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Abstract

Background: To explore the optimum fermentation conditions for tobacco leaves and also screen the microbiota
and metabolites that are beneficial for fermentation.

Methods: Tobacco leaves were fermented at 25 °C, 35 °C, and 45 °C for 2, 4, and 6 weeks, respectively. For
identification of the best fermentation temperature, physicochemical properties and sensory quality of fermented
tobacco were investigated. Subsequently, based on the appropriate temperature, 16 s rRNA sequencing and
metabolomics analysis of tobacco were performed to monitor the change of microbes and metabolites during
fermentation process (from 2 to 6 weeks).

Results: Sensory quality analysis indicated that fermentation at 45 °C for 6 weeks represented the optimum
condition. Metabolomics analysis showed that a total of 415 metabolites were annotated. The increase of
fermentation period led to significant changes of metabolites. Results revealed an increase in concentration of L-
phenylalanine and sphingosine as well as decreased concentration of betaine and phytosphingosine with the
prolongation of fermentation period (2 to 6 weeks). Distinct changes in the microbiota were also observed with
prolongation of the fermentation time. Results revealed that Pseudomonas, Pantoea, and Burkholderia were
dominant bacteria in fermentation at 45 °C for 6 weeks. With the extension of the fermentation time, the
abundance of Pseudomonas increased, while that of Sphingomonas and Methylobacterium decreased. Furthermore,
microbiota profiles were tightly relevant to the altered metabolites, especially compounds involved in the
sphingolipid metabolism.

Conclusion: Suitable fermentation conditions were 45 °C for 6 weeks; phytosphingosine and sphingosine might
affect tobacco fermentation via the sphingolipid metabolism pathway. This study provides a theoretical basis for
guiding tobacco fermentation and gives insights into reducing harmful substances during tobacco fermentation.
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Background

Tobacco (Nicotiana tabacum L.) is one of the most
economically important non-food cultivated products in
the world [1]. China is the largest producer and con-
sumer of tobacco worldwide, according for approxi-
mately one-third of total global consumption each year.
Statistically, 315 million smokers in China consume 44%
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of the world’s cigarettes [2]. To our knowledge, fermen-
tation, also known as aging, is an essential process for
improving the qualities of tobacco [3]. The unaged
tobacco leaves cannot be directly utilized in cigarette
production due to their insufficient fragrance as well as
irritating smoke [4]. The fermentation process causes
the tobacco to have high commercial quality and turns
its color to dark yellow, eliminating harmful odors, de-
grading harmful substances, reducing offensive odor,
and producing tobacco-specific flavors [5, 6].
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Stacked fermentation is a common type of fermenta-
tion [7]. Under the condition of certain moisture con-
tent, tobacco leaves are stacked into a pile. Relying on
the heat generated by the self-heating action of tobacco,
it promotes the biochemical changes in leaves and im-
proves the quality and processing characteristics of to-
bacco. During this process, heat is not easily dissipated
due to the poor thermal conductivity of the tobacco bulk
itself, and the temperature in the stack can rise to 55—
65°C. After 5-7 days of fermentation, periodic flipping
of the tobacco bulk is conducted to improve fermented
tobacco homogeneity and avoid overheating. This
process is repeated 2-5 times and the fermentation is
basically over [8]. Generally, the common artificial fer-
mentation temperatures range from 35 to 50 °C with a
fermentation cycle of 4-7 weeks [9]. However, due to
the different producing area, year, variety, grade, and
maturity of tobacco leaves, the optimum fermentation
conditions of tobacco are various [10]. For instance,
Yang et al. [11] found that Leshan Jiajiang tobacco (a
type of cigar, GQH-J1) was suitable for fermentation at a
temperature of 45°C and a relative humidity (RH) of
85% for 40 days. Our previous study suggested that the
optimum conditions for cigar filler tobacco fermentation
were 45°C and RH 80% [12]. Furthermore, undesirable
fermentation by-products are produced during the fer-
mentation process, such as tobacco-specific nitrosamines
(TSNAs), whose increase in concentration parallels that
of nitrite [13]. Another unpleasant by-product of organic
acid metabolism is oxalic acid, which can negatively
affect the taste of tobacco [14]. Notably, TSNAs play a
central role in tobacco-smoke mediated cancer initiation
[15]. Taken together, minimizing the production of
TSNAs and nitrite is a major goal of tobacco fermenta-
tion technology [16].

Reportedly, fermentation not only is a chemical reac-
tion process, but also is linked to the enzymatic action
of microbes, which play extremely vital roles in this
process [17]. Di Giacomo et al. [18] revealed that Staphy-
lococcaceae and Lactobacillales were dominant detected
bacteria in the early fermentation, whereas Actinomycet-
ales rapidly expanded during the late phase. Meanwhile,
several microorganism strains, such as AS97 (a kind of
Pseudomonas fluorescens, Genbank accession number:
JF449445) [19] and cellulose degradation bacteria [20],
have the ability to reduce TSNAs in cigarettes, which
can potentially be applied for industrial tobacco fermen-
tation. Besides, changes in chemical compositions and
metabolites in the tobacco fermentation process have
been found [21, 22]. Previous study indicated that the
organic acid content, volatile acid, and volatile carbonyl
compounds were increased, while total nitrogen, nico-
tine, protein, and amino acids were decreased during the
fermentation process [5]. Besides, polyphenols are
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converted into aroma substances via oxidative degrad-
ation, which improves the aroma of cigarette [23]. Des-
pite the studies mentioned above, few studies have
systematically investigated the changes of microbiota
composition and metabolites during the tobacco fermen-
tation. Thus, in order to improve the quality of the end
product and possibly improve its safety, it is necessary to
determine the type of microorganisms and metabolites
that play roles in this process and to identify the optimal
fermentation conditions.

