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Abstract

Background: Comparisons of traditional hunter-gatherers and pre-agricultural communities in Africa with urban
and suburban Western North American and European cohorts have clearly shown that diet, lifestyle and
environment are associated with gut microbiome composition. Yet, little is known about the gut microbiome
composition of most communities in the very diverse African continent. South Africa comprises a richly diverse
ethnolinguistic population that is experiencing an ongoing epidemiological transition and concurrent spike in the
prevalence of obesity, largely attributed to a shift towards more Westernized diets and increasingly inactive lifestyle
practices. To characterize the microbiome of African adults living in more mainstream lifestyle settings and
investigate associations between the microbiome and obesity, we conducted a pilot study, designed collaboratively
with community leaders, in two South African cohorts representative of urban and transitioning rural populations.
As the rate of overweight and obesity is particularly high in women, we collected single time-point stool samples
from 170 HIV-negative women (51 at Soweto; 119 at Bushbuckridge), performed 16S rRNA gene sequencing on
these samples and compared the data to concurrently collected anthropometric data.

Results: We found the overall gut microbiome of our cohorts to be reflective of their ongoing epidemiological
transition. Specifically, we find that geographical location was more important for sample clustering than lean/
obese status and observed a relatively higher abundance of the Melainabacteria, Vampirovibrio, a predatory
bacterium, in Bushbuckridge. Also, Prevotella, despite its generally high prevalence in the cohorts, showed an
association with obesity. In comparisons with benchmarked datasets representative of non-Western populations,
relatively higher abundance values were observed in our dataset for Barnesiella (log>fold change (FC) =4.5), Alistipes
(log,FC = 3.9), Bacteroides (log,FC =4.2), Parabacteroides (log,FC = 3.1) and Treponema (log,FC = 1.6), with the
exception of Prevotella (log,FC=—4.7).

(Continued on next page)

* Correspondence: ovokeraye.oduaran@wits.ac.za; scott.hazelhurst@wits.ac.za
'Sydney Brenner Institute for Molecular Bioscience, University of the
Witwatersrand, Johannesburg, South Africa

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-020-02017-w&domain=pdf
http://orcid.org/0000-0002-3033-7873
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ovokeraye.oduaran@wits.ac.za
mailto:scott.hazelhurst@wits.ac.za

Oduaran et al. BMC Microbiology (2020) 20:330

Page 2 of 17

(Continued from previous page)

transition

Conclusions: Altogether, this work identifies putative microbial features associated with host health in a historically
understudied community undergoing an epidemiological transition. Furthermore, we note the crucial role of
community engagement to the success of a study in an African setting, the importance of more population-specific
studies to inform targeted interventions as well as present a basic foundation for future research.
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Background

There have been relatively few studies of the human gut
microbiome in Africa, with most reported studies to date
focusing on the extremes of non-Western traditional
hunter-gatherer and agriculturalists African populations,
as well as children with nutritional deficiencies [1-7]. A
consistent finding of these studies is the inverse relation-
ship in the relative abundance of Bacteroides and Prevo-
tella genera of the Bacteroidetes phylum. Prevotella is
associated with plant-based diets predominantly in non-
Western populations, whereas increased relative abun-
dance of Bacteroides is thought to result from animal
fat- and protein-based diets [3, 7-11]. These studies
have been vital in providing great insight into the micro-
biome of traditional African populations and pioneering
the efforts of microbiome studies on the continent. It is
important to note that across most of sub-Saharan Af-
rica, although the lifestyle has been dominantly agricul-
tural for at least 1000 years [12], relatively few people
practice hunter-gatherer or pastoralist lifestyles. How-
ever, over the last 50 years in particular, there has been
an epidemiological transition toward more industrialized
and sedentary lifestyles, that has had significant impact
on many Africans.

The role of the microbiome in areas of public health
has also been a study focus area on the African contin-
ent. These include nutrition, vaccine response efficacy,
the impact of antibiotics, mental health and human im-
munodeficiency virus (HIV) [13-16]. Obesity, a growing
health burden [17] on the African continent, has re-
ceived comparably less attention from microbiome re-
searchers. In a ground-breaking effort, however, the first
study on type 2 diabetes (T2D), a comorbidity of obesity,
on a sub-Saharan African population [18], provided
some insight into the association of gut microbial pro-
files to T2D in individuals in an urban African setting.
The dramatic increase in the prevalence of obesity has
been attributed, in part, to the ongoing shift on the con-
tinent towards more Westernized practices, such as the
consumption of more animal-based and processed prod-
ucts with increasing physical inactivity [19-21], further
complicating the existing challenge of malnutrition fa-
cing the continent [22, 23]. This is reflected in an ana-
lysis of demographic and health survey data from 24

African countries [17] where the prevalence of over-
weight and obesity among women increased in all 24
countries with either a doubling or tripling in the inci-
dence of obesity reported in 50% of the surveyed coun-
tries. Pertinent to this study are the statistics indicating
black South African women to have the highest preva-
lence of obesity (42%) within sub-Saharan Africa [24]
with general continental body mass index (BMI) trends
showing a decline in the underweight population with a
concomitant increase in the overweight and obese popu-
lation [25-27]. The implication of this is the potential
increase in the prevalence of comorbidities including
diabetes and other cardiometabolic diseases augmenting
the health and economic burden in African societies
[28-30]. Reports have also alluded to the influence of
the growing globalization trend, its concurrent
urbanization and consequent dietary implications on
otherwise rural areas in South Africa [31-36]. This is
reflected in the increasing numbers and proximity of su-
permarkets and fast food outlets in these areas [31, 33].

