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Meta-analysis suggests the microbiome
responds to Evolve and Resequence
experiments in Drosophila melanogaster
Lucas P. Henry1,2* and Julien F. Ayroles1,2*

Abstract

Background: Experimental evolution has a long history of uncovering fundamental insights into evolutionary
processes, but has largely neglected one underappreciated component--the microbiome. As eukaryotic hosts
evolve, the microbiome may also respond to selection. However, the microbial contribution to host evolution
remains poorly understood. Here, we re-analyzed genomic data to characterize the metagenomes from ten Evolve
and Resequence (E&R) experiments in Drosophila melanogaster to determine how the microbiome changed in
response to host selection.

Results: Bacterial diversity was significantly different in 5/10 studies, primarily in traits associated with metabolism
or immunity. Duration of selection did not significantly influence bacterial diversity, highlighting the importance of
associations with specific host traits.

Conclusions: Our genomic re-analysis suggests the microbiome often responds to host selection; thus, the
microbiome may contribute to the response of Drosophila in E&R experiments. We outline important considerations
for incorporating the microbiome into E&R experiments. The E&R approach may provide critical insights into host-
microbiome interactions and fundamental insight into the genomic basis of adaptation.
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Background
The microbiome has emerged as a key modulator of
many organismal phenotypes [1–3]. While many studies
show the impact of the microbiome on host phenotypes,
the evolutionary implications remain enigmatic [4–6].
The microbiome may contribute to host evolution in
unique ways. First, large effective population sizes and
rapid generation times may enable microbes to evolve
more rapidly than hosts [7]. Second, the microbiome
likely encodes distinct genes compared to the host gen-
ome, potentially expanding the genomic reservoir to en-
able adaptation to diverse selective pressures [3, 8, 9]. If

hosts can leverage this microbial evolution, then the
microbiome may alter host evolution.
Experimental evolution is a powerful tool to study the

basis of adaptation, but remains underutilized in the
study of host-microbiome evolution [6, 10, 11]. One par-
ticularly well-suited class of these studies is Evolve and
Resequence (E&R) experiments [12–14]. E&R experi-
ments build on the long history of using artificial selec-
tion in evolutionary biology by incorporating new
advances in sequencing technologies to measure the
genomic responses to selection. E&R experiments are
commonly performed in microbes like E. coli or yeast, as
well as eukaryotes like Drosophila [13]. In general, E&R
experiments begin with large outbred populations. The
population is reared under a particular selective regime.
The selective regime can take many forms, ranging from
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threshold selection (e.g., egg size) or general survival
under some sort of stressor (e.g., low nutrition diets). In
parallel, to control for genetic drift, control populations
are maintained in a benign (i.e., non-selective) environ-
ment. After a number of generations, the control and
evolved populations are sequenced to identify regions of
the genomes associated with the response to selection.
For flies and other eukaryotic hosts, selection is expli-
citly applied to host populations, but may also act upon
the microbiome. When the microbiome influences host
phenotypic variation, microbial variation may also affect
the response to selection in hosts. Thus, the underappre-
ciated interplay between host and microbial variation
has the potential to complicate the interpretation of se-
lection responses based strictly on host genetic variation.
Microbes may be underappreciated drivers of host

phenotypic variation. For example, Wolbachia infection
can rescue deleterious phenotypes in homozygous mu-
tant Drosophila lines [15–17]. Body color in aphids is
partially determined by Rickettsia secondary symbionts
[18]. These phenotypic effects are not limited to single
microbial species, but also include more complex micro-
biomes. In cows, the microbiome explained 13% of

methane emissions [19] and 26–42% of fatty acid com-
position of milk [20]. The microbiome also explained
33% of weight gain in pigs [21]. For both pigs and cows,
the microbiome contributed almost as much to traits as
host genetics. These examples suggest that the micro-
biome in many host taxa is an important determinant in
host phenotypes, and, in turn, may shape the selection
response for hosts. E&R experiments may thus be miss-
ing a substantial component that shapes the host evolu-
tionary response.
Here, we analyzed the metagenomes from 10 E&R ex-

periments in Drosophila melanogaster. Many phenotypes
in D. melanogaster are responsive to microbial variation,
including developmental, metabolic, and immunological
traits [22–24]. Furthermore, E&R experiments in D. mel-
anogaster capture the evolutionary response to a wide
range of different selective pressures, ranging from life
history to nutritional to pathogen challenges (Table 1).
Thus, E&R experiments in D. melanogaster provide a
unique opportunity to study how the microbiome re-
sponds to host selection. Our goal here is to explore
these publicly available data and using meta-analysis and
characterize patterns in the metagenomes of these

Table 1 Evolve & Resequence studies analyzed

Pressure Evolved Phenotype Duration of
Selection
(generations)

Wolbachia
(% reads,
min-max)

Experimental design (D: diet, S: sequencing)

Accelerated
development
[25]

Flies developed from egg to
adult 20% faster than control

605 Infected
(0.01–1.40%)

D: Banana, corn syrup, agar. S: 25 females (age not reported)
pooled from each line; 4 control and 4 evolved.