In the present study, we selected Shiyan No.1 as the
research material to investigate its optimal fermentation
condition and explore changes in microbiota and metab-
olites during fermentation. Concretely, the tobacco
leaves were fermented at 25 °C, 35 °C, and 45 °C for 2, 4,
and 6 weeks, respectively. According to the physiological
indicators and sensory evaluation of fermented tobacco
leaves, the optimal conditions of tobacco fermentation
were obtained. Then, based on optimal temperature, we
identified the altered microorganisms and metabolites
during the fermentation process (2, 4 and 6 weeks) by
using 16s TrRNA gene sequencing and liquid
chromatography-mass spectrometry (LC-MS) analysis.

Results

Sensory quality assessment

The content of the aroma components is listed in Table 1.
The results showed that the levels of major neutral aroma
components, such as solanone, geranylacetone, dihydroac-
tinidiolide, and megastigmatrienone, were elevated with
the increase in fermenting temperature. These compo-
nents played vital roles in producing fragrances and in-
creasing the concentration of tobacco smoke. In addition,
the neophytadiene content was the highest at 45°C com-
pared with the others. The neophytadiene could enhance
aroma, reduce irritants and alcohol, and was considered as
one of the key ingredients that contributed the most to
the aroma of tobacco. Thus, 45 °C fermentation was the
most conducive to the accumulation of aroma compo-
nents in tobacco leaves.

Meanwhile, with the increase of fermentation
temperature and time, the content of TSNAs raised sig-
nificantly (Table 2, Supplementary Figure 1A and 1B),
while the level of alkaloids and nitrates decreased
evidently (Table 3, Supplementary Figure 1C and 1D),
suggesting that the accumulation of harmful substances
in smoke declined to some extent at 45 °C fermenting.
Furthermore, with the increase of temperature, the
aroma quality and quantity of tobacco gradually in-
creased, the irritation was eliminated, and the aftertaste
was comfortable (Table 4). Taken together, the quality
detection and sensory analysis showed that 45°C
fermenting for 6 weeks was the optimal fermentation
condition.
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Table 1 The content of aroma components of tobacco leaves in different groups
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Components (ug/g) Groups

control 25°C/2 25°C/4 25°C/6 35°C/2 35°C/4 35°C/6 45°C/2 45°C/4 45°C/6

weeks weeks weeks weeks weeks weeks weeks weeks weeks

Solanone 4.758 4938 5.208 6.655 7.194 7447 7476 8439 12.002 12.008
Geranylacetone 0500 0530 0.593 1.171 0.946 1.209 1.344 1.373 1.753 1.908
B- ionone 0.902 0877 0.840 0.752 0.808 0.782 0.685 0.801 0.761 0.603
lonone oxide 2.789 2.500 2.190 2071 2299 2.102 1.755 2.188 1.953 1422
Dihydroactinidiolide 4224 4699 5.247 6.565 5.868 7.340 8.350 7.008 7.608 8215
Megastigmatrienone 1 0465 0503 0.538 0.555 0617 0.709 0.818 0.829 0.984 1.024
Megastigmatrienone 2 3.154 3.170 3.355 3434 3.732 4.348 4.695 4929 5811 6.238
Megastigmatrienone 3 0423 0489 0.563 0.572 0.711 0818 0811 0.931 1.089 1.082
3-hydroxy-$ - dihydro 0.236 0.256 0.305 0487 0.750 0.890 1.067 1.178 1.644 1.700
damadone
Megastigmatrienone 4 2.068 2.104 PARR 3963 4471 4911 5037 5434 6.076 5.689
3-Oxo-a-ionol 58326 62.240 63.806 67.865 65.329 79.524 60.731 55.774 65.583 46.688
Neophytadiene 338.195 349413 362.707 375111 351.408 410975 422.262 428902 492,098 455.894
3-Hydroxysolavetivone 3.372 3697 4171 4.295 3.922 4.200 5831 6.092 6.522 6.558
B-farnesene 7.390 8511 11.016 12.015 9.232 13111 12356 11.184 14.340 12271
Total aroma (except 88.607 94511 99.945 110400 105.879 127391 110.956 106.159 126.128 105408
neophytediene)
Total aroma 426802 443.925 462.651 485511 457.287 538366 533218 535.061 618.226 561.301

The tobacco leaves were fermented at 25 °C, 35 °C, and 45 °C (90% relative humidity), and samples were collected after 2, 4, and 6 weeks

Metabolomics analysis
The principal component analysis (PCA) result

The tobacco leaves fermented at 45°C for 2weeks
(group 2), 4weeks (group 3), and 6 weeks (group 4) as
well as unfermented leaves (group 1) was selected for
metabolomics analysis. The metabolites of tobacco were
obtained using LC-MS analysis, and the electrospray
ionization of LC-MS contained positive (POS) and nega-
tive (NEG) ion modes. Generally, PCA plot could show
the trend of separation between groups in the experi-
ment. In the present study, the PCA plots of POS and

NEG revealed that samples from each group overlapped
well, and there was a significant separation between
group 1 and group 4 (Supplementary Figure 2). A total
of 1403 and 4751 valid peaks were identified in POS and

NEG modes, respectively.

