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Abstract

Background: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal
infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly
cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal
tract (Gl). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut
microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking.
Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in
understanding how dietary nutraceuticals alter the microbiome.

Results: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile
acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia,
Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4APC2). Multi-omics (bile acid metabolomics, 16S
rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from
which to identify network-based correlations between bile acids and bacterial transcripts in the presence and
absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed,
despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR
treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001).
Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to
BBR, as well as functional commonalities among species, such as up-regulation of Na*/H* antiporter, cell wall
synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the Gl tract
increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in
the B4PC2 community.

Conclusions: This work has important implications for interpreting the effects of BBR on structure and function of
the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the
positive physiological effects previously observed with BBR supplementation.
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Background

There is considerable interest in the utilization of dietary
components to modulate the gut microbiome in a man-
ner that improves human and animal health. This is es-
pecially true of plant-based nutraceutical compounds
that have been used for millennia in traditional human
societies. Nutraceuticals are now being studied to deter-
mine their efficacy in microbiome-based health out-
comes and their mechanism of action under controlled
conditions. Berberine (BBR) is an isoquinoline alkaloid
nutraceutical compound found in certain roots (Rhizoma
coptidis) and berries (Berberis vulgaris, Coptis chinensis)
that is traditionally utilized to treat diarrhea through its
anti-microbial action [1]. Berberine also exerts lipid-
lowering effects through activation of the AMP-activated
protein kinase signaling pathway and increased expres-
sion of low-density lipoprotein receptor in the liver [2,
3]. Additionally, BBR functions to reduce serum choles-
terol by up-regulating the conversion of cholesterol into
bile acids which are excreted at higher levels in feces [4,
5]. The biotransformation of BBR by gut bacteria ap-
pears to be crucial for absorption across the gut epithe-
lium [6, 7]. Because BBR has low bioavailability outside
the GI tract, the beneficial properties of BBR are thought
to be due to local GI effects on the gut microbiota [6, 8,
9]. Recent reports detail alterations in gut microbiome
function caused by oral BBR administration in hamsters
[4], rats [8], and mice [9] including decreased taxonomic
richness and enrichment of bacteria that produce short
chain fatty acids (SCFA). However, detailed transcrip-
tional responses of gut bacteria to BBR treatment in vivo
have yet to be reported. Moreover, since bile acids are
themselves antimicrobial [10], and because bile acid con-
centrations are increased in response to BBR treatment,
determining bile acid-dependent correlations with mi-
crobial gene expression is also important. Investigations
into these responses are predicted to provide testable hy-
potheses that will enable future examinations of how
BBR alters bacterial structure and function, and how
bacteria adapt in the short-term to antimicrobial dietary
compounds such as BBR, particularly in response to in-
creased influx of intestinal bile acids.

A simple in vivo gut community model is particularly
effective in measuring the effects of single dietary nutra-
ceuticals on genome-wide microbial gene expression,
particularly with microbes that are typically found in low
abundance. For this we developed a microbial commu-
nity modified from Narushima et al. composed of bac-
teria commonly found in the human GI tract that are
capable of bile acid metabolism [11]. We have recently
reported in vitro bile acid-induced transcriptional
changes in low abundant bile acid metabolizing bacteria
including C. scindens [12], C. hylemonae, and C. hirano-
nis [13]. Moreover, we determined the in vivo
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transcriptional profile of C. hylemonae and C. hiranonis
in the mouse cecum in the presence of Ba. uniformis,
Ba. vulgatus, Bi. wadsworthia, P. distasonis, and Bl. pro-
ducta [13]. We have shown that this small consortium,
termed ‘B4PC2’, is capable of completely converting host
taurine-conjugated bile acids to unconjugated bile acids
and secondary bile acids such as ursodeoxycholic acid
(UDCA), DCA, and lithocholic acid (LCA). Here, we
examine individual bacterial responses to BBR, and show
that network correlations among host liver, cecal, and
serum bile acids and bacterial transcript abundances
change significantly with oral administration of BBR.

Results

Effect of berberine on global bile acid metabolome

Since previous reports have indicated that BBR affects
hepatic lipids and cholesterol by increasing bile acid ex-
cretion into the large intestine [4, 6, 14], the global bile
acid metabolome was examined in control and BBR
treated gnotobiotic mice. Total liver bile acid concentra-
tions were not significantly different between control
and BBR treated mice (P = 0.5283) (Fig. 1a). Significant
compositional differences between bile acids in BBR
treated and control liver and serum were not observed;
however, microbial secondary bile acid products such as
DCA, taurodeoxycholic acid (TDCA), and taurolitho-
cholic acid (TLCA) were observed, indicating functional
bile acid metabolism by the B4PC2 consortium in the GI
tract (Fig. S1, S2 and S3). By contrast, a significant in-
crease in total cecal bile acids (4.57 + 1.42 pmol/g vs.
1.29 £ 0.106 umol/g; P <0.05) (Fig. 1b), and cecal bile
acid composition was observed after BBR treatment rela-
tive to control (Fig. 1c & S4). We determined that total
bile acids (P =0.17;0.85) and DCA (P =0.098; 0.23) in
the liver and cecum did not differ between males and fe-
males, respectively. These disparate responses to BBR
treatment observed in liver, serum, and cecum suggest
that BBR increases fecal loss of bile acids with concomi-
tant increased synthesis of bile acids in order to main-
tain baseline liver bile acid concentrations.