Delayed
reproduction
[26]

Age of reproduction increased
from 28 to 40 days

50 Uninfected
(0%)

D: Not specified. S: 100 females (age not reported) pooled from
each line; 18 control and 18 evolved.

Increased
lifespan [27]

Median lifespan was increased
from 4 weeks to 7–8 weeks

48 Uninfected
(0%)

D: Agar, yeast, sugar, oatmeal. S: 250 males + 250 females (age
not reported) pooled from each line; 3 control and 3 evolved.

Egg size [28] Egg size was selected ~ 20%
larger and smaller eggs

16 Infected
(0.02–0.11%)

D: Not specified. S: 100 females (age not reported) pooled from
each line; 3 control, 3 small, 3 large.

Desiccation
resistance
[29]

Desiccation resistance (hrs
until 80% mortality) increased
70–80%

48 Infected
(70.2–89.7%)

D: Yeast, cornmeal, agar. S: 100 females (age not reported)
pooled from each line; 3 control and 3 evolved.

Fluctuating
temperature
[30]

Survival under fluctuating
temps 18–28 °C daily

37 Infected
(48.7–75.1%)

D: Standard media. S: 500 females (~ 7 days old) pooled for each
line at different time points; beginning, middle, and end; 3
control and 3 evolved--only compared beginning and end.

Salt +
cadmium
resistance
[31]

Survival in constant, spatially,
temporally varying salt and/or
cadmium

42 Infected
(0.01–0.03%)

D: Yeast, cornmeal, sugar agar. Diet differed between control and
evolved. S: 70 females (age not reported) pooled from each line;
3 control lines and 5 lines for each selection pressure.

Starvation
resistance
[32]

Starvation resistance (hrs to
death w/o food) increased ~
25%

83 Infected
(53.0–78.4%)

D: Not specified. S: 100 females (4 days old) pooled for each line;
3 control and 3 evolved lines.

Parasitoid
resistance
[33]

Resistance to parasitoid
increased from 20 to 50%

5 Uninfected
(0%)

D: Not specified. S: 50 females (~ 5 h old) pooled from each line;
16 control and 16 evolved lines.

Viral
resistance
[34]

Resistance to Drosophila C
virus increased from 25 to 75%

20 Infected
(95.1–98.1%)

D: Standard cornmeal-agar. S: 200 individuals (age not reported)
pooled from each line; 4 control, 4 procedure control, 4 evolved.
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experiments. This meta-analysis allowed us to identify
common patterns in the response of the microbiome to
host selection. We use these observations to highlight
potential future directions for which the powerful E&R
approach is uniquely suited to identify signatures of se-
lection in host-microbiome evolution.

Results
The 10 E&R experiments analyzed for metagenomes
ranged in a variety of selective pressures (see Table 1 for
full description)--from life history (accelerated develop-
ment [25], delayed reproduction [26], increased lifespan
[27], egg size [28]) to abiotic pressures (desiccation re-
sistance [29], fluctuating temperature [30], salt and
heavy metal resistance [31]) to biotic pressures (starva-
tion resistance [32], parasitoid resistance [33], viral re-
sistance [34]). All experiments had replicated control
and evolved populations, although replication varied
from as few as three to as many as 18 (Table 1). Given
the importance of the diet in shaping microbial vari-
ation, we examined the reported characteristics of the
diet from each study. Importantly, for 9/10 studies, the
reported diets did not differ between control and
evolved populations (Table 1). Only for the cadmium
and salt resistance study [31] were diets different for the
entire lifespan between control and evolved populations.
The starvation resistance study [32] exerted starvation
on adults for 4 days, and then flies that survived were
returned to a standard diet to propagate the next gener-
ation. While the diets may have varied between studies,
only 5/10 studies described the diet (Table 1). The lack
of consistent dietary reporting is a major challenge for
Drosophila-microbiome studies [35]. As the majority of
these studies do not report specific dietary information,
we are unable to explore the effects of diet across E&Rs
in this analysis.
Because each experiment has replicated control and

evolved populations, we compared microbiomes within
each experiment. In the E&R context, control popula-
tions represent the standing genetic variation from
which selection proceeds. Thus, by comparing control
and evolved populations within experiment, the effects
of many different factors (e.g., local laboratory environ-
ment, different diets, different fly populations) are con-
trolled for in our analysis. For each experiment, bacterial
families were differentially abundant in control and
evolved populations (Fig. 1; Supp. Figs 1-10 for individ-
ual replicates for each experiment). Control and evolved
populations tended to harbor similar bacterial families
across replicates, within each experiment, as measured
through beta-diversity (Jaccard similarity; Fig. 2, Table 2).
Only in two experiments did control and evolved popu-
lations differ in community membership--accelerated
development time and delayed reproduction. Bacterial