Metabolites annotations results
A total of 415 metabolites identified as mentioned above
were assigned to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Human Metabolome Data-
base (HMDB). The detail information of metabolites is

Table 2 The level of NNN, NAT, NAB, NNK, and TSNAs in tobacco leaves during fermentation process

Groups NNN (ng/g) NAT (ng/q) NAB (ng/g) NNK (ng/g) TSNAs (ng/g)
Control 812.73 +33.2Gg 1459.82 + 84.60Ee 4030+ 0.37Hh 145.34 £ 8.07Ef 2458.19 + 126.36Gf
25°C/ 2 weeks 934.19 + 31.32Ff 206091 +85.57Dd 63.81 +0.39Gg 24230+ 8.13De 3301.21 £ 12541Fe
25°C/ 4 weeks 115946 £ 33.55Ee 2274.54 +83.56Cc 7249 £ 0.36Ff 29361 +841Cd 3800.10 + 125.88Ed
25°C/ 6 weeks 1546.99 £ 36.10Bb 2536.65 + 88.18ABb 84.10+0.32Dd 349.86 + 847ABb 4517.60 £ 133.06BCb
35°C/ 2 weeks 976.51 + 36.06Ff 2069.04 + 88.04Dd 72.81 +0.35Ff 246.66 + 822De 3365.03 + 132.67Fe
35°C/ 4 weeks 1251.87 £35.24Dd 2394.27 +84.81BChc 84.34 +0.30Dd 300.26 +£8.37Cd 4030.73 £ 128.72DEd
35°C/ 6 weeks 1602.03 + 39.96Bb 2694.59 + 80.05Aa 90.19 + 0.35Bb 354.84 + 807ABab 4741.66 + 12843ABa
45°C/ 2 weeks 1192.84 + 33.58DEde 2294.08 +89.99Cc 73.86 £ 0.34Ee 287.15+822Cd 3847.94 + 132.12Ed
45 °C/ 4 weeks 1439.20 £31.50Cc 2407.34 + 89.62BChc 86.59 +0.36Cc 335.67 £8.30Bc 4268.80 £ 129.78CDc
45 °C/ 6 weeks 1685.79 + 38.24Aa 272040 + 84.92Aa 95.80 + 0.34Aa 367.12 £ 8.14Aa 4869.12 £ 131.63Aa

NNN N'-nitrosonornicotine; NAT N'-nitrosoanatabine; NAB N'-nitrosoanabasine; NNK 4-(methylnitrosamino)-1 -(3-pyridyl)-1-butanone; TSNAs Tobacco-specific
Nitrosamines. Control group represents the sun-dried unfermented tobacco leaves. All data are represented by mean + SD (n = 3). Uppercase letters indicate p-
value < 0.05 and lowercase letters indicate p-value <0.01
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Table 3 The level of alkaloids and nitrate of tobacco leaves in different groups
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Groups Nicotine (ng/g)  Nornicotine (ug/g)  Neonicotine (ug/g)  Anatabine (ng/g)  Total alkaloids (%)  Nitrate (ug/g)
Control 5.16 = 0.07 0.24 £ 0.01 0.05 = 0.00 048 + 0.02 592 +0.10Aa 3589.33 +52.78Aa
25°C/ 2weeks 490 + 0.07 021 +0.01 0.04 + 0.00 041 +0.02 5.56+0.10Bb 335415+ 52.20Bb
25°C/ 4weeks 469 + 0.08 0.19 £ 001 0.04 £ 0.00 041 £ 002 533+0.10Bc 3160.14 + 52.29Ccd
25°C/ 6 weeks  4.24 + 0.08 0.18 £ 0.01 0.03 £ 0.00 036 =+ 0.02 482 +£0.12CDde 2991.19 + 54.31DEe
35°C/ 2weeks 435+ 0.08 0.20 + 0.01 0.03 £ 0.00 040 £ 0.02 498+0.11Cd 3210.28 + 56.96Cc
35°C/ 4weeks 425+ 0.08 0.18 £ 0.01 0.03 £ 0.00 038 £ 0.02 4.85+0.12CDde 293896+ 55.11Ee
35°C/ 6weeks 411 £ 0.06 0.16 £ 0.01 0.03 £ 0.00 035+ 0.02 465+ 0.12DEef 267446 + 58.02FGg
45°C/ 2weeks 431 +0.09 0.19 £ 0.01 0.03 £ 0.00 0.38 £ 0.02 4.91£0.10CDd 3094.13 + 51.96CDd
45°C/ 4weeks 420 = 0.08 0.18 £ 0.01 0.03 £ 0.00 037 £ 002 4.78 £0.13CDde 278581+ 57.53Ff
45°C/ 6 weeks  3.96 + 0.06 0.16 = 0.01 0.03 £ 0.00 035+ 0.02 4.50 £ 0.12Ef 2569.76 + 53.03Gh

Control group represents the sun-dried unfermented tobacco leaves. All data are represented by mean + SD (n = 3). Uppercase letters indicate p-value < 0.05 and
lowercase letters indicate p-value < 0.01

shown in Supplementary Table 1. These metabolites
were classified into 93 HMDB subclasses and 11 HMDB
superclasses (Fig. 1a and b). Among these, 192 metabo-
lites were included in the “lipids and lipid-like mole-
cules” term, which accounted for the majority of all
classes (53.19%). “Organic acids and derivatives” (14.4%)
and “organo-heterocyclic compounds” (10.53%) were
also enriched by identified metabolites.

KEGG pathways analysis showed that 415 metabolites
were divided into seven categories, including metabol-
ism, genetic information processing, environmental in-
formation processing, cellular processes, organismal
systems, human diseases, and drug development (Fig.
1c). For the “metabolism” term, the major pathways
were “amino acid metabolism”, followed by “lipid metab-
olism”, “biosynthesis of other secondary metabolites”,

Table 4 The sensory evaluation of fermented tobacco

Groups Aroma Aroma Smoke Offensive Physiological Irritation Aftertaste Combustibility Cigarette
quality quantity density odor strength 9-0 9-0 9-0 ash
9-0 9-0 9-0 9-0 9-0 9-0

Control 35 6.0 6.0 50 82 3.0 35 8.0 8.0
25°C/ 2 4.5 6.2 6.0 53 8.0 38 40 8.0 8.0
weeks

