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Abstract

Background: Group B Streptococcus (GBS) infection is the leading cause of septicemia, meningitis, and pneumonia
in neonates. Aberrant gut colonization in early life may predispose children to various diseases in adulthood.
However, the associations between gut microbial changes and GBS colonization is still unclear.

Results: The composition and diversity of meconium microbiota in GBS group were similar to that of healthy
controls. However, we identified several specific taxa that were differentially abundant between the two groups
(linear discriminant analysis (LDA) effect size (LEfSe): p < 0.05, LDA > 2.0). Particularly, the relative abundance of
Lactobacillus paracasei was significantly reduced, indicating a role in GBS colonization.

Conclusions: Our study presented a series of bacterial species colonized by GBS, thus providing novel evidence in
support of initial intestinal microbiota dysbiosis in the neonates with mother’s GBS colonization.
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Background
Group B Streptococcus (GBS) are β-hemolytic and
Gram-positive bacteria, which are recognized as a lead-
ing cause of neonatal early-onset sepsis (EOS), meningi-
tis, and pneumonia [1, 2]. The mother-to-child vertical
transmission is the major GBS infection route in neo-
natal periods. Previous studies have shown that the
prevalence of GBS colonization in vagina during preg-
nancy is approximately 10–30% [3, 4] and the neonatal
morbidity rate for acquiring GBS through birth canal is
60% [5]. The implementation of intrapartum antibiotic
prophylaxis (IAP) in pregnant women with GBS
colonization is a preventive treatment for reducing the

risk of GBS-induced neonatal EOS [6]. However, IAP
might also disrupt the balance between microbial mem-
bers of the gut microbiota [7–9].
Recent evidences indicated that the disturbance of gut

microbiome has been involved in potential prenatal and
early life of infant [10, 11]. For example, Cassidy-
Bushrow et al. observed that Clostridiaceae, Ruminococ-
coceae, and Enterococcaceae were significantly enriched
in infants of GBS positive (GBS+) mothers compared to
infants of GBS negative (GBS-) ones [12]. Rosen et al.
reported 18 taxa that were found to be significantly asso-
ciated with GBS carriage [13].
Meconium, as the first stool of infant, is made up of

materials ingested in utero and considered as a good
source for studying the microbiome of the maternal-fetal
interface [14]. Based on the advancement in the tech-
nologies and methodologies to identify the microbiota, a
number of studies have highlighted the possible micro-
bial presence in the meconium which is partially similar
to adult gut microbiome [15] and the microbiome of
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placenta/amniotic fluid [16]. These studies support the
colonization of the fetal gut that may begin in utero due
to contact with the placenta and/or amniotic fluid.
Although these aforementioned studies provided clues

about the origin of microbiome of meconium and how
GBS alter the vaginal microbiome of pregnant women,
the origin of prenatal microbiome, expecially the placen-
tal microbiome, is still a lively debated focus in the re-
cent year [17]. A study by de Goffau MC and his
colleagues showed that human placenta has no micro-
biome except for potential pathogens such as GBS
colonization [18]. Regarding the relationship between
the gut microbiota of infants and maternal GBS
colonization remains also largely unknown. In this study,
we adopted a new microarray-based technique [19] to
characterize the fecal samples of the neonates in GBS+
group as compared with control group. The study aimed
to investigate the influence of maternal GBS colonization
on the gut microbiome of newborns, with the intention
of improving perinatal infant care.

Results
The clinical information in the study
A total of 104 neonatal fecal specimens were collected
during the study period. Of these, 12 fecal samples were
undetectable due to inadequate amount of total DNA
after extraction and 6 fecal samples were further ex-
cluded due to low content of 16S rDNA after amplifica-
tion. Finally, 86 fecal samples from neonates were
analyzed. The flowchart of the study is shown in Fig. 1.

The clinical characteristics of the 86 neonates are
shown in Table 1. There were no difference between
two groups except in the term of gestational age and
antibiotics exposure after birth.

Comparison of α- and β-diversity between two groups
To evaluate the differences in composition of gut micro-
biota, we performed α- and β-diversity analyses. Several
α-diversity indexes including Chao, Ace, Shannon and
Simpson (Fig. 2) indicated no significant difference in
species richness and diversity between GBS+ and control
groups. As to β-diversity, as β-diversity indicators, were
applied to estimate the dissimilarity between samples.
PCoA plots based on weighted Unifrac distance and
Bray Curtis distance showed that the controls clustered
more tightly than the infants in GBS+ group (Fig. 3),
indicating similar bacterial compositions in the controls.
Furthermore, the exposure to infants to antibiotics did
not significantly change the gut microbiota in infants of
GBS infected group and control group (Figure S1).