Functional bile acid metabolism in the cecum by the
human gut B4PC2 community was evident in both con-
trol and BBR treatment groups. Deconjugation of
taurine-conjugated bile acids was nearly complete. DCA
and LCA, the end-products of the bile acid 7a-
dehydroxylation pathway encoded by C. hylemonae and
C. hiranonis [15], were major metabolites in the cecum
(Fig. S4). Conversion of CDCA to a- and B-muricholic
acid (MCA) was observed (Fig. S4), however little con-
version of MCA to murideoxycholic acid (MDCA) and
©-MCA was detected. This confirmed the mice in this
study housed a microbial consortium of human bacteria,
as only limited MDCA has been shown to be generated
by the host [16], and human mixed fecal bacteria and
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bile acid 7a-dehydroxylating clostridia appear to be unable
to metabolize MCA to MDCA and w-MCA [12, 15, 17].

Cecal composition of the B4PC2 human microbial
consortium in control and berberine treated gnotobiotic
mice

To determine whether the B4PC2 consortium was estab-
lished in both control and BBR treated mice a microbial
analysis of cecal content was performed. Sequencing of
16S rDNA resulted in 53,456 + 3743 reads for control
ceca and 53,529 + 3441 reads for BBR treated ceca.
Overall diversity of both control and BBR mice were
consistent with the inoculated consortium indicating
successful maintenance of the germ-free environment
(Fig. S5). To examine whether the composition of this
bile-tolerant community is altered by BBR treatment,

diversity analyses were performed on 23,900 rarefied
reads from the 16S rDNA dataset. Non-metric multidi-
mensional scaling (NMDS) and Analysis of Similarities
(ANOSIM) tests of differences in beta-diversity resulted
in R =0.141 and P =0.123 (999 permutations) indicating
diversity between samples was not significant (Fig. S5).
Shannon index (alpha diversity) was not significantly dif-
ferent between groups (P= 0.30; Mann-Whitney test)
(Fig. S6). Microbiome abundances were not significantly
different between sexes [Bacteroides (P = 0.60), Parabac-
teroides (P =0.19), Clostridiaceae (P =0.63), Bilophila
(P =0.79)], so we did not separate out sex in further
analyses. We next performed network correlation ana-
lyses on bile acids in the cecum, serum, and liver with
abundances of B4PC2 consortium members. Substantial
network topological changes between bile acids, and
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Fig. 2 Network interactions between bacterial taxa in the cecum and bile acids in the liver, serum, and cecum on control diet and berberine
treatment. Nodes are as follows: Liver bile acids (blue ovals), cecal bile acids (yellow ovals), cecal bacteria (red ovals). Thick lines represent
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microbial taxa were observed between control and BBR
networks (Fig. 2; Supplementary Dataset). These ana-
lyses indicate that the B4PC2 consortium was similarly
established in control and BBR treated gnotobiotic mice,
suggesting that BBR mechanisms of action are not re-
lated to composition changes in this bile acid metaboliz-
ing microbial community.

Direct effects of berberine and bile acid concentrations
on gene expression by the B4PC2 consortium

Given observed topological changes between the bile
acid metabolome and the B4PC2 consortium networks
between treatments (Fig. 2), RNAseq was performed on
cecal content collected from control and BBR treated
mice. Network correlation analyses between transcrip-
tomic and metabolomic data were created for each
member of the B4PC2 consortium in order to decern
whether differences in gene expression are in response
to bile acid concentration or direct effect of BBR treat-
ment. Results for each BAPC2 member are highlighted
in the following sections.

Bilophila wadsworthia

Berberine treatment resulted in significant differential
expression of 123 genes (74 up-regulated; 49 down-
regulated) (Fig. 3a; Supplementary Dataset). Tran-
scriptome data indicate that in presence of BBR, B.
wadsworthia imports bacterial membrane lipids (phos-
phatidylethanolamine) (LadL; 3.29 log,FC, P =0.01),
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degrades ethanolamine to acetaldehyde and ammonia
(ethanolamine ammonia-lyase), and converts acetalde-
hyde to ethanol (adh; 3.29 log,FC, P =2.46E-3). High
relative expression of group 1b NiFeSe hydrogenase
was observed (3.56 log,FC, P =3.66E-4), which is in-
volved in liberation of electrons for formate, sulfite,
and nitrate respiration. Pyruvate-formate lyase and
formate dehydrogenase were highly expressed in Bilo-
phila during BBR treatment. However, the gene most
highly-expressed was nitrate reductase y-subunit (8.04
logo,FC, P =7.07E-06). The other two most highly
expressed genes were citric acid cycle enzyme malate
dehydrogenase (5.43 log,FC, P =1.04E-5) and citrate
transporter (5.11 log,FC, P =1.04E-4). Additional cit-
ric acid cycle genes and respiratory complex genes
are significantly up-regulated by BBR (Fig. 3a; Supple-
mentary Dataset). In addition, a gene involved in ef-
flux of toxic substances (matE) was significantly up-
regulated by BBR (1.72 log2FC; P =0.01), which may
indicate export of BBR by this gene product.
Berberine treatment significantly affected the topology
and complexity of networks between Bilophila gene ex-
pression and bile acid profiles in liver, serum, and cecum
(Fig. 3b & ¢). Many of the gene expression networks,
sparse in the control and unconnected with bile acids,
become highly interconnected during BBR treatment
and relate either directly or indirectly to increased bile
acid concentrations. Notably, universal stress protein
(uspA) was highly expressed in the BBR group relative to
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control (3.36 log,FC; P = 0.05) as were genes involved in
DNA recombination and repair (sbcC, xseA, uvrD). The
expression of uspA revealed a strong positive correlation
with cecal bile acids, including DCA (r=1.0; P =0.0),
tauroursodeoxycholic acid-3-sulfate (TUDCA3S) (r=
0.97; P =0.0), and MDCA (r=0.97; P =0.0). DCA also
correlated strongly with a recently described glycyl rad-
ical enzyme (T370_R50117375; r = 1.0; P = 0.0) involved
in sulfide formation from taurine (Fig. 3d) [18]. DCA
and the glycyl radical enzyme shared strong positive cor-
relation with NADH dehydrogenase subunit 1 (T370_
R50109290; r = 1.0; P = 0.0) as well as direct positive cor-
relations with glycine dehydrogenase (T370_R50113235;
r=1.0; P =0.0). In control mice, nitrate reductase y-
subunit is positively correlated with cecal CA (r=0.93;
P =0.001) (Fig. 3b; Supplementary Dataset); whereas
there are no direct correlations between cecal bile acids
and y-subunit in BBR treatment (Fig. 3c; Supplementary
Dataset).