Globally, several studies have focused on understand-
ing the apparent dysbiosis observed in obesity [37, 38].
African populations have, however, been understudied
in these efforts. Consequently, there is a paucity of data
within Africa comparing the gut microbiota of obese in-
dividuals to their leaner counterparts. This is crucial, as
differences in dietary and environmental exposures may
render findings in non-African populations poorly
generalizable to the African context, especially with the
ongoing epidemiological transition in Africa [4, 39, 40].

Here, we present a study that investigated the gut mi-
crobial composition of two South African cohorts with
some insight into the microbial compositional differences
between obese and lean individuals in the changing micro-
biota landscape. South Africa, with its diverse ethnolin-
guistic groups, presents a unique opportunity to study the
effects of this continent-wide transition on the gut micro-
biome. With obesity being an established risk factor in
cardiometabolic diseases, understanding the differences
observed between obese and lean individuals in this set-
ting could prove critical to improving our understanding
of its association to the pathogenesis of the disease.

This pilot study was nested in the AWI-Gen project
[41], a part of the Human Heredity and Health in Africa
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(H3Africa) [42] initiative. AWI-Gen is a collaborative ef-
fort, with participants in six sites across four African
countries, established to assess genomic and environ-
mental factors that influence cardiometabolic diseases
risk, with the aim of informing treatment and interven-
tion strategies. The study focused on characterizing the
gut microbiome of female adults, with body mass indices
spanning the lean and obese range, from two cohorts
comprising communities across two South African prov-
inces, Gauteng and Mpumalanga, representative of rela-
tively urban and transitioning rural lifestyles respectively.
These cohorts are managed by established health and
demographic surveillance sites (HDSS) in partnerships
with the University of the Witwatersrand (Wits) and the
Medical Research Council (MRC) of South Africa. The
Agincourt HDSS [35] in Mpumalanga encompasses a
collection of rural communities in the Bushbuckridge
municipality undergoing rapid epidemiological changes
which may allow for some of the areas to be classified as
peri-urban. The Developmental Pathways for Health Re-
search Unit (DPHRU) in Gauteng, on the other hand, is
focused on Soweto, a highly urbanized area in the Johan-
nesburg metropolitan area. Soweto has been urbanized
for many generations even though in-migration remains
at a high level.

In this study, we performed 16S rRNA gene analysis of
the gut microbiome of 170 female individuals in Bush-
buckridge and Soweto. We evaluated the overall micro-
bial composition of the sampled data to improve our
knowledge of the general microbiota landscape of these
representative cohorts and assessed compositional differ-
ences in the microbiome between lean and obese indi-
viduals, using BMI values, within and between
Bushbuckridge and Soweto. We also provide insight into
the feasibility of such studies in rural communities
whilst highlighting the importance of community en-
gagement to this effort.

Results

Participant recruitment and study cohort

With ethics approval from the Human Research Eth-
ics Committee (Medical) of the University of the Wit-
watersrand (M160121) and the Provincial Health
Research Committee of the Province of Mpumalanga
(MP2017TP22851), 132 female individuals from Bush-
buckridge (24.8398° S, 31.0464° E) and 58 from So-
weto (26.2485° S, 27.8540° E) were recruited for the
study. However, only 170 participant samples (Bush-
buckridge: 119, Soweto: 51) were included in the
study due to confounding factors to the focus of this
pilot (18 HIV-positive samples and two samples with
collection irregularities were excluded). The age and
BMI distribution of the cohorts are shown in Table 1.
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Table 1 Age and BMI distribution of cohorts

Mean + SD Median Range
Age (years)
Bushbuckridge 5550+ 7.77 55 43-72
Soweto 5410 £ 586 54 43 - 64
BMI (Kg/m?)
Bushbuckridge 326+ 795 31.17 2123 -5897
Soweto 36.05 +9.23 36.52 2043 - 5862

Pre-processing and quality control

This was primarily done with the DADA2 pipeline [43].
16S rRNA gene sequencing was performed with primers
to the V3 and V4 regions. A total of 15,839,081 se-
quences were obtained from the 170 samples after qual-
ity control. The sequence depths ranged from 2 to 154,
124 reads per sample (Supplementary Table 1), with a
mean of 93,171.06 + 2275.40 and a median of 93,066,
resulting in a total of 10,088 unique amplicon sequence
variants (ASVs) with redundant taxonomies. As a result
of relatively low sampling depths, the spread of the read
depths and the likelihood that the richness of the sam-
ples was not fully observed at their sequenced depths,
three samples with fewer than 19,560 reads were ex-
cluded from downstream analyses (Fig. 1). The implica-
tion of this exclusion is an overall minimum sequence
depth of 50,812 reads for the 167 samples. The dataset
was further pruned to remove taxa not seen more than
three times in at least 5 % of the 167 samples in order to
protect against ASVs with small mean and trivially large
coefficients of variation [44]. This resulted in 1688 ASVs
being used as input for beta diversity and the differential
abundance analysis implemented with DESeq2 [45]. The
taxonomies associated with the corresponding ASVs
accounted for two kingdoms (Archaea and Bacteria)
resulting in 14 phyla, 25 classes, 30 orders, 54 families,
124 genera and 111 species, with unclassified ASVs also
detected at all but the kingdom levels (Table 2). These
numbers represent non-redundant taxa.