Alteration of taxa in the GBS+ and control groups
To identify the specific taxa associated with GBS in-
fection, a comparison of the microbiota between the
infants in GBS+ and control groups was conducted
by the Linear discriminant (LDA) and effect size
(LEfSe) approach. A cladogram represented the sig-
nificant structure of the gut microbiota from phylum
level to species level (Fig. 4a), which listed a collec-
tion of the differential abundant bacteria between two

Fig. 1 The flowchart of this study
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Table 1 The clinical information between GBS+ and control groups

Parameters GBS + group
(n = 13)

Control group
(n = 73)

OR (95%CI) P value

Neonatal features

Gestational age, W 39.5 ± 0.6 38.8 ± 1.9 – 0.009

Birth weight, g 3192 ± 218 3121 ± 515 – 0.4

Male, (n, %) 8 (61.5) 39 (53.4) 1.4 (0.4 ~ 4.7) 0.6

Cesarean section (n, %) 2 (15.4) 30 (41.1) 0.3 (0.05 ~ 1.3) 0.1

Antibiotics exposure 10 (76.9) 30 (41.1) 4.8 (1.2 ~ 18.8) 0.017

Mother complication

PROM (n, %) 2 (15.4) 17 (23.3) 0.6 (0.1 ~ 2.9) 0.8

Intrapartum fever history 0 (0) 7 (9.6) 0.8 (0.8 ~ 0.9) 0.5

GDM (n, %) 1 (7.7) 27 (37.0) 0.1 (0.02 ~ 1.15) 0.07

Placental abruption 0 (0) 1 (1.4) – 1.0#

MSAF (n, %) 1 (7.7) 23 (31.5) 0.2 (0.02 ~ 1.44) 0.1

IAP exposure 11 (84.6) 44 (60.3) 3.6 (0.7 ~ 17.6) 0.17

PROM Prelabor rupture of the membranes, GDM Gestational diabetes mellitus, MSAF Meconium- stained amniotic fluid, IPA Intrapartum antibiotics prophylaxis
#Fisher exact test

Fig. 2 Box plot of Chao, Ace, Shannon and Simpson indexes
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groups. Particularly, the abundance of Staphylococcus
lugdunensis, Lactobacillus helveticus, Lactobacillus
mudanjiangensis, Lactobacillus paracasei in the
infants with GBS + group were reduced as compared
to the controls.

Discussion
The imbalance of bacterial communities in infants has a
profound impact on host’s health, but there is insuffi-
cient evidence to suggest the associations between dys-
biosis in meconium and bacterial colonization such as

Fig. 3 Gut bacterial community analysis of infants in GBS+ and control groups. Principal coordinates analysis (PCoA) plots based on weighted
Unifrac distance (a) and Bray Curtis distance (b)

Fig. 4 Different profiles of gut microbiota in meconium between infants in GBS+ and control groups. a Cladogram of differentially abundant
taxa, from the phylum level down to the species level. b The relative abundance of certain taxa associated with GBS infection
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GBS colonization. In this context, identification of the
factors affecting the morbidity for gestational GBS-
related colonization is an important issue that needs to
be addressed.
In this study, bacterial composition and diversity

showed no significant differences between infants in
GBS+ and control groups. However, we found a lower
abundance of Staphylococcus and Lactobacillus in the
infants with GBS+ mothers, which was in line with pre-
vious studies. Staphylococcus lugdunensis is a coagulase-
negative Staphylococcus [20], which has been implicated
as the main pathogen in various infections, including
central nervous system infections, urinary tract infec-
tions, and systemic infections [20–23]. A study from
Japan reported that the GBS detection was correlated
with significantly lower probability of coagulase-negative
Staphylococcus [24]. Furthermore, Altoparlak et al. re-
ported that the decreased level of Lactobacillus species
was associated with detection of GBS colonization [25].
Kubota et al. demonstrated that GBS positive women
had lower percentages of Lactobacillus than GBS nega-
tive women [24]. It should be noted that certain Lacto-
bacillus such as Lactobacillus paracasei had the
capabilities to prevent GBS adherence to vaginal epithe-
lial cells [26], and antimicrobial activity of Lactobacillus
against GBS had been documented in vitro [27]. More-
over, this lower Lactobacillus species had been detected
in the neonatal EOS recently [28]. Thus, the reduced
abundance of above genera might limit the protective
role of microbiome so as to increase susceptibility to
infection.
Although intrapartum antibiotics prophylaxis (IAP) is