alpha-diversity frequently responded to experimental
evolution (Fig. 3). Evolved populations often exhibited
reduced levels of bacterial diversity (4/10 studies),
though in one case (accelerated development time) bac-
terial diversity increased (Table 3 for statistical sum-
mary). Taken together, the microbiome frequently shifts
in response to host selection (i.e., differences in alpha-
diversity), but does not necessarily gain different mi-
crobes (i.e., no difference in beta-diversity).
Because the number of generations varied across E&R

experiments (from 5 to 605 Drosophila generations; see
Table 1), we also tested if change in microbial diversity
was correlated with duration of host selection. One hy-
pothesis is that shorter selection experiments provide
less opportunity for the microbiome to change, while
longer selection provides more opportunity for increased
microbial change. The change in microbial diversity was
not correlated with duration of selection after control-
ling for each study as a random effect (Fig. 4, r = 0.05,
p = 0.649). The specific nature of the selective pressure
appears to be more important in driving changes in the
evolving microbiome as experiment explained 76% of
variance in our model (Table 4). For example, the
evolved microbiome in the starvation resistance experi-
ment exhibited the greatest change in bacterial diversity.
This may not be surprising given that the Drosophila
microbiome has been shown to be tightly linked to the
regulation of metabolic networks [22]. For other traits,
like egg size, the microbiome did not significantly re-
spond to experimental evolution. This analysis suggests
that the effect of selection on microbiome is likely trait
specific.
We note that, in seven out of ten studies, flies were in-

fected with Wolbachia (Table 1). Wolbachia was < 2% of
reads for three studies, but 48–98% for the other four
studies. To better understand the association between
Wolbachia and the microbial response to selection, we
focused on these four studies with high relative abun-
dance (Fig. 5). Wolbachia was significantly more abun-
dant for evolved populations in starvation and viral
resistance, though also tended to increase for desiccation
resistance and fluctuating temperatures (Table 5 for stat-
istical summary). Taken together, these results highlight
how Wolbachia may underlie some of the significant
changes to diversity that occur in evolved populations.

Discussion
To our knowledge, this is the first systematic examin-
ation of the microbiome in E&R experiments in D. mela-
nogaster. Given the many fundamental insights gained
from Drosophila in E&R experiments [13], our results
here uncover another layer of variation previously unex-
plored--the microbiome. The microbiome changed
under some selective pressures, while it was unaffected
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Fig. 1 Relative abundance for bacterial families from the 10 E&R experiments. Each experiment was grouped separately; the colors represent
different bacterial families in each. Only bacteria that comprised > 1% of total reads were visualized
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by others (Figs. 1 and 3). Pressures closely linked to
metabolic processes, like starvation resistance or devel-
opment time, or immunity affected microbial diversity
the most. In Drosophila, bacterial genes that increase
glucose assimilation and fat storage are necessary for
bacterial establishment in the host gut, suggesting that
hosts select for bacteria to enhance metabolism [36–38].
Other pressures, like selection for increased lifespan, egg
size, or abiotic stressors (e.g temperature and heavy
metals), did not substantially impact microbial diversity
(Fig. 3). It is not surprising that not all selection pres-
sures shape the microbiome; indeed, in Drosophila, traits
such as activity level, sleep, and some aspects of nutri-
tion are known to not be influenced by the microbiome
[39–42]. Our results suggest that the microbiome
changes along with host evolution in the E&R context –
although we emphasize that the data we present are a
re-analysis of existing genomic data and not derived
from new manipulative experiments. Our results here
contribute to a growing body of literature suggesting
that when the microbiome contributes to host pheno-
typic variation, changes in the microbiome have the po-
tential to impact host evolutionary trajectories [6, 43].
The evolutionary interplay between host and their
microbiome may play an important role in driving host
evolution (beyond the explicit selective pressures exerted
in these experiments), and this level of variation should
not be ignored in E&R analyses.
We observed several generalities in the microbial re-

sponse in E&R experiments. First, the microbiome in
both control and evolved populations was composed of
similar bacterial families (Fig. 1), suggesting selection did
not lead to the complete replacement by different