Microbial community richness estimates and differences
With the majority of diversity metrics being sensitive to
varying sequencing depths across samples [46], rarefac-
tion was done at a read depth of 50,800 to maximize the
capture of the observed microbial taxa richness in the
cohort. This cut-off was chosen based on the spread of
the read depths as visualized in the rarefaction plot in
Fig. 1. The rarefied dataset was used for the alpha diver-
sity analyses.

Site differences

In a cohort-wide comparison to evaluate overall differ-
ences between the Bushbuckridge and Soweto sites irre-
spective of BMI status, statistically significant p-values
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Fig. 1 Rarefaction curve of sampled data. This figure shows all 170 of the sampled across the Bushbuckridge and Soweto cohorts
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were observed for alpha diversity measures of both
Shannon [47] (p =0.012) and Chaol richness (p < 0.001)
[48] (Fig. 2), and the Bray-Curtis dissimilarity measure
(p=0.001), visualized in principal coordinate analysis
(PCoA) [49] plots (Fig. 3). We find that geographical lo-
cation was more important for sample clustering than
lean/obese status. The PCoA plots also present a moving
divide between rural Bushbuckridge and urban Soweto.
This appears to reflect a transitional state possibly owing
to gradual lifestyle and dietary changes.

BMI differences
In evaluating the potential diversity across BMI categor-
ies, Shannon diversity, a measure of richness and

Table 2 Distribution of taxonomic classification of filtered ASVs
in sampled South African pilot dataset

Taxa Level Classified ASVs Associated Taxa % Unclassified ASVs

Kingdom 1,688 2 0.00%
Phylum 1,668 14 1.18%
Class 1,638 25 2.96%
Order 1,628 30 3.55%
Family 1,444 54 14.45%
Genus 1,114 124 34.00%
Species 161 1M 90.46%

evenness, for the lean and obese groups in Bushbuck-
ridge (Fig. 2b) were 4.49 + 0.53 and 4.56 + 0.39, respect-
ively. The exclusion of an apparent outlier in the
Bushbuckridge lean group resulted in a Shannon index
of 456 +0.41 in that group. The corresponding esti-
mates for Soweto were 4.49 + 0.34 (lean) and 4.30 + 0.56
(obese). The differences between the lean and obese
groups did not reach statistical significance as indicated
by the non-parametric Wilcoxon rank sum test evaluat-
ing the Shannon diversity values between both groups
(p=0.85 and 0.45 for Bushbuckridge and Soweto re-
spectively). Beta diversity measurements (Fig. 3), how-
ever, showed statistically significant differences between
the lean and obese groups in Bushbuckridge with calcu-
lated Bray-Curtis distances using the permutational ana-
lysis of variance (PERMANOVA) test (p=0.02 for
Bushbuckridge and p = 0.84 for Soweto (Table 3).

Taxonomic analyses

Overall, Firmicutes (43.7% + 11.8%), Bacteroidetes (40% +
12.1%) and Proteobacteria (12.5% + 9.1%) were the domin-
ant phyla observed in the combined gut microbiome data
from these two South African cohorts (Fig. 4). Three phyla
— Actinobacteria (p < 0.001), Bacteroidetes (p = 0.001), Pro-
teobacteria (p <0.001) and three genera — Alistipes (p <
0.001). Bacteroides (p <0.001) and Parabacteroides (p <
0.001), showed significant differences in relative
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Fig. 2 Boxplots of Shannon and Chao1 alpha diversity measure estimates. Alpha diversity comparisons of lean and obese samples: (a) cohort-
wide and (b) site-specific. Overall study cohort differences are shown in (c). *" indicates a statistically significant difference as measured by the

abundance values between the two cohorts based on
Kruskal-Wallis (KW) p-values.

The noticeably higher relative Bacteroides’ abundance
(17.1% + 15.%) observed in urban Soweto in comparison
with Bushbuckridge (9.8% +11.4%) together with the
presence of Alistipes, Anaeroplasma and Barnesiella
amongst the most abundant genera is in line with the as-
sociation of these taxa with non-Western populations in
literature (Fig. 4d, e and f) [10, 40, 50]. These associa-
tions have been hypothesized to be driven by diet [3, 51,
52]. Of note, within-cohort taxonomic comparisons be-
tween lean and obese individuals did not reveal any sig-
nificant differences at both phyla and genera levels.

Microbial compositional analyses
To better understand the contribution of lifestyle to
microbiome composition in this pilot study, the DESeq2

[45] method was applied to further evaluate potential
compositional differences in the South African cohorts.
To accomplish this at site level, the data was first sub-
setted to exclude the intermediate, overweight samples,
while keeping only the lean (Bushbuckridge: 21, Soweto:
9) and obese samples (Bushbuckridge: 66, Soweto: 40).