25°C/ 4 50 6.5 6.3 55 75 4.5 5.0 8.0 8.0
weeks

25°C/ 6 5.7 6.8 6.5 57 73 53 53 8.0 8.0
weeks

35°C/ 2 50 6.3 6.2 55 7.5 45 50 8.0 8.0
weeks

35°C/ 4 55 6.6 63 57 7.3 50 53 8.0 8.0
weeks

35°C/ 6 58 7.0 6.5 58 7.2 55 55 8.0 8.0
weeks

45°C/ 2 4.7 6.5 6.3 55 8.0 40 5.0 8.0 8.0
weeks

45°C/ 4 55 6.8 6.5 58 75 52 53 8.0 8.0
weeks

45°C/ 6 6.0 7.2 6.8 6.0 7.3 58 58 8.0 8.0
weeks

Aroma quality indicates the quality of aroma and higher scores represent better quality of aroma. Aroma quantity indicates the content of aroma and higher
scores represent greater quantity of aroma. Smoke density indicates the concentration of aroma with higher scores representing higher concentration. Offensive
odor indicates undesirable aromas produced by burning cigarettes, and higher scores represent less offensive odor. Physiological strength indicates the physical
impact of smoke felt by smokers. The higher strength score means greater impact and stronger satisfaction. Irritation indicates slight and obvious sensory
discomfort caused by smoke and higher scores represent less irritant gas. Aftertaste indicates the taste sensation after the smoke leaves the mouth and nasal
cavity and higher scores mean greater aftertaste. Cigarette’s Combustibility refers to the combustion characteristics of tobacco products, which is an important
physical characteristic of tobacco leaves, including smoldering, burning speed, burning uniformity, burning completeness, soot color as well as cohesion. Cigarette
ash indicates the color of the remaining soot after burning tobacco leaves, white is the best, followed by gray
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and “chemical structure transformation maps”. Details of
the top 20 pathways are listed in Supplementary Table 2.
Notably, we found that L-phenylalanine was involved in
the phenylalanine metabolism pathway (belong to amino
acid metabolism); in addition, phytosphingosine and
sphingosine participated in the sphingolipid metabolism
pathway (belong to lipid metabolism).

Multivariate analysis of differential metabolites among
groups

To screen the differential metabolites among these
groups, we integrated the results of the multivariate ana-
lysis to identify the differential metabolites between any
two groups. As shown in Supplementary Figure 3, the
differential metabolites between control and fermenta-
tion groups were significantly separated based on the
threshold variable importance in the projection (VIP) > 1
and p-value <0.05. A total of 34 (POS) and 52 (NEG)
differential metabolites were obtained between group 2
and group 1; 43 (POS) and 44 (NEG) differential metab-
olites were screened between group 3 and group 1; total
60 (POS) and 58 (NEG) differential metabolites were

identified between group 4 and group 1. Among these,
compared with the group 1, the concentrations of L-
phenylalanine and sphingosine in group 4 were
increased, while the concentrations of betaine and
phytosphingosine were decreased.

Analysis of KEGG pathways

Venn analysis was performed to identify the common
and specific metabolites between any two groups, and
41 metabolites were shared between these four groups.
In total, 15 pathways were enriched by group 2 vs.
group 1, of which eight pathways were considered sig-
nificant (Fig. 2a), such as sphingolipid metabolism,
apoptosis, longevity regulating pathway, and biosyn-
thesis of siderophore group nonribosomal peptides.
Additionally, 18 pathways were obtained in group 3 vs.
group 1, and eight pathways were significantly enriched
(Fig. 2b), which mainly included apoptosis, longevity
regulating pathway, and biosynthesis of the siderophore
group nonribosomal peptides. For group 4 vs. group 1,
a total of 38 pathways were screened, among those, 20
pathways were found to be statistically significant (Fig. 2c).
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Fig. 2 KEGG analysis of differential metabolites in comparison between the two groups. a: Group 2 vs. group 1; b: group 3 vs. group 1; ¢: group 4

vs. group 1. The x-axis represents the pathway name, and the y-axis represents the enrichment rate. p-value or FDR < 0.001 is marked as ***, p-
value or FDR < 0.01 is marked as **, and p-value or FDR < 0.05 is marked as *. Group 1 represents the sun-dried unfermented tobacco leaves;

group 2 represents leaves fermented at 45 °C for 2 weeks; group 3 represents leaves fermented at 45 °C for 4 weeks; and group 4 represents

leaves fermented at 45 °C for 6 weeks
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These were, for example, phenylalanine metabolism,
sphingolipid metabolism, and biosynthesis of phenyl-
propanoids. Besides, we also observed six common
pathways that were involved in these groups, includ-
ing sphingolipid metabolism, apoptosis, longevity
regulating pathway, longevity regulating pathway -
worm, biosynthesis of siderophore group nonriboso-
mal peptides, and sphingolipid signaling pathway.

16 s rDNA/rRNA amplicon sequencing analysis

Sequences analysis

In order to investigate the effect of microflora on to-
bacco fermentation, the 16 s rDNA/rRNA amplicon se-
quencing was conducted. A total of 2,017,972 raw reads
were generated from 20 tobacco samples. After quality
filtering, 1,008,986 (50%) of high-quality sequences with
a mean length of 411bp were obtained. Operational
taxonomic units (OTUs) were performed based on the
97% unique sequence similarity. Thus, 1538 OTUs were
detected among 20 samples.

Alpha-diversity analysis

We further evaluated the bacterial diversity of all to-
bacco samples depending on the different fermentation
time based on ace, Chao, Shannon, and Simpson
indexes. The ace and Chao were used to identify the
community richness, whereas Shannon and Simpson
were used to evaluate community diversity. Ideally,
higher Shannon value indicated higher diversity, while
the higher Simpson index showed lower diversity. As
shown in Fig. 3, bacterial richness and community diver-
sity increased with prolonging fermentation time, but
there was no significant difference in bacterial diversity
between group 3 and 4. Additionally, Shannon and Sobs
rarefaction curves for each sample are shown in Supple-
mentary Figure 4, indicating the reasonable volume of
sequencing data.