bacterial taxa in evolved populations. In evolved popula-
tions, only a few of the bacterial families increased in
relative abundance. Furthermore, in all studies, replicate
lines from both control and evolved populations show
similar community compositions, suggesting consistent
effects on the microbiome (Fig. 2, Supp. Figs. 1-10). Be-
cause community composition is consistent across repli-
cates, we do not believe drift explains the observed
reduction in diversity. If drift was a predominant force
shaping the microbiome in evolved populations, we
would have expected stochasticity to increase diversity
across replicates within control and evolved populations.
More likely, bacteria that contribute to the host adapta-
tion may be more likely to persist under the selective
pressure, increasing in abundance and facilitating local
adaptation. Second, the increase in abundance of par-
ticular bacterial families, like Wolbachia, also contrib-
uted to the frequent reduction in diversity. The
reduction in diversity likely reflects local adaptation in
the microbiome, but potentially also the loss of genetic
diversity in the host. We expect that the rapid nature of
E&R experiments, combined with strong selective pres-
sures, results in lower heterozygosity levels across the
genome following selection in E&R experiments [13].
Host genetics shapes a significant fraction of the fly
microbiome [44], and perhaps the loss of diversity in the
host genome also contributed to the reduction in micro-
bial diversity observed here. While evolved populations
have reduced heterozygosity, they still maintain substan-
tial heterozygosity across the genome. More research is
necessary to understand how host genome-wide diversity
affects microbial diversity, or if only certain host loci are
the key drivers of changes in microbial diversity.

Fig. 2 PCoA plots for beta-diversity using Jaccard similarity for the 10 E&R experiments show the majority of control and evolved populations
harbor similar bacterial families. Each experiment was grouped separately; grey color represents control populations, and the colored points
represent evolved populations. Each sequenced pool is shown as a point with lines connecting to the centroid based on PCoA clustering. The
two studies (accelerated development time and delayed reproduction) with significantly divergent microbiomes between control and evolved
populations are outlined in colored boxes. P-values are shown for all studies
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Table 2 Summary statistics for beta-diversity (Jaccard similarity)

Accelerated development time

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

group 1 0.30394 0.303937 40.862 0.89098 0.022*

Residuals 5 0.03719 0.007438 0.10902

Total 6 0.34113 1

Delayed reproduction

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

group 1 0.09902 0.099022 3.9017 0.10294 0.008**

Residuals 34 0.86288 0.025379 0.89706

Total 35 0.9619 1

Increased lifespan

Df Sum Sq Mean Sq F N.Perm Pr(>F)

Groups 1 0.0031624 0.0031624 1.846 719 0.3014

Residuals 4 0.0068525 0.0017131

Egg size

Df Sum Sq Mean Sq F N.Perm Pr(>F)

Groups 1 0.0020672 0.0020672 0.7579 999 0.434

Residuals 7 0.0190935 0.0027276

Desiccation resistance

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

group 1 0.044141 0.044141 1.8976 0.32176 0.2

Residuals 4 0.093047 0.023262 0.67824

Total 5 0.137188 1

Fluctuating temperature

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

group 1 0.11007 0.11008 1.9823 0.19858 0.203

Residuals 8 0.44424 0.05553 0.80142

Total 9 0.55432 1

Salt + cadmium resistance

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

group 1 0.05652 0.056519 2.1164 0.09155 0.085

Residuals 21 0.56081 0.026705 0.90845

Total 22 0.61733 1

Starvation resistance

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

group 1 0.019872 0.019872 2.0937 0.34359 0.2

Residuals 4 0.037964 0.009491 0.65641

Total 5 0.057836 1

Parasitoid resistance

Df SumsOfSqs MeanSqs F.Model R22 Pr(>F)

group 1 0.04295 0.04295 0.64716 0.02112 0.533

Residuals 30 1.99099 0.066366 0.97888

Total 31 2.03394 1

Viral resistance

Df SumsOfSqs MeanSqs F.Model R22 Pr(>F)
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Uncovering the specific host genetic loci that may be as-
sociated with microbial changes is beyond the scope of
this current study; however this is an important factor to
consider in future studies.
For the evolved microbiomes, bacteria may have

evolved different functions that hosts can leverage. For
example, the relative abundance of Acetobacteraceae is
enriched in the evolved populations for accelerated de-
velopment time (Fig. 1a). Acetobacter produces acetic
acid that modulates the insulin/insulin-like signaling
(IIS) growth factor pathway in flies [36]. More so, Aceto-
bacter is frequently associated with accelerated develop-
ment compared to other bacteria [24, 36, 45, 46]. The
IIS pathway may also integrate metabolic products from
other bacteria in the microbiome to help regulate fly
metabolism. Wolbachia infection has been shown to in-
crease insulin signaling in Drosophila [17]. The in-
creased Anaplasmataceae abundance in the evolved
populations may better regulate metabolic traits to miti-
gate selection in the starvation resistance experiment
(Fig. 1h). We hypothesize that increased relative

abundance for particular bacteria in the evolved popula-
tions corresponds to functional changes and is suggest-
ive of fitness benefits for the fly. Subsequently, flies
transmit and preferentially associate with the beneficial
microbes. However, bacteria may also be increasing in
the evolved conditions independently of any host selec-
tion. To better understand how microbial evolution in-
teracts with host evolution, longitudinal sampling over
the course of the evolutionary trajectory is necessary.
Identifying if beneficial adaptations emerge first in the
microbiome and then alter allele frequencies in host
populations would provide key insights into how host-
microbiome interactions shape eukaryotic evolutionary
processes.
The temporal aspect of host-microbiome evolution is

important, but underexplored and thus poorly under-
stood. Our analysis suggests that time did not signifi-
cantly affect the difference in diversity between control
and evolved populations (Fig. 4). This might be because
the microbiome changes rapidly, within a single host
generation, but the evidence for rapid change is