Cohort-wide analysis

Differential abundance analysis revealed a general high
prevalence of Prevotella in the South African dataset.
Also present in the cohorts were Phascolarctobacterium
and Vampirovibrio, which was observed primarily in the
Bushbuckridge cohort (Fig. 5a and e; Supplementary Ta-
bles 2A and E). Alistipes, a genus associated with West-
ern populations, showed significantly higher differential
abundance in Bushbuckridge (Fig. 5a; Supplementary
Table 2A). Some of the other taxa associated with
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Table 3 Alpha and beta diversity significance of compared groups. Alpha diversity p-values were calculated with pairwise Wilcoxon
rank sum test. Bray-Curtis diversity p-values were calculated with PERMANOVA

Sample Distribution Group Comparisons Shannon Chao1 Bray-Curtis
p-values p-values p-values

Bushbuckridge and Soweto Lean vs Obese 0.72 0.06 0.07
Bushbuckridge and Soweto Lean vs Lean 0.69 0.72 0.01
Bushbuckridge and Soweto Obese vs Obese 0.01 < 0.001 0.001

All samples Bushbuckridge vs Soweto 0.01 < 0.001 0.001
Bushbuckridge Lean vs Obese 0.85 0.001 0.02
Soweto Lean vs Obese 045 033 0.84
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Bushbuckridge include the flavonoid-degrading Flavo-
nifractor, Parasutterella, Gemmiger, and Dialister [48]
(Fig. 5a and ¢; Supplementary Tables 2A and C). So-
weto samples, on the other hand, showed a significant
enrichment in  Bifidobacterium, the  oxalate-
metabolizing Oxalobacter [53, 54|, Barnesiella, Aceta-
naerobactrium, Roseburia, Escherichia/Shigella and
Streptococcus (Fig. 5a, b and f; Supplementary Ta-
bles 2A, B and F).

Comparing the microbiomes of the combined
obese groups (Bushbuckridge and Soweto) with their
leaner counterparts revealed butyrate-producing
Intestinimonas [55] and Prevotella to be more abun-
dant in the obese category with log,fold changes of
5.32 and 8.50 respectively (Fig. 5d; Supplementary
Table 2D).

Site-specific analysis

Notably, Prevotella was found to be associated with
obesity. This was clearly observed in Bushbuckridge,
where Prevotella showed a higher relative abundance in
the obese group (Fig. 5d, e and f; Supplementary Ta-
bles 2D, E and F). Also observed to be in higher abun-
dance in the Bushbuckridge obese group were 36 ASVs
representative of 11 unique genera which include Prevo-
tella (12), unclassified genera (10), Sutterella (3), Phasco-
larctobacterium (2), Ruminococcus (1), Clostridium_ IV
(1), Alistipes (1), Acetanaerobacterium (1), Parabacter-
oides (1), Catenibacterium (1) and Akkermansia (1) (Fig.
5e; Supplementary Table 2E). The numbers in paren-
thesis are the associated ASVs. In Soweto, 24 ASVs, rep-
resentative of 12 genera, were associated with the obese
group while seven ASVs representative of four genera
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dataset, (b) Lean samples and (c) Obese samples. ASVs significantly abundant in obese (OB) vs lean (LN) samples are shown in (d) Combined
dataset, (e) Bushbuckridge and (f) Soweto. The horizontal dashed line indicates a threshold of Benjamini-Hochberg-adjusted p < 0.1

presented higher abundance levels relative to their leaner
counterparts. The obese group-associated genera are
Prevotella (6), Clostridium_XIVa (3), Haemophilus (3),
Oscillibacter (2), unclassified genera (2), Clostridium_
XIVb (1), Streptococcus (1), Escherichia/Shigella (1),
Ruminococcus (1), Sporobacter (1), Oxalobacter (1),
Intestinimonas (1) and Parabacteroides (1). The genera
associated with the lean group in Soweto are Parabacter-
oides (1), Victivallis (1), Fusicatenibacter (1) and unclas-
sified genera (3) (Fig. 5f).

The apparent site-specific association of Prevotella
to the obese group in Bushbuckridge is in line with
literature linking the taxon to obesity [38, 56, 57], al-
though there have also been some contradictory re-
ports [1, 2].

Marker taxa analyses

A recent meta-analysis examined differences between
the gut microbial composition of traditional, rural popu-
lations and their more industrialized counterparts from
several studies with datasets encompassing 13 developed
or industrialized societies and two traditional hunter-
gatherer, pre-agricultural communities [3, 4, 8, 58, 59].
The study proposed a marker taxa list distinguishing
Western and non-Western bacterial communities. This
was corroborated by de la Cuesta-Zuluaga, et al. [60] by
the analysis of 16 benchmark datasets with the Biocon-
ductor package, curatedMetagenomicData (cMD) [61].
The ¢cMD is a collection of processed data from whole-
metagenome sequencing for thousands of human micro-
biome samples across different body sites.
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To further evaluate the landscape of our study data
with respect to the established population-dependent
compositional expectations, we randomly selected 334
individuals from the cMD, 167 of whom were from pop-
ulations of Western origin and the remaining 167 from
traditional non-Western populations to match the num-
ber of samples in our dataset. The sampling was done
from a total of 23 studies with 1763 samples (1433
Western and 330 non-Western) in the cMD. We com-
pared the abundance values of Western-associated (Ali-
sitipes, Akkermansia, Barnesiella, Bifidobacterium,
Bacteroides and Parabacteroides) and non-Western-
associated (Treponema and Prevotella) marker taxa to
their corresponding abundance profiles in our dataset.
This was done by testing the null hypothesis that the
mean ranks of the abundances of these marker taxa were
the same in the subsampled ¢cMD and our sampled
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cohorts using the non-parametric Kruskal-Wallis test.
Our results rejected the null hypotheses for all (p<
0.001) but three taxa, Akkermansia, Barnesiella and
Treponema with p >0.1 when compared to correspond-
ing Westernized datasets. Comparisons with the non-
Western dataset, on the other hand, resulted in the re-
jection of the null hypothesis for all but one taxon,
Treponema (p = 0.52). We found the abundances of Alis-
tipes, Bacteroides, Prevotella, and Parabacteroides in our
data to be intermediate between the benchmarked West-
ern and non-Western datasets, and the abundance of
Barnesiella comparable to that in the Western micro-
biota (Table 5). In addition, Random Forest analysis
comparing the South African cohorts to the subsampled
cMD presented Prevotella and Parabacteroides as the
most important discriminatory taxa in the non-Western
and Western datasets comparisons respectively (Fig. 6a
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Fig. 6 Variance Importance Plot resulting from the Random Forest analysis of proposed Western and non-Western marker taxa abundances in
the subsampled curatedMetagenomicData (cMD). Comparisons between the study data (RSA) with (a) Western cMD, and (b) non-Western cMD. ¢
Western versus non-Western cMD comparison