Taxonomic composition

The taxonomic composition was performed using the
analytical program QIIME, and the Venn diagram
showed the number of shared and unique OTUs in dif-
ferent groups (Fig. 4a). Additionally, the sequences were
classified from kingdom to species. In total, five different
phyla were mainly identified among these samples (Fig.
4b). Cyanobacteria (80%) and Proteobacteria (17%) were
the dominant bacteria in group 1; Cyanobacteria, Proteo-
bacteria, and Actinobacteria were the prevalent bacteria
in group 2, representing respectively 67%, 34%, and 5%
of total sequences; Cyanobacteria (44%), Proteobacteria
(40%), and Actinobacteria (10%) were the most fre-
quently detected phyla in the group 3; Cyanobacteria,
Proteobacteria, Firmicutes, and Actinobacteria were
mainly identified bacterial strain in group 4, accounting
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for 46%, 34%, 7%, and 4% of all reads, respectively. We
found that the abundance of Firmicutes increased with
the prolongation of fermentation time, and change in
the Proteobacteria population showed the same trend.

At the genus level, the raw sequences were mainly
assigned into 17 different genera (Fig. 4c). In the group
1, norank_o__Chloroplast (82%), Sphingomonas (5%),
Pantoea (4%), and Methylobacterium (4%) were primary
genera; in the group 2, norank_o__Chloroplast (57%),
Pantoea (13%), Pseudomonas (7%), and Methylobacter-
ium (4%) were dominant bacteria; additionally, norank_
o__Chloroplast, Pseudomonas, and Rothia were fre-
quently identified in the group 3, representing 45%, 10%,
and 7% of sequencing analysis, respectively; in the group
4, the most abundant genus were norank_o__Chloroplast
(54%), Pseudomonas (11%), Pantoea (9%), Burkholderia
(5%), and Ralstonia (4%).

Beta-diversity analysis

We further evaluated the impact of fermentation time
on microbial tobacco structure by PCA, principal coord-
inate analysis (PCoA), and non-metric multidimensional
scaling (NMDS) analysis (Supplementary Figure 5). In
the PCA plot, the data of group 2, group 3, and group 4
were far separated from group 1, suggesting that fermen-
tation had a significant effect on bacterial diversity in to-
bacco leaves. However, the PCoA and NMDS plots
showed no separation among these groups.

The differences in community composition of samples
In order to further analyze the changes of microbiota
during fermentation, we identified the differential OTUs
among different groups (Fig. 5). The bar chart exhibited
the 15 differential OTUs in groups; among those, three
OTUs had statistically differences, including OTU124
(norank_o__Chloroplast), OTU1496 (Sphingomonas),
and OTU1433 (Methylobacterium). The abundance of
norank_o__Chloroplast decreased in groups 2 and 3,
while it was increased in group 4. Moreover, the abun-
dance of both Sphingomonas and Methylobacterium was
reduced with the extension of fermentation time.
Furthermore, the KEGG pathway enrichment ana-
lysis of OTUs was performed. The results revealed
that identified OTUs were mainly involved in the bio-
synthesis of ansamycins, biosynthesis of siderophore
group nonribosomal peptides, and other glycan deg-
radation and isoflavonoid biosynthesis processes
(Supplementary Table 3).

The integrated results analysis

The pathways obtained both in 16s rDNA/rRNA se-
quencing and metabolome were integrated, and the
same or similar pathways were selected. A total of three
pathways were identified, including biosynthesis of
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siderophore group nonribosomal peptides, ABC trans-
porters, and sphingolipid metabolism (Fig. 6). In particu-
lar, 2,3-Dihydroxybenzoic acid might be involved in
biosynthesis of siderophore group nonribosomal pep-
tides; L-Histidine, L-Phenylalanine, and betaine might
participate in ABC transporters; as well as phytosphingo-
sine, sphingosine, and 3-ketosphinganine might be rele-
vant to sphingolipid metabolism.

Discussion

Tobacco fermentation is a crucial part of cigarette pro-
cessing, which is affected by fermentation temperature
and period. However, the appropriate fermentation con-
ditions of different varieties of tobacco leaves are differ-
ent. In the present study, we identified the proper
fermentation conditions of Shiyan No.1, and investigated
the principal metabolites as well as dominant bacteria
under suitable fermentation conditions. Based on the re-
sults of physical properties, chemical compositions, and
sensory quality in the fermented tobacco (Table 1, 2, 3

and 4), we detected that fermentation at 45°C for 6
weeks was a mostly favorable condition, which was ba-
sically consistent with the commercial tobacco fermenta-
tion conditions. As for the tobacco leaves fermented in
different periods at 45°C, both the altered metabolites
and OTUs were involved in three pathways, namely, bio-
synthesis of siderophore group nonribosomal peptides,
ABC transporters, and sphingolipid metabolism (Fig. 6).
Notably, the abundance of Pseudomonas was increased
with the extension of time, while the abundances of
Sphingomonas and Methylobacterium were reduced (Fig.
4). We also observed that the concentrations of L-
phenylalanine and sphingosine were increased, while the
concentrations of betaine and phytosphingosine were
decreased in group 4 than control. Therefore, we specu-
lated that these microflora and metabolites might play
roles during the tobacco fermentation process.