Bacteroides uniformis

Seventeen genes were significantly differentially regulated
in B. uniformis by BBR (Fig. 4a; Supplementary Dataset).
Two genes were identified whose expression correlated to
bile acids: the highly up-regulated NAD(P)H nitroreduc-
tase (ERS852554_00867; 2.49 log,FC; P =0.02), as well as
the Na*/H" antiporter (1.34 log,FC; P = 0.02). A high de-
gree of positive connectivity was observed between total
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unconjugated bile acids including B-MCA (r=0.8; P =
0.046), UCA (r=0.87; P =0.015) and 7-oxo-CA (r=0.8;
P =0.046), as well as expression of acetyl-CoA carboxylase
biotin carboxyl carrier protein which was induced by BBR
treatment (BLV12_RS03955; 247 log,FC P =4.51E-03;
FDR = 0.48) (Fig. 4b & c¢; Supplementary Dataset). Chro-
mate transporter (BLV12_RS04500; Log,FC=3.06; P =
0.01; FDR = 0.58) was negatively correlated with total bile
acids in the liver (r=-0.9; P = 0.006) and individual con-
jugated, sulfated, and primary bile acids (r=-0.9 to - 1.0;
P =0.006 to P < 0.001).

Bacteroides vulgatus

BBR differentially altered expression of 105 genes in B.
vulgatus (Fig. 5a; Supplementary Dataset). Most notably,
BBR increased the expression of a polycistronic operon
encoding predicted multidrug efflux pump subunits—
periplasmic  adaptor  subunit efflux resistance-
nodulation-division (RND) (3.72 log,FC; P =7.23E-08;
FDR = 1.23E-05), AcrB/AcrD/AcrF (3.00 log2FC; P =
5.54E-07; FDR = 6.87E-05), and TolC (2.71 log,FC; P =
1.6E-07; FDR = 2.26E-05). Expression of the efflux RND
transporter periplasmic subunit (BVU_RS20445) was
positively associated with DCA in the cecum (r=1.0;
P <0.001) as well as cecal MDCA (r=0.97; P =0.0) and
TUDCA-3S (r=0.97; P <0.001). In addition, a gene en-
coding a predicted cation/H(+) antiporter was positively
correlated with total cecal bile acids (r=1.0; P <0.001)

cecal bile acids (r=0.8; P =0.046), and primary (Fig. 5b, c and d; Supplementary Dataset).
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BBR induced increased expression of sialidase (1.44
log,FC, P =2.93E-05, FDR = 1.81E-03) and other genes
involved in mucin degradation including N-acetylneura-
minate lyase (1.33 log,FC, P = 9.64E-04, FDR = 0.04), N-
acylglucosamine 2-epimerase (1.18 log,FC, P = 3.95E-08,
FDR = 0.08), a-1,2-mannosidase (0.93 log,FC, P = 1.64E-
03 FDR =0.05), a-L-fucosidase (0.75 log,FC, P= 0.02,
FDR =0.23), and a-1,2-C3/C4-fucosidase (0.70 log,FC;
P =0.02; FDR =0.23). SusC and SusD outer membrane
protein encoding genes, involved in binding and uptake
of carbohydrates, were observed in the correlation net-
work in the BBR treated group. In particular, BVU_1844
was differentially expressed in the BBR group (1.18
log,FC; P =0.03; FDR =0.31) and negatively correlated
with cecal T-B-MCA (r=-0.97; P <0.001). These data
may indicate a “ramping up” of carbohydrate metabol-
ism and may explain the significant increase in total
SCFA levels reported previously during BBR intake [8].

Parabacteroides distasonis

Two operons encoding predicted tryptophan (BDI_
RS02910-BDI_RS02940) and leucine biosynthesis (BVU_
RS10160-BVU_RS10180; BVU_RS12860-BVU_RS12880)
pathways were among the most highly differentially up-
regulated genes in P. distasonis in the presence of BBR