Oduaran et al. BMC Microbiology (2020) 20:330

and b). Interestingly, the importance scores associated
with each taxon in the classification of the subsampled
non-Western cMD with our dataset is comparable to
the associated taxa scores in the classification of the
cMD’s Western and non-Western datasets (Fig. 6c).
Altogether, these results reinforce the notion of a grad-
ually changing microbial composition of the sampled co-
hort relative to the subsampled curated datasets.

Discussion

This study aimed to characterize the gut microbiome of
two South African cohorts from two sites, about 483 km
(300 miles) apart that represent relatively urban and
transitioning rural lifestyle and diet-practicing popula-
tions, whilst exploring the microbial compositional dif-
ferences observed in obese and lean individuals. To
accomplish this, we collaboratively designed a study with
active input from the community, in conjunction with a
community advisory group (CAG) at Bushbuckridge. Al-
though the community was familiar with the general re-
search process, the concept of stool donation was
relatively unfamiliar [62, 63]. Stool collection for micro-
biome research purposes had never before been carried
out in this population. With prevailing traditional beliefs
concerning stool carrying the soul, it was crucial to be
sensitive and respectful whilst clearly presenting the im-
portance and proposed usage of the stool samples as
well as the aims of the research in understandable lan-
guage. The recruitment process and sample collection
for this study thus relied on extensive community
engagement.

DNA extracted from the collected stool samples
underwent 16S rRNA gene sequencing. We observed
relative abundance levels of Western gut-associated
marker taxon, Barnesiella, that were comparable to
Western populations with intermediate abundance levels
for Alistipes, Bacteroides, Parabacteroides and Prevotella
when compared to the benchmarked datasets (Table 5).
Within our cohorts, we found Vampirovibrio, a preda-
tory Melainabacteria to be present with higher relative
abundances in the rural samples and Prevotella, despite
its generally high prevalence relative to all taxa present
in the cohort, to be associated with obesity. Overall, we
identified putative microbial features associated with
host health and highlight the importance of population-
specific considerations in microbiome research. Import-
antly, we also shed some light on the vital role of en-
gaging the community of interest to the success of such
studies in an African setting.

Within our cohorts, microbial composition reflected a
transitional state comprising both Western- and non-
Western-associated taxa. Prevotella and Treponema rep-
resented the traditional hunter-gatherer taxa. Phasco-
larctobacterium, a propionate and acetate producer that
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has been shown to exert beneficial effects on its host
[64—66], appears to be abundant across both sites. A re-
cent study comparing various industrialized, urban pop-
ulations to traditional rural societies identified
Phascolarctobacterium to be the most significant con-
tributing taxa to the non-Western population cluster
[64]. A robust meta-analysis study that compared the
gut microbiomes of urbanized and pre-agricultural pop-
ulations also noted it to have relatively low abundance,
and in some cases absence, in Western populations [67].

With global research findings on the apparent dysbio-
sis of the gut microbiome in obesity being inconclusive
[38, 39, 68, 69], we sought to evaluate the differences be-
tween obese and lean individuals within and between
the two study populations. The within site differences
were moderate and did not reach statistical significance
in Soweto. However, for Bushbuckridge, significant dif-
ferences were observed for both alpha and beta diversity
estimates between the lean and obese groups using
Chaol (p=0.001) and Bray-Curtis (p =0.02) measures.
Log, fold changes ranging from 7.81 to 23.60 were ob-
served in the differential abundance analyses of compo-
nent microbial taxa of the obese samples relative to their
leaner counterparts resulting in 11 classified genera. Sut-
terella and Catenibacterium which have been previously
associated with obesity [70, 71], as well as Clostridium_
IV were among the differentially abundant taxa in the
obese samples in Bushbuckridge. Oscillibacter was asso-
ciated with cohort-wide obesity irrespective of site. This
association to obesity has been previously reported in a
European cohort [72].

Overall, the lean comparisons showed slightly greater
diversity than the obese groups with taxa representative
of four different phyla and 14 genera (Fig. 5b and c).
The PCoA plots comparing lean and obese individuals
(Fig. 3b, c and d) appears to show a divide between sam-
ples that may not be entirely driven by BMI categories.
It is, however, possible that associations with small effect
sizes exist in our sampled cohort that could be detected
with larger sampling. Also, as limited demographic and
dietary data were collected for this pilot, further explor-
ation is warranted.