In the taxonomic composition analysis, we observed
that the abundance of Pseudomonas was elevated with
the extension of fermentation time (Fig. 4). Despite
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nicotine plays a significant role in the cigarette proper- than that in the other groups (Table 3). At the same
ties, it is harmful to human health [24]. Thus, it is neces-  time, the abundance of Pseudomonas was correspond-
sary to screen microbiotas with the ability to degrade ingly higher than that under other conditions. Further-
nicotine. Previous studies indicated that Pseudomonas more, sensory evaluation indicated that the sensory
spp. were capable of degrading nicotine [25, 26]. Yu qualities of fermentation at 45°C for 6 weeks were the
et al. [27] also observed that Pseudomonas was a domin-  best among the tested groups (Table 4). Taken together,
ant bacteria in nicotine degradation and nicotine served  fermenting at 45°C for 6 weeks might be the optimal
as the unique carbon and nitrogen source for it. Other  condition of tobacco fermentation, which not only main-
studies further revealed that nicotine could be degraded tained the better quality, but also had low content of
by Pseudomonas, demonstrating that this process was nicotine and might eventually reduce harm to humans
achieved through the pyrrolidine pathway [28, 29]. Nico- to some extent. Additionally, Sphingomonas had the
tine is the chemical that causes addiction to tobacco  ability of degrading nicotine, and might be suitable for
products. In addition, nicotine and other chemical com-  the reduction of nicotine in tobacco [35, 36]. However,
pounds produced by the burning of tobacco are primary the association between microflora abundance and nico-
causes of health harm, such as lung disease [30], respira-  tine content was not explored in this study. Therefore,
tory disease [31], and cancer [32]. Ebrahimpour et al. to reduce the harmful substances in cigarettes, Pseudo-
[33] observed that nicotine might downregulate anti- monas and Sphingomonas could be added in the tobacco
inflammatory microRNAs and stimulate growth factors fermentation, and this is the focus of our further
to accelerate the idiopathic pulmonary fibrosis process. research.
Thus, the focus of reducing tobacco harm should be to Metabolome analysis showed that sphingolipid metab-
decrease the content of nicotine level in tobacco prod- olism was an essential pathway during tobacco fermenta-
ucts and change the addictive nature of combustible tion (Fig. 6). Sphingolipids are considered as modulators
cigarettes [34]. of cellular interaction and recognition [37]. The func-
In the present study, we found a significantly lower tions of sphingolipids are diverse, including cell death,
content of nicotine in fermentation at 45 °C for 6 weeks inflammation, and immune responses. In addition,
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sphingolipids have been reported to play roles in modu-
lating cancer signaling to control tumor suppression or
survival [38], and sphingosine 1-phosphate (S1P) is a
bioactive molecule within sphingolipid metabolites [39].
Chen et al. [40] indicated that significant emphysema
changes were observed in the pulmonary parenchyma of
smoker mice, where the level of S1P was increased in
the lungs of cigarette smoke-exposed mice. Meanwhile,
sphingomyelinase 2 is activated by smoking and induces
the apoptosis of lung cells [41]. These studies suggest
that sphingolipids and their metabolism are closely

associated with the development and treatment of lung-
related diseases caused by smoking. In this study, we
found that phytosphingosine might be involved in the
sphingolipid metabolism pathway, showing significant
increase with the extension of fermentation time. Phyto-
sphingosine participates in diverse cellular processes.
Xiong et al. [42] revealed that phytosphingosine level
was reduced in the lung tissue of acute lung injury
mouse models. Moreover, Park et al. [43] found that
phytosphingosine could induce non-small cell lung car-
cinoma cells apoptosis. In the current study, we found
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that the level of phytosphingosine was the highest at 6
weeks of fermentation (Supplementary Table 1). Based
on the above reports, we speculated that phytosphingo-
sine might alleviate the lung damage caused by harmful
substances in smoke to a certain extent. Another metab-
olite, sphingosine, was also enriched in the sphingolipid
metabolism pathway (Supplementary Table 2). Sphingo-
sine is reported to be related to the development of can-
cer and inflammation [44]. Besides, evidence showed
that sphingosine was associated with lung carcinoma sig-
naling pathways which were activated by smoking [45].
Tobacco carcinogen NNK can activate a Raf-1/MAP
kinase pathway and stimulate cell proliferation in human
small cell lung carcinoma cells, while sphingosine might
block this process [46, 47]. Moreover, we found an in-
crease of sphingosine level in fermentation for 6 weeks
(Supplementary Table 1). Taken together, these studies
further indicated that fermentation at 45 °C for 6 weeks
might be the optimum conditions, and phytosphingosine
as well as sphingosine might reduce the harm of hazard-
ous substances to the human body via sphingolipid me-
tabolism pathway. However, the specific function of
phytosphingosine and sphingosine in tobacco fermenta-
tion remains to be further study. Furthermore, the
mechanisms of tobacco damage reduction through spe-
cific metabolites need further experimental verification.

Conclusion

In summary, the changes in the microbial community
and metabolites during the tobacco fermentation process
were systematically studied. Fermentation at 45 °C for 6
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weeks was considered to be the optimum fermentation
condition due to it maintained favorable sensory qual-
ities of tobacco and reduced the nicotine content to a
certain extent. The microorganisms (such as Pseudo-
monas and Sphingomonas) and metabolites (such as phy-
tosphingosine and sphingosine) had crucial roles in the
tobacco fermentation. Additionally, metabolites might
affect the quality of cigarettes through the sphingolipid
metabolism pathway. However, the underlying mecha-
nisms of the relationship between microbiota and me-
tabolites warrant further investigation.

Methods

Sample collection and tobacco fermentation

Tobacco samples (Shiyan No.1) were grown in Deyang
(Sichuan, China). After ripening, the middle leaves were
harvested and sun-dried for 5weeks. Then, the sun-
dried tobacco was stacked in the fermentation room.
The tobacco leaves were fermented at 25°C, 35°C, and
45°C (90% relative humidity), and samples were col-
lected after 2, 4, and 6 weeks, respectively. Additionally,
the sun-dried unfermented tobacco leaves were consid-
ered as control group. To ensure the uniformity of the
samples, the tobacco leaves were collected from five dif-
ferent parts of the tobacco stack and mixed as samples
of each group. The fermentation process was performed
in triplicate. Then, the quality and sensory evaluation of
fermented tobacco leaves were detected. The measure-
ment was repeated five times.