(Fig. 6a; Supplementary Dataset). Genes encoding a pre-
dicted efflux RND transporter periplasmic adaptor
(BDI_RS01695; 2.33 log,FC; P =1.50E-04; FDR =0.01)
and TolC (BDI_RS00690; 2.30 log,FC; P =2.04E-06;
FDR = 1.37E-03) were also highly expressed, which may
reflect adaptation to increased bile salt concentrations in
response to BBR. Network analysis showed sparse asso-
ciations between transcripts and cecal bile acids in con-
trol mice ceca and liver (Fig. 6b & c; Supplementary
Dataset), but tight interconnections between cecal and
liver bile acids and transcripts after BBR treatment (Fig.
6d & e). While TolC expression was not correlated with
cecal bile acids, efflux RND transporter had strong posi-
tive correlations with cecal DCA (r = 1.0; P < 0.001), TUD-
CA3S (r=0.97; P <0.001), and MDCA (r=097; P <
0.001) in the BBR group (Fig. 6d). Positive correlations
were also observed between cecal bile acids and genes in-
volved in leucine and tryptophan biosynthesis (Fig. 6d).
Also notable is the positive association between LCA in
the cecum and the Na+/H+ antiporter NhaA (BDI_
R503835; 1.53 log,FC; P =4.38E-03; FDR =0.12; r = 0.97;
P <0.001) (Fig. 6d). As in B. vulgatus, several SusC/SusD
membrane associated protein genes were also differen-
tially regulated by BBR and correlate directly or indirectly
with bile acids in the cecum and liver (Fig. 6d & e).
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Interestingly, P. distasonis is observed to differentially ex-
press multidrug transporter matE (WP_011966429.1; 2.60
log,FC; P = 5.51E-05; FDR = 0.04), which does not correl-
ate with bile acids and may indicate an export protein im-
portant for removing intracellular BBR. Indeed, MATE
transporters have been shown previously to catalyze xeno-
biotic compound efflux in a Na + or H+ dependent man-
ner [19, 20].

Clostridium hiranonis

The most highly expressed genes in response to BBR in
C. hiranonis were a 6 ORF polycistron encoding a helix-
turn-helix xenobiotic response protein, chaperone,
ATPasel, ATPase2, metallo-beta-lactamase fold hydro-
lase, and dinitrogenase iron-molybdenum cofactor (4.4
to 2.36 log2FC, P =5.18E-05 to P =0.024) (Fig. 7a & b;
Supplementary Dataset). Genes involved in peptidogly-
can synthesis (mur/ and murF) and maintenance of the
cell-wall were also significantly up-regulated by BBR.
Stress-induced genes, genes involved in DNA repair
(recN 0.98 Log2FC; P =0.021), and the exodeoxyribonu-
clease VII large subunit (1.19 Log2FC; P =0.015) were
also induced by BBR treatment (Fig. 7a). The expression
of exodeoxyribonuclease VII large subunit correlated
positively with DCA in the liver (r =0.95; P <0.001) and
less-positive correlations were observed for other liver
bile acids (MDCA, T-B-MCA, TCA, TCDCA) and nega-
tively with 3-dehydro-4,6-CA in the control cecum (r =
-0.89; P =0.008) (Fig. 7c & d; Supplementary Dataset).
Expression of recN negatively correlated with total cecal

bile acids (r=-0.89; P =0.004) and 054-dependent Fis
family transcriptional regulator (r=-0.9; P =0.006).
Interestingly, treatment with BBR changed this inter-
action (Fig. 7d; Supplementary Dataset). The expression
of exodeoxyribonuclease VII large subunit was not con-
tingent on ¢°*-dependent Fis family transcriptional regu-
lator, but was negatively correlated with serum TCA
(r=-0.86; P =0.017) and total serum bile acids (r = - 0.86;
P =0.017). Expression of ¢>*-dependent Fis family transcrip-
tional regulator correlated positively with liver bile acids (r =
0.8 to 1.0; P values from < 0.05 to < 0.001), and Na*/H" anti-
porter which was itself positively correlated with CA in the
liver (r =0.8; P < 0.05) but negatively correlated with numer-
ous cecal bile acids (r = - 0.89 to 0.0; P values from 0.007 to
<0.001). It is possible that by importing protonated bile
acids, it is not necessary to exchange ions, and expression of
the Na*/H" antiporter may decrease.

A putative adhesin was also significantly expressed in
the presence of BBR (2.68 Log2FC; P =2.57E-03). Nu-
merous copies of genes encoding putative cell wall-
binding repeat 2 family protein were significantly down-
regulated by BBR ranging from -1.60 log,FC (FDR =
9.04E-04) to —5.59 log,FC (FDR =7.42E-04). This may
indicate modulation of the peptidoglycan layer by BBR
treatment. Further support of this was the significant in-
crease in expression of murJ, encoding Lipid II flippase
(1.69 log,FC; P =0.02; FDR =0.16) and murR transcrip-
tional regulator (1.53 log,FC; P = 1.90E-03; FDR = 0.04)
with a trend for murG (1.12 log,FC; P =0.10; FDR =
0.39) and murF (0.90 log,FC; P =0.01; FDR = 0.12) was
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observed. Thus, C. hiranonis gene expression reflects re-
sponsiveness to bile acid-induced stress during BBR
treatment.

Clostridium hylemonae

BBR differentially regulated 92 genes in C. hylemonae.
Of note, a gene predicted to encode the septation ring
formation regulator, EzrA, was among the most highly
up-regulated genes (2.41 log2FC; P =1.39E-03) (Fig. 8a;
Supplementary Dataset), but did not correlate with cecal
bile acids. Specifically, genes involved in bile acid 7a-

dehydroxylation by C. hylemonae were down-regulated,
including baiB encoding bile acid coenzyme A ligase
(1.45 LogyFC; P =0.04), and baiCD encoding bile acid
NAD-dependent = 3-dehydro-4-oxidoreductase (- 2.42
Log,FC; P =3.61E-03) (Fig. 8a). Phage genes, including
holin (2.10 log,FC; P =2.8E-04) and siphovirus DUF859
(1.96 Log,FC; P =1.27E-3), as well as type I-C CRISPR
Cas8c/Csdl (1.09 log,FC; P = 0.04) were up-regulated by
BBR. In control mice, phage holin expression was posi-
tively correlated with cecal DCA (r=0.81; P =0.021),
but negatively correlated with cecal T-B-MCA (r=-
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0.83; P= 0.016) and B-MCA in the liver (r=-0.94; P =
0.0) (Fig. 8b; Supplementary Dataset). In BBR treated
mice, phage holin was positively associated with total
cecal bile acids (r=1.0; P= 0.0) and had a strengthened
positive correlation with cecal DCA (r=0.9; P =0.006)
(Fig. 8¢ & d; Supplementary Dataset).