Of great interest in the Bushbuckridge cohort was the
predatory Vampirovibrio. Although not very well-
studied in humans to date, Vampirovibrio is capable of
invading and attacking other bacteria without harming
human cells. It has been proposed for further studies in
bioremediation [73] to reduce the use of antibiotics.
Melainabacteria, the phylum to which Vampirovibrio
belongs [74-76], is generally found to be present in
aquatic habitats as well as associated with the guts of
herbivorous mammals and humans with predominantly
plant-based diets. They are also known to synthesize vi-
tamins B and K, which in addition to their fiber-
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digesting abilities posits them as beneficial bacteria to
their hosts.

Several studies have identified obesity-associated taxa
primarily in non-African populations [25, 77, 78] despite
these reported connections being inconsistent [1, 2, 72].
The differential abundance, prevalence or presence of
microbial taxa across populations may require
population-specific associations for relevance, as univer-
sal classifications may not necessarily be generalizable.
The seemingly ubiquitous presence of Prevotella in the
sampled cohorts and its association with obesity in
Bushbuckridge brings to the fore the role of some Prevo-
tella strains as potential pathobionts involved in various
human diseases by the promotion of chronic inflamma-
tion [79, 80]. Increased abundance of Prevotella species
at mucosal sites have been linked to several diseases in-
cluding metabolic disorders and low-grade systemic in-
flammation [38, 56, 81], a feature associated with
obesity. Prevotella may thus present as a critical taxon in
the obesity pandemic on the African continent. Further
in-depth studies to ascertain the influence of its preva-
lence in a community undergoing such epidemiological
transition will be insightful as the beneficial or detrimen-
tal effects of Prevotella may very likely be dependent on
strain variations or its interaction with the prevailing
lifestyle and environment [82].

Conclusions

This study provides us with a foundation to inform fu-
ture microbiome studies in Africa. A clear outcome of
this study was the statistically significant differences in
microbial composition observed between the Bushbuck-
ridge and Soweto cohorts with the Bushbuckridge cohort
harboring relatively more diverse microbiota. This high-
lights the difference in stages of the cohorts along the
continuum of transition, with the gradual lifestyle and
dietary shifts towards more Western practices. Such
clarity was not consistently achieved statistically for
comparisons between the BMI categories considered.
However, moderate differences were observed. This
could possibly be attributed to the uneven and sparse
sampling of the data especially with the lean category in
Soweto. Notwithstanding, the core outcome of this ana-
lysis does not seem to have been affected as observed in
comparisons between the lean populations of both co-
horts. Similarly, a lack of inflated significance in differen-
tial abundances between the groups compared support
the integrity of the study outcome.

We acknowledge that this study was limited by the un-
availability of detailed dietary data at the time of sample
collection that may have explained some of the observa-
tions and extended the scope of the study. No assump-
tions were made in this regard with the data presented
as is. However, there are published reports on the
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dietary changes accompanying the urbanization process
across rural areas in South Africa [31-33, 36]. Another
potential limitation of this study is the aforementioned
uneven and sparse sampling of the data, which appears
to have been inconsequential on the study outcome. It is
important to note that this was a pilot exploratory study
that has provided useful insights into the planning and
execution of future studies in similar settings.

In broad summary, the compositional taxa of the gut
microbiome of the collective ethnolinguistic groups in
the cohorts are reflective of an epidemiologically transi-
tional state, and the beneficial or detrimental effects of
Prevotella are very likely diet- and lifestyle-dependent.
Lastly, the largely intermediate abundances of the pro-
posed Western and non-Western distinguishing marker
taxa in our data set in comparison with benchmarked
datasets substantiates the transitional state of our Afri-
can cohorts with potential implications for disease
pathogenesis and general health status. This accentuates
the need for more population-specific studies as findings
and translational applications in non-African popula-
tions may be poorly generalizable to the African context.
Further studies with a larger sampled cohort will be very
informative in this regard.

Methods
Community engagement
The research team engaged the community in two inter-
active sessions during this study - the planning phase
and post-preliminary analyses on the data resulting from
the collected stool samples. A survey was also conducted
on the first 100 participants in Bushbuckridge to get
their feedback on the process. Prior to the collection of
stool samples for the study, there was interaction with
the community in conjunction with a CAG at the Agin-
court HDSS (Bushbuckridge), the rural site, which gave
input into the process to ensure that sample collection
methods were sensitive to the community beliefs and ap-
plicable to the existing toilet facilities in the area. This
group comprised eight community representatives and
indunas (village councillors). The meeting discussions
were focused on creating awareness on what the project
entailed and the importance of such research in the
community, as well as on potential concerns and reac-
tions of community members to stool sample collection
and the practicality of such endeavor. Also deliberated
on was the role of the trained fieldworker in the recruit-
ment process and the available resources (graphical
flyers) to clearly communicate the study aims and usage
of the collected stool samples in understandable lan-
guage to potential participants.

The interactive workshop that followed the prelimin-
ary data analysis aimed to reiterate the importance of
the study, broadly present some of the initial results and
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very importantly, solicit feedback from the community
members and participants. As this was a pilot study, it
was important to the research team to gauge the level of
understanding of the study post-completion in order to
inform future studies in this regard.

