catalase), C4_2683 (ATP-dependent Clp
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the interspecies PPI network, 33 virulence factors and
383 O. niloticus proteins had at least two partners,
reflecting the complexity of interspecies PPIs. For in-
stance, virulence factors succinate dehydrogenase flavo-
protein  subunit (SdhA), thioredoxin 1 (Trxl),
thioredoxin 2 (Trx2), S-adenosylmethionine synthetase
(MetK), catalase, ATP-dependent Clp protease proteo-
lytic subunit (ClpP), and peroxiredoxin 2 (Prx2), had
higher degree in the interspecies PPI network (Fig. 4),
indicating that these virulence factors can interact with
more O. niloticus proteins.

Many O. niloticus proteins, such as heat shock protein,
elongation factor Tu, DNA-directed RNA polymerase
subunit, Trx2, ribosomal protein S3, SdhA, peroxire-
doxin 1 (Prxl), transcriptional regulator, MetK and
ClpP, could interact with at least 5 proteins in A. veronii.
In vertebrates, Trx2, MetK, ClpP, and Prx2 perform
their functions by forming homo-dimers or homo-
oligomers [28—31]. Moreover, our results showed that A.
veronii Trx2, MetK, ClpP, and Prx2 were homologous
and could interact with O. niloticus Trx2, MetK, ClpP
and Prx2, respectively. These results indicate that the
virulence factors mimic and bind competitively to hom-
ologous proteins in host to interfere with host biological
processes.

Structures and key interacting sites of virulence factor
Trx1

The structures and sites of 61 interspecies PPIs formed
by 15 virulence factors and 47 O. niloticus proteins were
predicted and the data stored at https://drive.google.
com/drive/folders/18cHNUOSS]5ugmFUL1_1QLVossf5
ybYUY?usp=sharing. Figure 5 shows the structures
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formed by the interactions between A. veronii Trx1 and
four O. miloticus proteins, including Trx2 (Fig. 5A),
thioredoxin-interacting protein (Txnip) (Fig. 5B), me-
thionine sulfoxide reductase (Msr) (Fig. 5C), and endo-
plasmic reticulum resident protein 44 (ERp44) (Fig. 5D).
The four interactions had average sequence identity of
58.32, 48.72, 36.93 and 58.29%, respectively, and average
coverage of 72.63, 74.19, 73.97, and 84.65%, respectively
to their template complexes. These template complexes
have PDB IDs as 1W89, 4LL4, 3PIN and 5XWM,
respectively.

As shown in Fig. 5A, A. veronii Trx1 interacted with
O. niloticus Trx2 via the 33th, 34th, 64th, 71th, 75-79th
residues, and with O. niloticus Txnip via the 34th, 35th,
37th, 64th, 76-80th, 94-96th residues (Fig. 5B). Similarly,
A. veronii Trx1 interacted with O. niloticus Msr through
the 28-32th, 34-41th, 44th, 61th, 63th, 64th, 70-80th,
93th, 95-99th residues (Fig. 5C), and with O. niloticus
ERp44 via the 35th, 37th, 39th, 40th, 74-79th, 97th resi-
dues (Fig. 5D). The Jaccard similarity between any two
sets of interacting sites was as high as 0.23—0.40, indicat-
ing that A. veronii Trx1 has the tendency to bind to host
proteins by the same interaction interface. Especially, the
76-79th residues of A. veromii Trxl were involved in
each interspecies PPI, which could be potential targets
for the development of new antibacterial agents.

Discussion

Although a growing number of aquatic animal diseases
are reported to be caused by A. veronii in recent years,
the molecular mechanisms underlying the disease re-
main largely unknown. In this study, intraspecies and in-
terspecies PPI networks were constructed based on