Cecal RNA-Seq analysis revealed two polycistronic op-
erons involved in the Stickland fermentation of glycine,
including the glycine dehydrogenase and glycine reduc-
tase pathway genes and the formation of cofactors such
as lipoate that were significantly up-regulated by BBR
(Fig. 8a). In control ceca, expressed genes involved in
glycine reductase (FolD, grdD) appeared to be indirectly
and negatively correlated to bile acids via transcription
terminator/antiterminator NusG (Fig. 8b). Lipoate-
protein ligase A expression was positively correlated
with expression of metabolic genes as well as CA-4,6—3-
one. In BBR treated mice, lipoate-protein A displayed
strong positive correlation with total (r=0.8; P =0.046)
and individual cecal bile acids, such as DCA (r=0.9; P =
0.006), as well as weak negative correlations with liver
bile acids (Fig. 8c). Positive correlations were observed
between lipoate-protein ligase A and FolD, glycine cleav-
age protein T, and dihydrolipoyl dehydrogenase, indicat-
ing that the significant increase in glycine metabolism
with BBR treatment was at least partially driven by in-
creased bile acid concentration in the cecum.

Genes involved in sporulation in C. hylemonae includ-
ing spore coat associated protein (cotJA; 2.29 log2FC;
P= 289E-04), N-acetylmuramoyl-L-alanine amidase
(ewiD; 1.54 10g2FC; P =0.03), spore germination protein
(1.43 log2FC; P =0.03), acid-soluble spore protein (0.96
log2FC; P =0.04) were observed in response to BBR
treatment. Acid-soluble spore protein was negatively
correlated in control mice with liver bile acids, whereas
BBR treatment resulted in a positive correlation with
liver bile acids. This may indicate that up-regulation of
genes involved in cell-wall maintenance and metabolism
reflects the effects of both BBR and bile acids.

Discussion

BBR treatment leads to increased conversion of choles-
terol into bile acids, resulting in decreased blood choles-
terol levels, since bile acid synthesis is the major route of
cholesterol excretion in the body [21]. These lipid lower-
ing effects have been confirmed in a previous meta-
analysis of 27 clinical trials, thus making BBR an attract-
ive alternative for dyslipidemic patients unable to take
statins [22]. However, as a nutraceutical, BBR is not reg-
ulated with the same rigor as pharmaceutical interven-
tions. In addition, BBRs mechanism of action (increased
bile acid secretion to the GI tract), is commonly associ-
ated with negative physiological effects, including in-
creased risk of colorectal cancer [23]. This is paradoxical
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given that along with demonstrated lipid lowering ef-
fects, BBR appears to exert cytotoxic effects in cancer
cells [24]. Therefore, understanding BBR versus bile acid
dependent effects on the gut microbiome is necessary in
order to develop targeted pharmacological treatments
that mimic BBRs lipid lowering outcomes. Numerous
studies demonstrate that BBR alters the microbiome [4,
8, 9, 25]; however, responses of diverse commensal gut
bacteria to BBR are largely unknown. The current study
provides novel insight into the effects of dietary BBR on
gut bacterial transcriptome profiles. This study is also
the first to report effects of a changing bile acid metabol-
ite profile on bacterial gene expression during BBR treat-
ment. Our results are consistent with previous reports
that BBR increases bile acid concentrations in the large
intestine, but not the liver [6, 9, 21]. Increased bile acid
concentrations in the GI tract have been reported to sig-
nificantly affect the gut microbiome [26, 27]. Thus, the
novel use of correlation networks to observe structural
changes in transcriptome and metabolome interactions
in response to BBR treatment allowed us to elucidate
whether changes in gene expression were in response to
increased cecal bile acid concentrations or the direct ef-
fects of BBR.

BBR feeding alters the structural composition of com-
plex gut microbial communities potentially in response
to increased colonic bile acid concentrations [6, 8, 9].
Treatment with BBR did not significantly alter the
relative abundance of bacteria in the cecum of B4PC2
gnotobiotic mice. This was expected as members of
the B4PC2 community are “bile-tolerant”, thus less
likely to become perturbed in bile rich conditions,
and growing with limited pressure for niche competi-
tion due to consortium simplicity and gnotobiotic
conditions. Consequently, this provides an excellent
framework by which to examine transcriptional
changes of each bacteria in response to BBR treat-
ment. Use of correlation networks to analyze tran-
scriptomic and metabolomic changes in this minimal
community allows us to determine functional changes
in these bacteria that are responses to bile acid con-
centrations versus direct effects of BBR on member
composition or abundance.

Indeed, BBR did significantly alter gut microbial-bile
acid metabolite interactions (Fig. 2; Supplementary Data-
set Correlation Networks). For example, sulfated bile
acids were positively correlated to bile acid 7a-
dehydroxylating bacteria, C. hiranonis and C. hylemonae,
and negatively correlated with Bacteroidetes spp. The
host sulfates bile acids to act as signaling molecules, and
sulfation acts as the major pathway by which humans
detoxify hydrophobic bile acids [28]. However, currently
little is known about the effects of sulfated-bile acids on
anaerobic bacterial physiology. Our results indicate a



Wolf et al. BMC Microbiology (2021) 21:24

Page 10 of 15

-

A.