Table 2 Summary statistics for beta-diversity (Jaccard similarity) (Continued)

group 1 0.0384 0.0384 2.673 0.21092 0.088

Residuals 10 0.14366 0.014366 0.78908

Total 11 0.18206 1

Fig. 3 Bacterial diversity between control and evolve populations in 10 E&R experiments. 5/10 experiments had significantly different bacterial
diversity (denoted with the colored outline and asterisk). Bacterial diversity was calculated at the family level using Shannon diversity metric.
Comparisons between control and evolved populations were within each experiment. Each point represents a pool of sequenced flies showing
replication within control and evolved groups, and the details of how many flies/experiments are described in Table 1. Color represents
each experiment
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inconsistent. One study found that the microbiome was
significantly different when flies were shifted to a high
fat diet, but not when starved [47], while another study
also found no differences when shifted to low or high
sugar diets [48] within their lifespan. Finally, in flies
mono-associated with Lactobacillus reared in nutrient
poor diets, Lactobacillus evolved beneficial mutations
that promoted fly growth in only 5 fly generations [49].
While most experiments did not manipulate diets in our
E&R analysis, the findings from these three studies sug-
gest a range of timescales in which the microbiome may
evolve, though few studies have actually collected con-
trolled time series data on microbiome change in Dros-
ophila. Conducting longitudinal surveys of the

microbiome during experimental evolution is essential
to understanding if and how the microbiome shapes
host evolutionary trajectories.
Wolbachia was found in most of the experiments and

often increased in relative abundance in evolved popula-
tions (Fig. 5). Wolbachia has a variety of effects on fly
biology, ranging from reproductive phenotypes to im-
munity to nutrition [50–52] and may substantially influ-
ence Drosophila evolution [50, 53]. The phenotypic
effects exerted by Wolbachia on their hosts often

Table 3 Statistical differences between control and evolved
microbiomes

Pressure test stat df significance

accelerated development t = −8.116 df = 3.009 p-value = 0.004

delayed reproduction t = 3.558 df = 33.652 p-value = 0.001

increased lifespan t = 1.364 df = 3.172 p-value = 0.261

egg size t = 0.213 df = 3.105 p-value = 0.845

desiccation resistance t = 2.883 df = 2.224 p-value = 0.090

fluctuating temperature t = 1.238 df = 7.996 p-value = 0.251

salt and cadmium resistance t = 1.431 df = 2.287 p-value = 0.274

starvation resistance t = 10.448 df = 2.065 p-value = 0.008

parasitoid resistance t = 2.179 df = 28.394 p-value = 0.038

viral resistance t = 4.265 df = 9.829 p-value = 0.002

Fig. 4 Evolved bacterial diversity was not significantly correlated with duration of selection after controlling for differences between experiments
as random effects (r = 0.05, p = 0.649). Random effects (experiment) explained 76% of variation (see Supp. Fig. 11). Generations of selection range
from 5 generations (parasitoid resistance) to > 500 generations (accelerated development). Each point represents the difference between average
control diversity and each pool of evolved flies for each experiment. Points are colored by experiment

Table 4 Summary statistics of mixed model to assess the
relationship between duration of selection and change in
diversity. Random effect was modeled as experiment (i.e.,
accelerated development time, starvation resistance, etc.)

Fixed effects

Estimate (std. error) T-value Pr (> | t |)

Intercept −0.185 (0.162) −1.137 0.291

log10.length 0.046 (0.097) 0.473 0.649

Random effects

Variance Std. deviation

Experiment 0.0225 0.1500

Residual 0.007 0.084

Summary

Observations 79

Log Likelihood 66.128

Akaike Inf. Crit. −124.256

Bayesian Inf. Crit. −114.779
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depend on the degree of increase in abundance. For ex-
ample, higher abundance provided stronger cytoplasmic
incompatibilities [54], increased protection from viruses
[55], or greater reductions in lifespan [56]. However, sev-
eral factors may actually confound the Wolbachia results
observed in our meta-analysis here. Infection was only
assessed from pools of flies – we do not have access to
individual level status (Table 1). Relative abundance may
reflect the average relative abundance within individuals
or heterogeneous infection patterns across individuals.
We believe this second scenario of heterogeneous infec-
tion across individuals is not likely for the four high
Wolbachia studies we examined in more detail. In a
study that examined how Wolbachia infection spreads
within outbred populations, Wolbachia infection across
individuals increased to 80% by 10 generations and
nearly 100% by 32 generations [57]. This suggests that
for the four high Wolbachia studies, most individuals