Fig. 5 Protein complex structures formed by Aeromonas veronii thioredoxin 1 (Trx1) and four Oreochromis niloticus proteins. (A) thioredoxin 2
(Trx2), (B) thioredoxin-interacting protein (Txnip), (C) methionine sulfoxide reductase (Msr) and (D) endoplasmic reticulum resident protein 44
(ERp44). White sticks represent the interacting sites of Trx1. Trx1 binds to the four O. niloticus proteins using the same interface
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interolog and domain-based methods to help identify
virulence factors that have not been validated experi-
mentally and global understanding of the pathogenic
mechanisms. To ensure the reliability of PPI networks,
multiple strategies were adopted including strict limita-
tion of the coverage of protein domains when using
domain-based methods. For instance, two proteins were
defined as a PPI only if all domains from the two pro-
teins interacted with each other. Despite the fact that
GO annotation, gene expression pattern, and subcellular
localization information demonstrated the accuracy of
PPI networks, there could still be false positives and false
negatives in PPI networks. Proteins with higher degree
or betweenness centrality play crucial roles in many cel-
lular processes [32, 33], thus given that in this study, the
virulence factors showed higher degree and betweenness
centrality, indicating their functional importance.
Among 195 virulence factors, the degree of 28 ranked in
the top 10% of degree distribution (hubs). The average
PCC between 27 (96.43%) virulence factors and their
interacting proteins exceeded 0.30, meaning that these
27 virulence factors were party hubs and had the ten-
dency to simultaneously interact with their partners.
Seven and five out of the 27 virulence factors were in-
volved in the biosynthesis of secondary metabolites and
antibiotics, respectively (e.g., dihydrolipoamide dehydro-
genase, pyruvate kinase, and glycerol-3-phosphate de-
hydrogenase), whereas the remaining virulence factors
were involved in RNA degradation, cell cycle, amino acid
metabolism, and so on.

Analysis of the interactions formed by the virulence
factors revealed that they had the tendency to connect
with each other and were enriched in two network mod-
ules. One of the modules consisted of 57 proteins, out of
which 17 were virulence factors. Most of the virulence
factors were annotated in the terms “phosphorelay signal
transduction system” and “regulation of transcription,
DNA-templated”, respectively. This observation was
mainly because most of the proteins in the module were
members of two-component regulatory systems, includ-
ing KdpE, AdeR, ArcA, chemotaxis protein CheB, CheY,
CpxR, OmpR, and PhoB. Two-component regulatory
systems are important mediators of signal transduction
and control bacterial virulence [34]. Thus, it is conceiv-
able that the module is essential for the virulence of A.
veronii and could serve as a target for future antimicro-
bial therapy. Nine out of the remaining 40 proteins dir-
ectly interacted with the virulence factors. According to
the “guilt-by-association” principle, i.e., interacting pro-
teins tend to share similar biological function [35], the 9
proteins were likely to be virulence factors, although
they were not predicted based on sequence homology.
These 9 proteins included three copies of CheY, CreB,
PhoB, CitB, CpxA, CheB and an unknown protein.

Page 7 of 11

Except CpxA which is a histidine kinase, the other 8
proteins are response regulators in two-component
regulatory systems. It has been reported that many two-
component regulatory systems, such as PhoP/PhoQ and
EnvZ/OmpR, play important roles in virulence [36—39].
Thus, the 9 proteins could be potential drug targets.

Among the 57 proteins, 5 were histidine kinases, 31
response regulators, 6 diguanylate cyclases, 2 phosphodi-
esterases, and 10 unknown proteins. Based on the “guilt-
by-association” principle, the 10 unknown proteins that
interacted with the histidine kinases, response regulators,
diguanylate cyclases or phosphodiesterases could also
belong to one of the four types of proteins. Histidine
kinase can sense environmental stimulus, while the cor-
responding response regulator mediates cellular re-
sponse. These two proteins constitute the two-
component regulatory system. Diguanylate cyclase syn-
thesizes cyclic-diGMP and phosphodiesterase degrades
cyclic-diGMP [40]. Cyclic-di-GMP as the second mes-
senger transmits extracellular signals to intracellular en-
vironment. Since histidine kinases, response regulators,
diguanylate cyclases, and phosphodiesterases co-exist in
the same module, indicating that cyclic-di-GMP and
two-component regulatory systems can work together to
regulate A. veronii signal transduction. In Xanthomonas
campestris, it has been demonstrated that cyclic-di-GMP
binds to histidine kinase RavS to control two-
component regulatory system RavS/RavR phosphotrans-
ferase [41], while in Legionella pneumophila, two-
component system Lpg0278/Lpg0277 modules cyclic-
diGMP metabolism [42].