Color Key = Stickland fermentation

=== Cell wall/Sporulation
D = Stress/DNA metabolism
Bile acid metabolism
Sugar metabolism

glycine det i ing

ifunctional 5-2C10-methylene tetrahydrofolate Jehydrogenase
dihy roIgJoyI dehydrogenase
glycine deh i ing) (protein H)

glycine/betaine reductase C
ipoate—protein ligase A

thiol reductase thioredoxin .
glycine reductase complex selenoprotein B
a{yclne/be;taln_e reductase C

loredoxin-disulfide reductase

eptidoglycan-binding protein

-acetylmuramoyl-L-alanine amidase
Septation ring formation regulator, EzrA
spore coat associated protein CotJ
spore germination protein
acid-soluble spore protein
MurR/RpiR family transcriptional regulator
cation:proton antiporter
excinuclease ABC subunit B

INA topoisomerase N .

pe |-C CRISPR-associated 1proteln Cas8c/Csd1
short—chain dehydrogenase (12alpha HSDH)
bile acid-CoA ligase (baiB )
NADH oxidase (baiCD/baiH ) - .
sugar ABC transporter substrate-binding protein
rhamnulokinase
sugar ABC transporter permease
dihydroxyacetone kinase
rhamnulokinase
L-fucose isomerase . .
sugar ABC transporter substrate-binding protein
Sugar (pentulose or hexulose) kinase
sucrose-6-phosphate hydrolase
chitooligosaccharide deacetylase
Lacl family transcriptional regulator e .
carbohkldrate ABC transq_orte[ substrate-binding protein
sugar ABC transporter ATP-binding protein
L-ribulose-5-phosphate 4-epimerase
carbohydrate ABC transporter permease
PTS sugar transporter
triose—phosphate isomerase
tyt:e | glyceraldeh yde-3-phosphate dehydrogenase
nitrate’ABC transporter substrate-binding protein

rhamfiuloKinase
beta-MOAKSERUM

308 ribosomal protein $12

/ \
4/ pyrid@kamine N\ |L-fucode isomerase
5/phosphate oxidase
inefpitrescine D )
Ul
N-acetylmucdmoyl-L-alanine
amidas
ctional

“tetrahydrofolate
ethylene-tetrahydrofolate

dihyd poy!
dehydrogenase

B.

Fig. 8 Network analysis between cecal gene expression by Clostridium hylemonae and bile acid metabolome. a. Heat map of differentially
expressed genes (log,FC > (-)0.58; P < 0.05) by C. hylemonae in the mouse cecum between control diet and berberine treatment. b. Network
displaying interactions between expressed genes and bile acid metabolome in control mice. ¢. Network displaying interactions between
expressed genes and bile acid metabolome in berberine-treated mice. d. Sub-network of cecal bile acid-gene expression network from berberine-
treated mice. Data points with Spearman’s correlations < 0.7 and a P values < 0.05 are displayed

uroporphyrinogen-IIl
C-me

Itransferase

. CECUM

—holin
~ " formate agetyltransferase

o'syste

pyridoxamine
(ifgghosphate oxidasg. 3¢

large subunit%:

biosynthptic type- CECUM"

DNA topoisol

¥ %4 m

Mn-containing catalase

308 ribosomal p A
~TUDC

dihydrolipoy!

dehydrogenase

T-beta M bifunctional

5,104 tetrahydrofolate
ehydrogenase /5, 10-methylene -tetrahydrofolate
cJehydrolase

potential relationship between sulfated bile acids and mi-
crobial physiological changes.

While our study was not designed to address the me-
tabolism of BBR in gnotobiotic mice, it was previously
shown that microbial reduction of BBR to dihydrober-
berine by flavin mononucleotide (FMN)-dependent
nitroreductase was necessary to facilitate host BBR ab-
sorption [5]. Indeed, BBR up-regulated an FMN-
dependent nitroreductase in B. uniformis, which may in-
dicate metabolism of BBR by the B4PC2 community.
Numerous BBR metabolites have been reported in ani-
mal models [29], and it is probable that additional anaer-
obic bacteria and microbial enzymes will be identified
that generate BBR derivatives.

We observed a negative correlation between B. wads-
worthia and the cecal secondary bile acids DCA and 3-

oxo-DCA in control and BBR treatment, respectively.
Correlations of bile acid metabolites and differential
transcripts expressed by B. wadsworthia indicate DCA
induces DNA repair and universal stress protein which
controls expression of a number of genes involved in
redox reactions and electron transport. In particular, a
glycyl radical enzyme encoding gene, recently reported
to be involved in taurine respiration [18], was positively
associated with DCA in the cecum. Interestingly, an eth-
anolamine degradation pathway was highly up-regulated
in B. wadsworthia along with the nitrate reductase y-
subunit (Fig. 3d). A previous metabolomic study of BBR
and oryzanol demonstrated a significant increase in fecal
ethanolamine with 4-week treatment of 150 mgkg '
BBR [30]. Phosphotidylethanolamine is the primary
membrane lipid in bacteria [31] and gut microbes have
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evolved complex pathways to metabolize this compound.
The antimicrobial nature of BBR leads to lysis and re-
lease of bacterial membrane components as evidenced
by prior descriptions of reduced total microbial load by
BBR [8], and reports that BBR inhibits the cell division
protein FtsZ thus leading to cell death [32, 33]. Meta-
transcriptomic analysis indicates that B. wadsworthia
up-regulates a lipid transporter (LadL) and genes pre-
dicted to encode enzymes involved in ethanolamine
utilization. Metabolism of bacterial phosphatidylethanol-
amine by gut bacteria would yield ATP by substrate-
level phosphorylation from acetyl-phosphate [26]. Add-
itionally, genes encoding enzymes in the citric acid cycle
and the electron transport chain were up-regulated,
which may indicate that B. wadsworthia converts bacter-
ial fatty acids to acetyl-CoA via anaerobic respiration,
with nitrate and taurine serving as terminal electron ac-
ceptors. Nitrate reductase induction is intriguing since
other pathobionts, such as enterohemorrhagic Escheri-
chia coli, utilize host nitrosative respiratory bursts for
anaerobic respiration [34]. These results indicate that in-
creased concentration of secondary bile acids due to
BBR treatment induces the stress response in Bilophila,
and that BBR may directly affect microbial physiology
through alteration of growth substrates and terminal
electron acceptors used in anaerobic respiration.