Fig. 5 Wolbachia relative abundance tended to increase in evolved populations for four studies, but was only statistically significant in starvation
resistance and viral resistance (denoted with colored box and asterisk). Comparisons were made within each study between control and evolved
populations. Each point represents a pool of flies

Table 5 Statistical differences in Wolbachia relative abundance
between control (C) and evolved (E) populations

Experiment C min C max C avg E min E max E avg

Desiccation resistance

Relative abundance 0.775 0.906 0.849 0.926 0.936 0.932

Kruskal-Wallis X2 = 3.8571, df = 1, p-value = 0.04953

Fluctuating temperature

Relative abundance 0.488 0.757 0.628 0.685 0.752 0.723

Kruskal-Wallis X2 = 1.0519, df = 1, p-value = 0.3051

Starvation resistance

Relative abundance 0.837 0.854 0.844 0.918 0.943 0.932

Kruskal-Wallis X2 = 3.8571, df = 1, p-value = 0.04953

Viral resistance

Relative abundance 0.955 0.977 0.968 0.98 0.984 0.981

Kruskal-Wallis X2 = 7.3846, df = 1, p-value = 0.006578
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were infected. However, for the three studies with low
Wolbachia abundance, it may be that Wolbachia infec-
tion status is highly heterogeneous across individuals or
reflects recent Wolbachia infections (or simply contam-
ination). Fly age also affects Wolbachia abundance, in-
creasing in older flies [58]. Unfortunately, age of flies
was only described in 3/10 studies (Table 1), but was al-
ways similar between control and evolved populations.
Age might affect our results if control and evolved popu-
lations were systematically collected at different ages.
We think this unlikely as it would also bias the genomic
analysis as survival may differ between control and
evolved populations at different ages (e.g., viability selec-
tion). Overall, designing experiments that explicitly con-
trol for Wolbachia infection is necessary to understand
its potential influence on host-microbiome evolution
[14, 23].
Wolbachia may also interact and change competitive

interactions within the microbiome. In a comparison of
a single genotype of flies infected and uninfected with
Wolbachia, uninfected flies had twice as much Acetobac-
ter [59]. However, in the same study, a different fly
genotype did not display this effect. Yet, another study
found that Wolbachia infection increased Acetobacter
abundance [60]. These effects are inconsistent and likely
depend on interactions between fly genotype, Wolbachia
genotype, and environmental conditions. If Wolbachia
interacts positively or negatively with different bacteria,
then Wolbachia may also influence how the microbiome
shapes host phenotypes and contributes to the host evo-
lutionary trajectory.
Wolbachia may be more closely linked to the host

evolutionary trajectory because it is vertically transmit-
ted, while the rest of the Drosophila microbiome is en-
vironmentally acquired. The joint evolutionary trajectory
with the host may change the response to selection in
vertically transmitted microbes, like Wolbachia, com-
pared to environmentally acquired microbes [5, 6].
Taken together, the interactions between Wolbachia,
host, and microbiome are likely complicated. We note
that computationally removing Wolbachia reads leads to
differences in estimates for diversity, where sometimes
diversity increases or decreases between control and
evolved populations (Supp. Fig. 12). Manipulative experi-
ments clearing Wolbachia infections and comparing the
response in both the microbiome and host selection re-
sponse would show if and how Wolbachia contributes to
host evolution. ~ 50% of all arthropod species are pre-
dicted to be infected with Wolbachia or similar intracel-
lular symbionts [61], and these microbe-microbe
interactions may have important implications for the
host [62].
While this is the first examination of the microbiome

in the E&R context, other studies have implicated the

microbiome in host adaptation in D. melanogaster. For
example, as previously mentioned, when flies were
monoassociated with Lactobacillus plantarum in nutri-
ent poor environments, L. plantarum rapidly evolved
symbiotic benefits to increase fly fitness [49]. Across rep-
licates, the de novo appearance of several SNPs in the
acetate kinase gene (ackA) in L. plantarum promoted
larval growth and nutrition, and subsequently, this L.
plantarum variant increased in frequency across fly gen-
erations. In another study, microbiome manipulation
shifted allele frequency in seasonally evolving D. melano-
gaster to match latitudinal patterns of fly genetics [63].
Both of these studies rely on mono-associations with
single microbes, but this likely does not realistically cap-
ture host-microbe dynamics. Higher order interactions
among bacteria shape phenotypes in Drosophila [45, 46].
Interaction among microbes, like cross-feeding of me-
tabolites between Acetobacter and Lactobacillus, can en-
able mutually beneficial growth for both bacteria species
as well as increases bacterial growth, but critically also
alters fly metabolism [64]. This suggests that mutations
within bacterial species may affect interactions across
bacteria in the microbiome. Furthermore, even strain-
level variation within a bacterial species can have diver-
gent effects on host phenotypes [65, 66]. The technical
challenges associated with accurately quantifying genetic
variation across complex microbial populations necessi-
tated these mono-association experiments. Fortunately,
new emerging methods are enabling the identification of
signatures of selection in complex microbiomes [67, 68].
Future experiments with more complex and realistic
microbiomes will show how microbe-microbe interac-
tions contribute to host adaptation.
Taken together with our analyses, as the host evolves,