Each virulence factor interacted with an average of 11
proteins in O. niloticus, which may be one of the reasons
that pathogens with smaller genomes are able to over-
come host with larger genomes. The O. niloticus pro-
teins targeted by the virulence factors were mainly
involved in “translation”, “cell redox homeostasis”, “pro-
tein folding”, “tricarboxylic acid cycle”, “glycolytic
process”, “S-adenosylmethionine biosynthetic process”,
“one-carbon metabolic process”, “ubiquitin-dependent
protein catabolic process”, “ribosome biogenesis”, and
“glycerol ether metabolic process”(Fisher’s exact test,
p <1.00x 10 %), implying that A. veronii could directly
manipulate host metabolic processes, component
organization, and homeostasis to achieve successful in-
fection. Group A Streptococcus have been reported to
deliver virulence factors into host cells during infection
to modulate host metabolism by causing endoplasmic
reticulum stress to induce asparagine formation. The
formed asparagine can then be sensed by group A
Streptococcus to increase its growth rate [43]. Thus, to
block the nutritional source of pathogens, many host
cells usually remain in a metabolically quiescent state
during pathogen infection, which compels pathogens to
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reprogram host cell metabolism skewing it to obtain nu-
trients and energy [44]. In this process, virulence factors
play an important role.

The findings from this study revealed that virulence
factors of A. veromii probably hijack host pathways by
mimicking host (O. niloticus) proteins, which is a com-
mon strategy used in pathogen-host interactions [45].
Virulence factors can mimic host global proteins, do-
mains or short linear motifs to compete with endogen-
ous interfaces of host [46]. In this study, only the
mimicry of global proteins, which generated more tight
interactions between virulence factors and host proteins
were explored. Some of the virulence factors identified
such as ClpP, could be used as preferred drug targets. In
fact, many researchers have designed antibacterial drugs
based on ClpP [30], with these results demonstrating po-
tential application of virulence factors. Taken together,
our results gives more insight into the potential applica-
tion of virulence factors in antibacterial drugs develop-
ment and treatment.

Methods

Construction of A. veronii PPl network

The interolog method was first used to infer the interac-
tions between A. veromii proteins. Six organisms with
large-scale experimental PPIs were selected as model or-
ganisms, including A. thaliana, S. cerevisiae, C. elegans,
D. melanogaster, E. coli and H. sapiens. Protein se-
quences of these six model organisms were downloaded
from the UniProt [47] database, and experimentally veri-
fied PPIs were collected from the BioGrid [48], IntAct
[49], DIP [50] and MINT [51] databases. Additional PPIs
of A. thaliana and H. sapiens were obtained from the
TAIR [52] and HPRD [53] databases, respectively. Inpar-
anoid Version 4.1 [54] was used to identify the orthologs
between A. veronii and the six model organisms. A strin-
gent threshold (inparalog score =1.0) was set. Further-
more, the orthologs were analogized to predict A.
veronii PPIs based on experimentally verified PPIs of the
six model organisms.

The domain-based method was also used to infer A.
veronii PPIs. Experimentally verified domain-domain in-
teractions as templates were collected from the 3did [55]
and iPfam [56] databases. Potential domains of A. veronii
proteins were identified by PfamScan [57] (e < 1.00 x
10" 3). Three strict standards were adopted to improve
the prediction accuracy of A. veronii PPIs [25]. To start
with, the protein domains with length coverage < 80%
were filtered. Next, the total length of all domains in a
protein was required to cover >40% of the protein. Fi-
nally, two proteins were defined as a PPI only if each do-
main in one protein interacted with each domain in the
other protein. As a result, the A. veronii PPI network
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was constructed based on the A. veronii PPIs predicted
by the interolog and domain-based methods.