Physiological indicators and sensory evaluation
Determination of aroma components

The content of aroma components in tobacco leaves was
determined using pre-treatment of n-hexane extraction
at room temperature improved by Shanghai tobacco
technology center and liquid chromatography—gas chro-
matography (LC-GC) technique [48]. Approximately 0.2
g of powder samples were weighed and put into a 20 mL
tube, supplemented with 5 mL extraction solvent (n-hex-
ane: Tert-butyl methyl ether, viv=1:1) and 200 uL in-
ternal standard solution (a-ionone, 11.2 pg/mL). After
standing for 24 h at 25 °C, the solution was vortexed for
1min and then centrifuged at 3000 rpm for 10 min.
Then, 2 mL of the supernatant was extracted and trans-
ferred to a chromatographic tube. The LC analysis was
performed on an Agilent 1260 system (Agilent Tech-
nologies, USA) using a Waters Styragel HR 0.5 column
(30cm x 4.6 cm i.d., 5m) (Waters Corp., USA). Dichlo-
romethane was used as mobile phase, the flow rate was
0.25 mL/min, the column was maintained at 30 °C, and
the injection volume was 20 pL. The diode array detector
(DAD) detection wavelengths were 238 nm, 254 nm, and
320 nm. Meanwhile, the LC-GC transfer was performed
as described by Qi et al. [48]. The GC analysis was
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employed on an Agilent 7890A GC system (Agilent
Technologies, USA) equipped with electron caputure de-
tector (ECD). Then, GC/MS separation was performed
on a DB-5MS capillary column (30 m x 0.25mm id,
0.25m df) from Agilent Technologies (USA). The oven
temperature was maintained at 40 °C for 14 min, then in-
creased to 290 °C at 4 °C/min and maintained for 5 min.
The GC/MS transmission line temperature was 280 °C,
the MS ion source temperature was 230 °C, quadrupole
temperature was 170°C, and mass ranged from 45 to
350 amu. Chemical components detected in GC-MS
analysis were identified using NIST98 and Wiley 6.0
library software.

TSNAs, alkaloids, and nitrate assays
TSNAs assays were performed by Shanghai Tobacco
Group Beijing Cigarette Factory using online solid-phase
extraction (SPE)-LC-MS/MS (SPE-LC: Spark Holland,
Symbiosis Pico; MS/MS: AB Sciex triple quad 5500)
[49]. Four common TSNAs, including N'-nitrosonorni-
cotine (NNN), N'-nitrosoanatabine (NAT), N'-nitrosoa-
nabasine (NAB), and NNK, were tested. Samples (1.0 g)
were transferred into a 50 mL conical flask. Then, four
deuterated internal standard solutions (40 puL) and 30
mL ammonium acetate solution (100 mmol/L) were
added. The sample was shaken and extracted at 25°C
for 60 min (200 r/min) and then filtered with a 0.45 pum
Water phase filter membrane. After collecting the fil-
trate, LC-MS/MS was used to detect the content of
NNN, NAT, NAB, and NNK. The sum of the four
TSNAs represented the total amount of TSNAs.
Alkaloids detection was conducted based on previously
published methods [50]. Briefly, 200 mg of the sample
was weighed and put into a 10 mL glass bottle. Next, 1.5
mL 10% NaOH solution and 3 mL methyl tert-butyl
ether were added. The mixed solution was shaken for 5
min and kept standing for 24 h. Then, the supernatant
was extracted and passed through gas chromatography-
Hydrogen flame ionization detector (Agilent 7890A, Agi-
lent Technologies, USA) to detect four alkaloids, includ-
ing nicotine, nornicotine, neonicotine, and anatabine.
The nitrate content was detected following the method
described by Da et al. [50]. For that, 400 mg of cigarette
sample in a triangular flask was re-suspended in 50 mL
1% CH3COOH solution and shaken for 20 min. After
NO;- was extracted and filtered, the activated carbon
was supplemented for decolorization and the solution
was filtered. After that, 15 mg of zinc powder was added
and the sample was subjected to a slight oscillation for
15 min. Two mL nitrate reagent was added to the 8 mL
of the intermediate filtrate, and let standing for 15 min.
The absorbance was determined on a 721 spectropho-
tometer at a wavelength of 540 nm using a blank reagent
as a reference.
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Sensory quality evaluation

Samples were cut into rolls to make cigarettes, and then
evaluated by seven experts from the Technology Center
of Henan China Tobacco Industry Co., Ltd. and the To-
bacco College of Henan Agricultural University. Sensory
quality was calculated according to the standard of the
reference YC/T138-1998 of China [11]. Specifically, this
measure contained 9 items rated on a nine-point scale,
ranging from 0 to 9 score. The quality indexes contained
aroma quality, aroma quantity, smoke density, offensive
odor, physiological strength, irritation, aftertaste, com-
bustibility, and cigarette ash. Furthermore, the result of
each index was the average of seven people’s scores.

Metabolomics analysis
Sample preparation and LC-MS analysis
The quality detection and sensory analysis showed that
45 °C was the optimal temperature for the fermentation
process. Thus, we selected tobacco leaves fermented at
45°C for 2weeks, 4 weeks, and 6 weeks for metabolo-
mics analysis. The sun-dried unfermented tobacco leaves
served as control. The groups were designated as group
1 (control), group 2 (2 weeks), group 3 (4 weeks), and
group 4 (6 weeks), with five samples in each group.
Metabolomics analysis was performed using LC-MS.
In brief, 0.2g tobacco powder of each sample was
weighed and put into 20 mL tubes. The metabolites were
extracted by adding 5mL n-hexane:tert-butyl methyl
ether solution (v:v, 1:1) and 200 pL a-Ionone (11.2 pg/
mL) internal standard solution. After standing for 24 h
at room temperature, the samples were vortexed at 200
rpm for 1 min. The mixture was centrifuged at 2000 rpm
for 10 min. Finally, 2 mL supernatant was placed in an
LC-MS sample bottle for detecting. The method of LC-
MS analysis was consistent with the detection of aroma
components as described above.