the microbiome frequently changes in response to host
selection. More generally, other systems like Brassica
and Arabidopsis have also shown that selection on hosts
changes the microbiome as well [69, 70]. In both these
studies, transplanting an evolved microbiome into un-
evolved hosts changed host phenotypes, suggesting that
the microbiome has the capacity to transfer adaptive po-
tential. Similar approaches could be applied to Drosoph-
ila following E&R experiments. Importantly, our study
here only characterized change in microbial community
composition, but not how specific bacteria evolved (e.g.,
mutations or polymorphisms) in response to host selec-
tion. New computational and sequencing techniques that
enable variant discovery in bacteria combined with lon-
gitudinal sampling have quantified eco-evolutionary dy-
namics in mammalian microbiomes to show that
bacteria frequently acquire new mutations to increase
fitness to respond to biotic fluctuations in the gut envir-
onment [71, 72]. Combined with the rich genetic re-
sources and experimental ease in Drosophila,
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microbiome transplants and novel computation tech-
niques will illuminate key processes underlying host-
microbiome evolution.
We note the experiments analyzed here were not de-

signed explicitly to test the role of the microbiome in
host adaptation. This may impact our results in several
ways. None of these studies were executed with quality
control measures that can affect estimates of microbial
diversity, such as process blanks during DNA extraction,
no template controls during PCR, and batch effects dur-
ing library preparation [67, 73–75]. While we applied an
arbitrary cutoff to remove contaminants, it is difficult to
know how potential contaminants may affect the ob-
served results. However, contamination would have to
differentially affect control and evolved microbiomes to
influence our results--which we believe is unlikely. Sur-
veys of microbial diversity in D. melanogaster typically
use 16S rRNA profiling and find bacteria from the Acet-
obacteraceae, Firmicutes, and Enterobacteriaceae [22, 24,
76]. Our mapping approach detected these bacteria
commonly associated with D. melanogaster, but also
found abundant methanogens and human commensal
microbes (Fig. 1). One discrepancy could arise from our
metagenomic approach, which will often lead to differ-
ent conclusions than 16S rRNA profiling [67]. Mining
metagenomes from existing whole genome sequencing is
an emerging area of research in the microbiome, and
more work is necessary for biological interpretations [5,
67]. Finally, none of the flies sequenced in these studies
were surface sterilized, and thus, the metagenomes char-
acterized here result from both the external body surface
and internal gut microbiome. However, the external
microbiome is orders of magnitude less abundant than
the internal microbiome across the fly lifespan [77].
While we cannot distinguish between external and in-
ternal microbiomes in this analysis, future studies should
be clear if the total (external and internal) or gut micro-
biomes were sequenced. Nevertheless, the consistent dif-
ferences in the microbiome across experiments shown
here highlight how E&R experiments could provide ex-
emplary opportunities to investigate the genetic basis
underlying host-microbiome evolution.

Conclusions
For researchers interested in adapting the E&R approach
for host-microbiome interactions, we have several key
recommendations. As we have suggested above, more
intensive temporal sampling to capture both microbial
and host evolution is necessary. For Drosophila-micro-
biome E&R experiments, researchers may wish to begin
the experimental evolution by standardizing the micro-
biome between control and evolved populations, like
with the 5-species bacterial community commonly used
[23, 78] or fly feces to mimic natural, but standardized

microbial inoculation [79, 80]. Second, as much of the
microbiome is determined by the environment in flies,
researchers need to use consistent brands of yeast, pre-
servatives, and other aspects of diet/environment. For
example, different preservatives have different effects on
the microbiome and behavioral traits [40, 41]. Drosoph-
ila in different labs in the same building (with the same
kitchen for fly food) had different microbiomes [76],
suggesting that several aspects of the environment are
important in shaping the fly microbiome. Finally, as out-
lined by Goodrich et al. [81], microbiome research re-
quires careful planning (with both biological and
technical controls), extensive documentation, and
consistency. Importantly, we are not advocating that
every E&R experiment incorporates the microbiome, but
note that the microbiome may impact conclusions from
E&R experiments. For researchers not explicitly inter-
ested in the microbiome, our primary recommendation
is to clear fly lines of Wolbachia to avoid potential con-
founding effects between host genetic and Wolbachia
evolution as others have suggested [14, 23].
In conclusion, the microbiome frequently responded