Recruitment and study cohort
This study is nested in the AWI-Gen project, which is a
part of the Human, Heredity and Health in Africa
(H3Africa) consortium. AWI-Gen explores genetic and
environmental factors in cardiometabolic disorders in
African populations with six sites across four countries.
The recruitment of participants for this study was done
at two of the South African sites — the Bushbuckridge
area within the Agincourt HDSS, Mpumalanga (rural)
and Soweto, Johannesburg, Gauteng (urban).
Participants were randomly selected from the AWI-
Gen cohort within the BMI strata defined below and are
in the age range of 43-72years (Table 1). To minimize
confounding effects, male and HIV+ participants were
excluded. Participants were divided into three groups
based on their BMI values — lean, overweight and obese.
The lean group comprised participants with BMI < 25,
the overweight group comprised participants with 25 <
BMI < 30 and the obese group had BMI > 30. Anthropo-
metric (height and weight) and blood pressure measure-
ments were taken at the time of collection, and a rapid
HIV test done. We also had extensive other data about
participants from previous engagements. The study was
approved by the Human Research Ethics Committee
(Medical) of the University of the Waitwatersrand
(M160121) and the Provincial Health Research Commit-
tee of the Province of Mpumalanga (MP2017TP22851).
To facilitate the participant recruitment and sample
collection processes, comprehensive information ses-
sions were held with the fieldworker on the study aims
and its importance. This was crucial as the recruitment
success could be reliant on the fieldworker’s ability to ef-
fectively communicate these to prospective participants.
The fieldworker was also aided by training videos and
experience gained from self-collecting personal stool
samples to facilitate relatability to the collection process.

Sample collection

Stool samples were collected from consented partici-
pants using DNA Genotek®s OMNIgene microbial col-
lection and stabilization kit and sent to the laboratory.
The stool samples were subsequently aliquoted into
cryovials and frozen at - 80 degrees Celsius prior to
DNA extraction.

DNA extraction and sequencing
Frozen stool samples were thawed on ice. Genomic
(total) DNA was extracted using Qiagen™s QIAmp
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Powerfecal DNA kit and sent to a dedicated core facility
for the sequencing of the V3 —V4 hypervariable region
of the 16S rRNA gene on the Illumina MiSeq® platform
using 341F 5-CCTACGGGNGGCWGCAG-3" and 805R
5'-GACTACHVGGGTATCTAATCC-3" as forward and
reverse primers respectively [83].

Sequence data analyses

The DADA2 (v1.10.1) pipeline [43] was used for pre-
processing and performing quality control on the se-
quences. Briefly, the demultiplexed paired-end sequences
were imported into DADA2. Based on the quality plots,
the sequences were filtered with a maximum of expected
errors of 2 and 4, and sequence lengths of 280 and 240
bases for the forward and reverse reads, respectively,
with primers trimmed accordingly. The resulting reads
were dereplicated and merged to obtain the full denoised
sequence which was used in the creation of a count table
containing the abundance values of sequence variants
from the sampled data. Chimeras were subsequently re-
moved, and the non-chimeric sequence table was uti-
lized for downstream analyses.

Taxonomic classification

The DADA?2 implementation of the naive Bayesian clas-
sifier methodwas applied in the assignment of taxon-
omies to the amplicon sequence variants using the RDP
trainset 16 DADA2-formatted reference set from the
Ribosomal Database Project (RDP) [84] and a minimum
bootstrapping parameter of 50, with pseudo-pooling.

Alpha and Beta diversity analyses

The DADA2 output together with the sample metadata
were imported into phyloseq [44] for diversity analysis.
Based on the output from the pre-processing step, rar-
efaction was applied at a sampling read depth of 50,800
to allow for adequate capture of the observed microbial
taxa richness in the cohort as diversity metrics are gen-
erally sensitive to sample read depths.

First, Shannon [47] and Chaol [48] alpha diversity es-
timates for the samples were calculated. This measure
was applied to a pairwise Wilcoxon rank sum (Mann-
Whitney) test to assess whether the observed ASVs dif-
fered significantly (p < 0.05) between specified categories.
Boxplots were generated to visualize the categorical dif-
ferences based on the Shannon diversity values. Compar-
isons were done as indicated in Table 4.

Next, beta diversity between the samples was evaluated
using Bray-Curtis dissimilarity distance matrices for
PCoA [49] to generate relevant ordination plots. PERM
ANOVA analysis was done to test for differences be-
tween specified categories (Table 4).
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Table 4 Group comparisons evaluated in this study
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Groups Targeted Evaluation

Sample Data (No. of Samples)

Bushbuckridge vs Soweto Overall site differences

Bushbuckridge vs Soweto Compositional differences in the lean

category between sites

Bushbuckridge vs Soweto Compositional differences in the obese

category between sites

Lean vs Obese
differences

Lean vs Obese
differences

Lean vs Obese
differences

Cohort-wide BMI compositional categorical
Site-specific BMI compositional categorical

Site-specific BMI compositional categorical

All samples - lean, overweight and obese (167)

Bushbuckridge and Soweto lean samples only (30)

Bushbuckridge and Soweto obese samples only (106)

Bushbuckridge and Soweto lean and obese samples only (136)

Bushbuckridge lean and obese samples only (87)

SWT lean and obese samples only (49)

Differential abundance analyses

To evaluate differences in bacterial taxa abundance
across BMI categories and sites, a negative binomial gen-
eralized linear model (DESeq2) [45] was used. Briefly,
raw counts were modelled with a negative binomial dis-
tribution and internal adjustment done for “size factors”.
This adjustment normalized for differences in sequen-
cing depth between samples. Prior to analyses, the data