Data pre-processing and analysis

The raw data obtained from LC-MS were pre-processed
using the Progenesis QI (Waters Corporation) software,
including missing value recoding and normalization.
Then, a data matrix was obtained and converted using the
SIMCA-P 14.1 software (Umetrics, Umea, Sweden). Ac-
cording to the expression of metabolites, the PCA was
performed to evaluate the similarity of samples within
groups and the difference of samples among groups.
Moreover, to investigate the biological functions of metab-
olites, the KEGG [4] and HMDB 4.0 [5] databases were
applied to perform identification and annotation.

Identification of the differential metabolites

To obtain the differential metabolites between different
groups (group 2 vs. group 1, group 3 vs. group 1, and
group 4 vs. group 1), the multiple statistical methods and
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significance difference test were performed. A series of
statistical analyses, including PCA, supervised partial
least-squares discriminant analysis (PLS-DA), and orthog-
onal partial least-squares discriminant analysis (OPLS-
DA), were applied. Differential metabolites were identified
based on the statistically significant threshold of VIP
values obtained from the OPLS-DA model and p-value
from Student’s ¢-test on the normalized peak areas. Me-
tabolites with VIP > 1 and p-value < 0.05 were considered
statistically significant. Meanwhile, the ellipse in the plots
showed the Hotelling’s T2 confidence region, which de-
fined the 95% confidence interval (CI) of the modeled
variation. The PLS-DA and OPLS-DA models were veri-
fied using a permutation test repeated 200 times.

Metabolic pathway enrichment analyses

To observe the distribution of metabolites in each group,
a Venn diagram was generated. Moreover, the metabol-
ite information in the pathways was extracted based on
the KEGG database, and the pathway of differential me-
tabolites was obtained using the hypergeometric test
method. The p-value was corrected by using the
Benjamini-Hochberg (BH) method, and p-value <0.05
was set as the cut-off criteria.

16 s rDNA/rRNA amplicon sequencing and analysis

DNA extraction from the tobacco leaves and sequencing
approach

In order to investigate the changes of microbiota during
the fermentation process, 16 s rRNA gene sequencing
was also performed for these four groups, with each
group included five samples. Ten grams of tobacco
leaves of each sample were collected and placed in a
flask with 250 mL sterilized 0.1 M phosphate buffer (pH
7.0) for 30 min. Later, the tobacco leaves were washed
with a sonicator for 10 min and the microorganisms
were collected by centrifugation at 10,000xg for 30 min.
Total microbial genomic DNA was extracted using an
ExPro Tobacco DNA Kit (Gene Answer) based on the
guides provided by the manufacturer. The genomic
DNA isolated from samples was used as template for
16S rRNA gene amplification. The V3-V4 regions of the
16s rRNA gene (from 338F to 806R) were amplified
from DNA using previously published primers [51]. PCR
amplification was conducted using TransStart® Fastpfu
DNA Polymerase kit on the ABI GeneAmp® 9700
(Applied Biosystems) and each sample was assayed in
triplicate. Then, PCR products were detected using 2%
agarose gel electrophoresis and recovered using an Axy-
PrepDNA Gel Recovery Kit (Axygen Bioscience),
followed by elution with Tris-HCl. Then, the PCR
products were quantified using QuantFlour™-ST Blue
Fluorescence Quantitative System (Promega) and the
amplicon was sequenced using [llumina MiSeq platform.
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The raw sequencing files of twenty tobacco samples
were uploaded in the NCBI SRA database (http://www.
ncbi.nlm.nih.gov/bioproject/660877) under the accession
number of PRINA660877.

Bioinformatics analysis

The raw sequencing data were de-multiplexed and qual-
ity controlled by FLASH Trimmomatic software [52].
The high-quality sequencing reads were analyzed and
clustered into OTU using Usearch (version: 7.0, http://
drive5.com/usearch/) with a 97% similarity threshold.
Additionally, taxonomic assignments of OTUs were con-
ducted using the QIIME (version: 1.9.0, http://qiime.org/
scripts/assign_taxonomy.html) software through com-
parison with RDP classifier (version: 2.2, http://source-
forge.net/projects/rdp-classifier/) and Silva database
(release 128, http://www.arb-silva.de). Based on the
OTUs table, the alpha-diversity analysis was performed,
which evaluated the species diversity of samples via cal-
culating Ace, Chao, Shannon, and Simpson indexes. The
t-test was used to assess the significant difference be-
tween groups, and results were visualized using the R
software (version: 2.15.3, http://www.R-project.org). Be-
sides, the rarefaction curve was analyzed using the
Mothur (version: 1.39.5, https://mothur.org/). To further
analyze the species composition, the Venn diagram was
used to count the number of the common and unique
OTUs in multiple samples, and the pie-chart was uti-
lized to show the relative abundance of each microbiota
in the samples. The beta-diversity analysis was aimed to
examine the similarity of community structure among
groups. In this study, beta-diversity results were visual-
ized using PCA, PCoA, and NMDS plots. Differential
OTUs were identified using analysis of variance
(ANOVA), and p-value < 0.05 was defined as statistically
significant. In addition, the phylogenetic investigation of
communities by reconstruction of unobserved states
program (PICRUSt) was applied to predict the function
of microbiota and p-value less than 0.05 was set as the
threshold of significant enrichment.

Integration of amplicon sequencing and metabolomics
analysis

For studying the relationship between microbiota and me-
tabolites, an integration analysis was performed. Accord-
ing to the results of KEGG pathways analysis, the same or
similar pathways, which existed both in 16 s rRNA gene
sequencing and metabolome analysis, were selected.

Statistical analysis

One-way ANOVA with Bonferroni’s multiple compari-
sons test and Student’s ¢-test were performed using SPSS
17.0 software (IBM, USA). The significance threshold
was set at p-value < 0.05.
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