to selection in ten E&R studies in D. melanogaster. Our
results here associate the microbiome in the host re-
sponse to some selective pressures, but more work is ne-
cessary to partition the relative effects of host genetics
and microbial evolution. We observed large differences
in bacterial diversity between control and evolved popu-
lations, but a key question remains--if and how the
microbiome alters the host response to selection. Com-
bining E&R experiments with approaches from quantita-
tive genetics will be especially fruitful to dissecting the
microbial contribution to host evolution [6]. Tracking
the rate of microbial evolution over multiple timepoints
during fly adaptation will be particularly helpful to eluci-
date whether the microbiome shapes the host evolution-
ary trajectory. Partitioning the microbial effects on host
phenotype during adaptation may show that microbiome
facilitates or impedes host adaptation. Reciprocal trans-
plants over the course of host adaptation will also dem-
onstrate how the microbiome modifies host evolution.
Our results here suggest that the microbiome might in-
fluence host evolution, but do not prove it. To measure
how the microbiome affects host evolutionary trajectory,
combining several of these techniques will be necessary.
Overall, incorporating the microbiome into E&R experi-
ments will provide fundamental insights into host-
microbiome evolution.

Methods
We searched the literature for E&R experiments in D.
melanogaster where replicated control and selection
lines were derived from outbred populations and raw
.fastq data were publicly available. We found 10 studies
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that met these criteria. Our analyses captured a wide
range of different selection pressures, from life-history
traits to abiotic and pathogen pressures, enabling gener-
alizations about the microbiome response to host selec-
tion. In all cases, the E&R approach sequenced pools of
individuals from different selection regimes, but each
E&R study had different levels of replication (summa-
rized in Table 1). We report the diet as described in the
publication for each study (Table 1). While most studies
did not publish specifics about the diet, we noted the di-
ets that differed between control and evolved popula-
tions (only one study [31]); if the publication did not
specify, we reasonably assumed diets were the same.
These were the only data available from published E&R
experiments in D. melanogaster at the time of
submission.
Raw sequences were cleaned using Trimmomatic [82]

to remove sequencing adapters, remove low quality
reads (average quality per base > 15), and drop reads
shorter than 20 bases long. Then, bacterial reads were
assigned at the family level using Kraken [83]. Relative
abundance of bacterial families were determined using
Bracken [84]. We removed any low abundance bacterial
family that was assigned fewer than 100 reads as poten-
tial contaminants.
Bacterial data was analyzed using the phyloseq package

[85]. To assess if bacterial communities were fully sam-
pled, rarefaction was performed (step size =1000) using
ggrare [86]. Rarefaction curves indicate communities
were fully sampled in all experiments (Supp. Figs 1-10).
Beta-diversity to test differences in community compos-
ition between control and evolved populations was per-
formed using PERMANOVA on Jaccard similarity.
Bacterial alpha-diversity was calculated using the Shan-
non diversity index. For each experiment, each line was
subsampled with replacement to the minimum number
of reads in the experiment. Diversity was calculated on
this rarefied library. The subsampling was performed
100 times to minimize stochasticity and artificial infla-
tion of diversity associated with rarefaction [87]. Diver-
sity was then averaged across the 100 subsampling
efforts and compared between control and evolved lines.
We determined significance using Welch’s t-test. We
then tested whether two factors were sufficient to ex-
plain variation in microbial diversity between control
and evolved lines: duration of selection (i.e., the number
of fly generations) and Wolbachia infection.
First, the duration of selection ranged from 5 to 605

generations. We reasoned that selection response in the
microbiome might be influenced by length of selection
(the longer the selection, the more divergent the micro-
biome between control and evolved lines). To test if the
duration of selection was correlated with changes in mi-
crobial diversity, we first calculated the average

microbial diversity for the control lines. We then sub-
tracted the diversity of each evolved line from the aver-
aged control diversity to calculate change in diversity.
Because we had positive and negative changes in diver-
sity, we used the absolute difference. We performed a
linear regression between change in diversity and the
log10 duration of selection, modeled as Y = a + b + e,
where Y = change in diversity, a = log10 duration of se-
lection, b = random effect of experiment, and e = residual
error. Lme4 was used to perform the regression in R
[88].
Given that Wolbachia reads frequently make up the

majority of the microbial reads (Supp. Table 1), we ex-
amined if Wolbachia relative abundance differed be-
tween control and evolved populations. We focused on
only the four studies with Wolbachia relative abundance
> 2%. Statistical significance was assessed with a
Kruskal-Wallis test on Wolbachia relative abundance.
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