Table 5 Marker taxa analysis. Comparisons between the South
African (RSA) cohorts data and benchmarked data sets from the
curatedMetagenomicData (cMD). (@) cMD Western (W) data vs
RSA data and (b) cMD non-Western (NW) data vs RSA data. The
Kruskal-Wallis (KW) rank sum test was used in the calculation of

the p-values
A
Genus RSA W-Median W-log,FC p-values
Median (Kw)
Prevotella 0.543 0.030 4409 2.20E-16
Treponema 0.116 0.003 5.085 6.30E-01
Bifidobacterium  0.015 0.043 -4.139 3.09E-16
Barnesiella 0.049 0.033 -0.552 1.39E-01
Akkermansia 0.056 0.012 0.251 9.39E-01
Alistipes 0.040 0.118 -2.789 220E-16
Bacteroides 0.268 0.384 -1.183 1.08E-08
Parabacteroides 0.043 0.050 -0.719 7.21E-05
B
Genus RSA NW- NW- p-values
Median Median log,FC (KW)
Prevotella 0.543 0.760 -4.685 1.02E-03
Treponema 0.116 0.001 1.638 5.18E-01
Bifidobacterium 0.015 0.097 -1.159 2.20E-16
Barnesiella 0.049 0.001 4481 6.28E-14
Akkermansia 0.056 0.001 3.227 9.20E-03
Alistipes 0.040 0.008 3917 3.59E-03
Bacteroides 0.268 0.020 4.243 2.20E-16
Parabacteroides 0.043 0.006 3.091 2.20E-16

was filtered to exclude taxa that was not observed more
than three times in more than 5 % of the 167 samples.
This cut-off was chosen with respect to the sample size
and the general data sparsity to protect against ASVs
with small mean and trivially large coefficients of vari-
ation across samples. This resulted in 1688 high abun-
dance ASVs being included in this analysis. DESeq2
models were adjusted for potential batch effects, where
applicable, and BMI for the overall site analysis. How-
ever, it is highly unlikely that substantial batch effects
exist as 14 samples from the first batch that were re-
sequenced and compared across the two sequence runs
using Bray-Curtis measure indicate the absence of any
potentially damaging batch effects (Supplementary
Figure 2).

Statistical significance was determined by the Wald’s
test with Benjamini-Hochberg corrected p-values and
significant ASVs above a secondary alpha threshold of
0.1. The results are presented with Volcano plots (Fig. 5
and Supplementary Table 2).

Marker taxa analyses

To establish the status of our sampled cohorts along the
continuum of westernization, we sought to compare the
relative abundances of proposed Western and non-
Western marker taxa as compiled by a recent meta-
analysis [67] with the corresponding values in our data-
set. The proposed taxa can be used as markers of life-
style and geographical origin in the chosen public
datasets as well as in the South African cohorts.

A total of 23 studies [5, 58, 85—-105] with benchmarked
Western and non-Western datasets comprising 1763 sam-
ples were downloaded from the curatedMetagenomicData
[61] repository. The downloaded count data was
converted to an ExpressionSet object and imported into
phyloseq [44] for downstream analysis. The data was sub-
setted to include only the eight genera of interest — Prevo-
tella, Treponema, Bifidobacterium, Barnesiella, Akker-
mansia, Alistipes, Bacteroides and Parabacteroides. The
abundance counts were transformed to relative abundance
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values and filtered to retain only ASVs with mean abun-
dance greater than zero. The data was subsequently split
by westernization and 167 samples were randomly se-
lected from each of the two groups and merged with the
South African (RSA) dataset to give two groups (Western-
RSA and non-Western-RSA) of 334 samples each. These
two sample groups were utilized for both comparisons be-
tween the subsampled cMD and our combined cohort
data.

For each group of data, 70% (234) of the samples were
used as the training set for Random Forest analysis to
compare the two datasets, with the remaining 30% (100)
as the test data. Variable Importance Plots were used to
visualize the results (Fig. 6). Abundance levels of the se-
lected taxa were also tested for significant differences
using the Kruskal-Weallis test (Table 5).

Feedback from participants

The follow-up survey was done on the first 100 par-
ticipants at Bushbuckridge about 3 months after col-
lection. The survey was conducted telephonically —
each person was phoned at least three times. One
person refused to participate, and 65 people agreed.
The community engagement process is detailed in the
Supplementary data section.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512866-020-02017-w.

Additional file 1: Supplementary Figure 1. Beta diversity PCoA plots
with Bray-Curtis dissimilarity measure. Combined Bushbuckridge and So-
weto datasets indicating differences in (A) Cohort-wide and (B) Lean vs
obese categories. Site-specific lean and obese sampled data in (C) Bush-
buckridge and (D) Soweto. Ellipses represent a 0.95 confidence interval.

Additional file 2: Supplementary Figure 2. Batch-control test. To con-
trol for batch effects from different sequencing runs, 14 samples from the
first batch were re-sequenced. Comparison of the samples from the two
sequence runs using Bray-Curtis measure indicates the absence of any
potentially damaging batch effects.

Additional file 3: Extended information on the community
engagement process. Supplementary Table 1. Sample reads tracked
through the pre-processing steps. Supplementary Table 2. Genera, as-
sociated p-values and log, fold changes corresponding to phyla on the
volcano plots in Fig. 5.
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