There were several important observations made with
respect to the effect of BBR on C. hylemonae. First, nu-
merous cell wall and membrane architecture genes were
differentially regulated (Fig. 7d). In particular, the regula-
tor of septation ring formation, EzrA, was significantly
up-regulated by BBR (2.41 log2FC; P = 1.39E-03). Previ-
ous work in E. coli demonstrated that BBR inhibits
GTPase activity and destabilizes septation ring protofila-
ments [32]. This indicates that BBR may affect microbial
growth through targeting EzrA in both gram-negative
and gram-positive bacteria inhabiting the GI tract [33].
Importantly, EzrA transcripts were not observed to cor-
relate with bile acid metabolites, suggesting that inhib-
ition of EzrA gene expression may be directly due to
BBR treatment as seen in E. coli. By contrast, BBR treat-
ment led to a tight clustering of cecal bile acids to phage
holin in C. hylemonae (Fig. 7c), suggesting that BBR-
induced alterations in the gut microbiome observed in
complex consortia may be partly due to induction of the
phage lytic cycle through bile acid toxicity. Indeed, pre-
vious studies have shown that bile acids induce phage
Iytic cycle in intestinal pathogens [35, 36].

Na+/H+ antiporter was up-regulated by BBR and
highly correlated with cecal bile acids in Ba. vulgatus
(Fig. 5), P. distasonis (Fig. 6), C. hiranonis (Fig. 7), and
C. hylemonae (Fig. 8). This is consistent with previous
reports of bile resistance by the multi-subunit Na+/H+
antiporter in Bacillus subtilis [37] and Vibrio cholera
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[38]. Thus, the process by which BBR alters the gut
microbiome is likely partly due to its choleretic effects.
Previous studies in which bile acids were fed to rodents,
and thus enriched in the GI tract, demonstrate the role
bile acids play in structuring the gut microbiome via
anti-microbial selection pressure [26].

Conclusions

The current study indicates that BBR has both bile acid-
dependent and independent effects on the B4PC2 con-
sortium related to stress response, bile and xenobiotic
tolerance, and changes in energy metabolism. These re-
sponses observed in a defined human gut consortium in
gnotobiotic mice are critical to elucidate the effects of
BBR supplementation on complex gut microbial com-
munities. The implications of this research are increased
understanding of altered microbial function in response
to BBR versus increased GI concentrations of bile acid,
which may lead to targeted pharmaceutical interventions
that mimic the positive effects observed with supple-
mentation of the nutraceutical BBR.

Methods

Bacterial strains and chemical reagents

The B4PC2 consortium consisted of Bacteroides unifor-
mis ATCC 8492, Bacteroides vulgatus ATCC 8482, Clos-
tridium hylemonae DSM 15053, Clostridium hiranonis
DSM 13275, Parabacteroides distasonis DSM 20701,
Bilophila wadsworthia DSM 11045, and Blautia pro-
ducta ATCC 27340. Strains were cultured and stored as
previously described [12]. Authentic reference bile acids
were described in our recent publication [12] and pur-
chased from Sigma-Aldrich (St. Louis, MO) and internal
standards were obtained from C/D/N Isotopes (Pointe-
Claire, QC, Canada). Rare bile acids and sulfated-
derivatives were gifts from Professor lida, Nihon Univer-
sity, Tokyo, Japan (takaiiada@chs.nihon-u.ac.jp). Solvents
(water, ethanol, methanol, acetonitrile) were of high-
performance liquid chromatography grade, and ammo-
nium acetate was analytical grade, all of which were pur-
chased from Kanto Chemical (Tokyo, Japan).

Gnotobiotic mice

All experiments were approved by the Institutional Ani-
mal Care and Use Committees of the Mayo Clinic
(Rochester, MN) (Protocol# A00001902-16). Mice were
provided ad libitum access to autoclaved LabDiet 5 K67
through wire bar feeders. Ad libitum access to auto-
claved water was provided by means of polysulfone bot-
tles with a shoulder hole. Six-week old C57BL/6 N mice
(N =12; Taconic Farms, Germantown, NY) were ran-
domly separated into two isolators (3 males/3 females
per isolator) and inoculated with the B4PC2 consortium
as previously described [13]. From day [14, 39-51], mice
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were gavaged daily with either sterile saline, or BBR
(100 mg kg™ " final). Berberine for oral gavage (25 mg/ml)
was suspended in PBS containing 0.5% carboxymethyl-
cellulose to maintain solubility. Mice were euthanized
on day 27 by CO, asphyxiation followed by cervical dis-
location, and content for bile acid and microbial com-
munity analysis were collected and stored as previously
described [13].