the most effective measurement to reduce the risk of
GBS-induced neonatal EOS [6], it can impact neonatal
gut microbiota [29] and until the first 3 months after
birth, thus increasing the prevalence of antibiotic resist-
ance genes [30]. In our study, infants exposed to antibi-
otics after birth were significant higher in GBS group
(76.9%) than control group (41.1%) due to GBS
colonization (Table 1), but meconium microbiota of
infants exposed or unexposed to antibiotics were no
difference in GBS infected group and control group
(Figure S1). Hence, this imbalance of bacterial commu-
nities within 24 h of life in our study might be closely
correlated with mother’s GBS colonization in vaginal
tract, which was in line with previous studies [12].
There were also certain limitations of our results. First,

this study was conducted in a single center with a rela-
tively small sample set. Second, potential influence of
nutrition intakes during pregnancy was not taken into
consideration. Third, the confound influence of anti-
biotic exposure on meconium microbiota prior to labor
or operative period for C-section and immediately after
birth couldn’t address completely due to the shortage of

study design and relatively small sample size. Further-
more, we do not have access to the matched maternal
microbiome samples, thus evidence tracing the origin of
meconium microbiome is required in further study.

Conclusion
In summary, our findings add to a growing body of
knowledge about the association between GBS
colonization and neonatal meconium. Our results
demonstrated the potential features of gut micro-
biota in neonatal early life born to mother with GBS
colonization, which may lead to new biomarkers and
innovative therapeutic approaches for perinatal infant
care.

Methods
Study design and sample collection
The Ethics Committee of Shenzhen Luohu Maternity
and Child Health Hospital has approved all of the re-
search procedures. Under the procedure approved by
the Institutional Review Board (registry number:
LL201804007), informed consent was given by the par-
ents of the newborns.
The high-risk neonates admitted to the department of

neonatology from May, 2018 to Jul, 2019 were enrolled
after receiving informed consent from the parents. Pre-
term infants with extreme asphyxia (stage III), fetal
chromosomal abnormalities, cyanotic congenital cardiac
failure, congenital intestinal atresia, gastroschisis, om-
phalocele, excessive upper gastric intestinal bleeding, or
parental permission deficiency/refusal were excluded
from the study.
The fecal samples were collected in 30 ~ 50 g from a

sterilized diaper by using the sterile container having an
equal volume of sterile cryoprotectant within 24 h after
birth and transported immediately to lab on ice and
stored at − 80 °C for further studies. The specialized se-
nior nurses were responsible for this work and the small
sample spoon could not touch other neonatal body sites
when collecting.
The GBS culture from mother’s vaginal swab were

conducted at 36 week gestational age for term labor or
prior to delivery for premature labor. The clinical infor-
mation, treatment and lab data of mothers and neonates
were extracted from medical records.

DNA extraction and labeling
Bacterial DNA from the stool samples was processed fol-
lowing a previously published protocol [19]. In brief,
DNA was collected using the Stool DNA Extraction Kit
(Halgen, Ltd., Zhongshan, China) and amplified in a
PCR with standardized primers that covered the 16S
rRNA gene V1-V9 regions. The PCR products were
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explicitly labeled without purification for array
hybridization.

Microarray hybridization
Previous protocols were followed to perform microarray
hybridization [19]. In general, Cy5- and Cy3-labeled
sample DNA were combined and loaded into a
hybridization tank. After 3.5 h incubation, the slides
were manually washed and automatically screened using
a dual-channel (Genepix 4000B) scanner to calculation
the mean signal strength of Cy5/Cy3 ratio, by which the
relative abundance of each bacterial species is given.

Data analysis
Alpha-diversity was measured using default parameters
and QIIME tools (version 1.9.0, http://qiime.org/) [31].
Wilcoxon rank-sum test was used to measure the dis-
parities in alpha-diversities between classes. Analyzes of
principal coordinates analysis (PCoA) and non-metric
multidimensional scaling (NMDS) were performed using
QIIME modules and visualized with the “ggplot2” pack-
age of R software (version 3.5.2). PERMANOVA test de-
termines whether groups of samples are significantly
different from one another using the ADONIS
permutation-based statistical test in ‘Vegan’ package of
R software. Linear Discriminant Analysis (LDA) Impact
Size (LEfSe) tool [32] was adopted to analyze the dispar-
ity between classes of bacterial organisms. A threshold
of > 2.0 was set for the logarithmic LDA score in order
to take into account discriminant features [32].
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