Assessment of A. veronii PPl network

Generally, two interacting proteins tend to have similar
Gene Ontology (GO) annotations, similar gene expres-
sion patterns, and the same subcellular localization. To
assess the reliability of the predicted A. veronii PPI net-
work, 1000 random networks were generated by ran-
domly rewiring edges of the A. veromii PPl network,
while preserving the degree distribution. Semantic simi-
larities of GO terms of interacting proteins in the A. ver-
onii PPI network and random networks were calculated
by the R package GOSemSim [58], including biological
process, molecular function, and cellular component
terms. Gene expression data of wild type as well as argR,
avrA, hfq, smpB and tmRNA mutation in A. veronii from
our previous studies (Supplementary Table S1) were
used to evaluate the similarity of gene expression pat-
terns of interacting proteins, which was quantified by ab-
solute PCC. Subcellular localization of each protein was
predicted by pLoc-mGneg [59], which was designed for
Gram-negative bacteria and included eight subcellular
localizations, i.e., cell inner membrane, cell outer mem-
brane, cytoplasm, extracellular, fimbrium, flagellum, nu-
cleoid and periplasm.

Prediction of virulence factors

Virulence factors known to affect pathogen-host interac-
tions were collected from the PHI-base database [60].
Sequence alignments were performed between A. veronii
proteins and the known virulence factors by BLASTP.
An A. veronii protein was predicted as potential viru-
lence factor if the sequence identity was >40% and the
coverage was 280% when aligned with a known viru-
lence factor.

Network characteristics analysis of virulence factors

The degree and betweenness centrality of virulence fac-
tors and other proteins in the A. veronii PPI network
were calculated by the Cytoscape plugin NetworkAnaly-
zer [61], which is commonly used [62, 63]. The number
of interactions between the virulence factors was
counted. The same number of proteins as the virulence
factors was randomly selected from the A. veromii PPI
network and the number of interactions between the
random proteins was also counted. This process was re-
peated 1000 times. The A. veronii PPl network was di-
vided into modules by the Markov cluster algorithm
(http://micans.org/mcl/). Only modules with at least five
nodes were further analyzed. Fisher’s exact test was used
to identify the modules enriched by the virulence factors
and for annotation of the functions of modules.
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Prediction of virulence factor-O. niloticus protein
interactions

A virulence factor has the potential to interact with O.
niloticus proteins only if it is translocated into host cell.
Thus, secreted virulence factors were first predicted by
EffectiveDB [64], which integrates various tools to
recognize bacterial secreted proteins. Sequences and
function annotations of O. niloticus proteins were down-
loaded from the UniProt [47] database. Inparanoid Ver-
sion 4.1 [54] was used to identify the orthologs between
O. niloticus and the six model organisms (i.e., A. thali-
ana, S. cerevisiae, C. elegans, D. melanogaster, E. coli and
H. sapiens), and potential domains of O. niloticus pro-
teins were identified by PfamScan [57]. The interactions
between the virulence factors and O. niloticus proteins
were predicted based on experimentally verified PPIs of
the six model organisms and experimentally verified
domain-domain interactions. Fisher’s exact test was used
to perform functional enrichment analysis of O. niloticus
proteins.

Structure modeling of virulence factor-O.niloticus protein
interactions

Homologous template complexes of virulence factor-O.
niloticus protein interactions were first searched in the
PDB database [65] by BLASTP. Five criteria were con-
sidered [66—69]: (1) the alignment between each inter-
acting protein and the template had >30% sequence
identity and covered >40% of the interacting protein
length; (2) the templates of two interacting proteins
came from different chains of a protein complex struc-
ture in the PDB database and further constituted the
template complex; (3) the template complex with reso-
lution below 5A was prioritized; (4) X-ray structure as
template complex was preferred over NMR structure;
(5) average sequence identity of two interacting proteins
with the template complex was given priority over aver-
age coverage, except when several template complexes
had similar sequence identity, in which case the template
complex with a higher coverage was preferred. Further,
five models for each protein were generated using Mod-
eller [70] based on the template. Among these, the
model with the lowest Discrete Optimized Protein En-
ergy (DOPE) score was regarded as the best structure of
the protein after truncating unaligned residues at the N-
and C-termini. Finally, the complex structure of two
interacting proteins was inferred based on the template
complex. The residues from two interacting proteins
were defined as interacting sites if their shortest atomic
distance was <4.0 A. The Jaccard similarity for two sets
of interacting sites was calculated by taking the number
of their intersection divided by the number of their
union.
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