Microbiome community profiling

Genomic DNA was extracted from cecum samples and
library preparation, pooling, and MiniSeq sequencing
were performed at the DNA Services facility, Research
Resources Center, University of Illinois at Chicago as de-
scribed previously [13]. Genomic DNA was PCR ampli-
fied with primers 515F-modified and 926R that
contained 5° common sequence tags [13] using a two-
stage “targeted amplicon sequencing” protocol [40-42].
First and second stage PCR amplifications were per-
formed in 10 pl reactions in 96-well plates, using the
MyTaq HS 2X mastermix (Bioline, Taunton, MA), and
PCR conditions as recently described [13]. Pooled librar-
ies were purified with an AMPure XP cleanup protocol,
spiked with phiX, and subjected to MiniSeq sequencing
to obtain 2 x 150 bp paired-end reads. Forward and re-
verse reads were merged using PEAR [43] and trimmed
based on a quality threshold of p = 0.01. Ambiguous nu-
cleotides and primer sequences were removed and se-
quences less than 300bp were discarded. Chimeric
sequences were identified and removed using the
USEARCH algorithm with a comparison to GreenGenes
13_8 [14, 44]. Resulting sequence files were merged with
sample information and operational taxonomic unit
clusters were generated in QIIME using the UCLUST al-
gorithm with a 97% similarity threshold [14, 45]. Taxo-
nomic annotations for each OTU were determined using
the UCLUST algorithm and GreenGenes 13_8 reference
with a minimum similarity threshold of 90% [14, 44].

Cecal RNA-Seq analysis

Extraction, library preparation and sequencing were per-
formed at the DNA Services facility, Research Resources
Center, University of Illinois at Chicago, as previously
described [13]. Cecal tissue was homogenized and total
RNA was extracted from mouse cecum using an EZ1
RNA tissue kit (Qiagen, Germantown, MD) [13]. Two
hundred and fifty ng of total RNA was double depleted
and utilized to generate cecal mRNA-Seq libraries using
a ScriptSeq v2 RNA-Seq Library Prep kit (Illumina).
Pooled libraries were then sequenced on an Illumina
NextSeq500 instrument using paired-end 2 x 150 base
reads. Bioinformatics of RNA-Seq datasets was per-
formed as previously described [13]. Raw RNA-seq reads
with Q scores <32 were aligned with Ribosomal RNA
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sequences prepared from the B4PC2 genomes using
bowtie2 (v2.3.3.1). HTSeq (v0.9.1) counting was per-
formed in union mode against Gene Feature Format an-
notations of the B4PC2 genomes and compared to
coding DNA sequences of each bacterium. Differential
gene expression analysis between BBR treatment and
control was performed using edgeR [46] and limma [47]
R packages, with a minimum P-value of < 0.05 accepted
as indicating differentially expressed genes. Genes were
binned according to known functionality, and category
analysis was performed using eggNOG [48].

Sample preparation for bile acid metabolomics

Bile acid sample preparation and LC-MS/MS for bile acid
analysis were essentially based on the previously developed
method and was performed after extraction from samples
as previously described [13, 49]. In short, cecum contents
were lyophilized and 90% ethanol (2 ml) was added to 10
mg of the dried matter. For liver, 300-400 mg of sample
was homogenized with cold water (500 pl) and 20 mg/ml of
Proteinase K solution, and digested at 55 °C for 16 h. Bile
acids were extracted from dried cecal content and homoge-
nized liver three times by ultra-sonication at room
temperature for 1 h. Supernatant was separated by centrifu-
gation at 2500 rpm for 5min after each ultra-sonication
cycle and combined into a glass test tube. Liver and cecal
samples were then evaporated to dryness under an N,
stream. Serum (50 pl) was added to acetonitrile (5 ml) and
was also evaporated to dryness. Prepared crude bile acid ex-
tracts were then re-suspended in 90% ethanol (1 ml) by
ultra-sonication and, deuterium-labeled internal standards,
dy-CA, dy,-GCA and d,-TCA were added at 100 nmol/ml.
A diluted aliquot was applied to a GL Sciences InertSep
C18-B solid-phase extraction cartridge (100 mg/ml; Tokyo,
Japan), washed with water, eluted with 90% ethanol, and
dried to remove solvent. The remaining residue was dis-
solved in 20% acetonitrile, and an aliquot of the solution
was analyzed by LC/ESI-MS/MS.

LC/ESI-MS/MS analysis

LC/ESI-MS/MS analysis was conducted as recently de-
scribed using an LCMS-8050 tandem mass spectrom-
eter, equipped with an ESI probe and Nexera X2 ultra
high-pressure liquid chromatography system (Shimadzu,
Japan). Linear gradient elution on a InertSustain C18
(150 mm x 2.1 mm ID, 3 um particle size; GL Sciences
Inc., Tokyo, Japan) separation column was employed at
a flow rate of 0.2 ml/min at 40 °C. Mobile phase, LC pa-
rameters and MS parameters were the same as recently
reported [13].

Network correlation analysis
Correlation network analysis [50] and Correlation Differ-
ence Network analysis were performed for cecal
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transcriptomics and bile acid metabolomics from serum,
liver, and cecum. Data were combined into a single feature
table and Spearman correlations were calculated between
all features using a custom Python program and P values
were calculated as described previously [51]. A PERL
script was used to filter the correlations based on a de-
fined Rho (i.e. r>0.7) and a defined P-values (i.e. P >
0.001). Networks were plotted in Cytoscape to visualize
the statistically significant correlations and these are used
to develop hypotheses about the interactions between the
features [52]. We then used a custom Python program to
calculate correlation differences [53] between the feature
pairs; that is correlations that have significantly (P < 0.01)
changed between the two treatments. This allows infer-
ences of interactions that have changed between the con-
trol and BBR treatment identifying key metabolic shifts
induced by BBR. The Correlation Network and Correl-
ation Difference tools are deployed on our Galaxy Portal
(http://mbac.gmu.edu:8080).

Accession numbers
Cecal RNA-Seq datasets were deposited as Bioproject
PRJNA523415.
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