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Abstract

Background: Escherichia coli always plays an important role in microbial research, and it has been a benchmark
model for the study of molecular mechanisms of microorganisms. Molecular complexes, operons, and functional
modules are valuable molecular functional domains of E. coli. The identification of protein complexes and functional
modules of E. coli is essential to reveal the principles of cell organization, process, and function. At present, many
studies focus on the detection of E. coli protein complexes based on experimental methods. However, based on
the large-scale proteomics data set of E. coli, the simultaneous prediction of protein complexes and functional
modules, especially the comparative analysis of them is relatively less.

Results: In this study, the Edge Label Propagate Algorithm (ELPA) of the complex biological network was used to
predict the protein complexes and functional modules of two high-quality PPI networks of E. coli, respectively.
According to the gold standard protein complexes and function annotations provided by EcoCyc dataset, most
protein modules predicted in the two datasets matched highly with real protein complexes, cellular processes, and
biological functions. Some novel and significant protein complexes and functional modules were revealed based
on ELPA. Moreover, through a comparative analysis of predicted complexes with corresponding functional modules,
we found the protein complexes were significantly overlapped with corresponding functional modules, and almost
all predicted protein complexes were completely covered by one or more functional modules. Finally, on the same
PPI network of E. coli, ELPA was compared with a well-known protein module detection method (MCL) and we
found that the performance of ELPA and MCL is comparable in predicting protein complexes.

Conclusions: In this paper, a link clustering method was used to predict protein complexes and functional
modules in PPI networks of E. coli, and the correlation between them was compared, which could help us to
understand the molecular functional units of E. coli better.
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Background
Escherichia coli (E. coli) is the primary model organism
of microorganisms, and perhaps it is the most intensively
studied species of bacteria [1–4]. Even so, only two-
thirds of the protein-coding gene products of E. coli K-

12 currently have experimental evidence for their bio-
logical roles, and others remain unannotated (orphans)
[5]. Experiments and data analysis (algorithmic model)
are two effective methods to identify protein complexes
and functional modules of E. coli. However, it is well-
known that experimental analysis has always been dom-
inant because of the lack of large-scale experimental data
and the incompleteness of the E. coli dataset [5–9]. Ex-
perimental methods have the advantages of direct verifi-
cation, but they also have the limitations of high false
positive rates and false negative rates. In recent years,
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with the development of genomic technology, some
high-throughput, high-quality, binary protein interaction
(PPIs) maps of E. coli have been released, so the protein
complexes and functional modules of E. coli and their
relationships can be predicted from a global perspective
[8–19]. Although the analysis methods of these data
were not perfect, many studies showed that the predic-
tion results of these methods are useful supplements to
the experimental methods.
A protein complex is formed by the interaction of

more than two functional related peptide chains through
disulfide bonds or other proteins, so it performs some
given biological functions. A functional module is the
basic functional unit of proteins, which implies complex
relationships involving multiple biological interaction
types [8]. Revealing protein complexes and functional
modules in the E. coli PPI network is an important re-
search topic to understand the essential biological func-
tions of proteins. Although some studies used complex
network models to make predictions, due to the lack of
large-scale PPI datasets and the existence of a large
number of orphan proteins, the prediction results were
difficult to achieve the expected ones. However, with the
release of some high-throughput E. coli PPI datasets in
recent years, it has become possible to predict protein
complexes and functional modules of E. coli based on
complex network models. With the development of
high-throughput sequencing technologies, such as two-
hybrid systems and mass spectrometry technology for
pairwise protein interactions, large-scale PPI networks of
E. coli can be constructed at genome level [20]. Some
studies explored the prediction of protein complexes
based on E. coli PPI networks [5, 10, 11], and others fo-
cused on the functional relationship between transcrip-
tion regulation [12–16] and metabolic pathway [17–19]
of E. coli. Even so, studies of predicting protein com-
plexes and functional modules at the same time, espe-
cially the comparative analysis of them is relatively less.
In this paper, based on the E. coli datasets of Hu et al.
[5] and Cong et al. [8], two complex-related PPI net-
works were constructed, named netH and netC, respect-
ively. We focused on the recognition and analysis of
protein complexes and functional modules in the two
large-scale PPI networks, and discussed the differences
and connections between them.
Node clustering and link clustering are two different

methods to reveal the network structure from different
perspectives. Because the link itself contains node attri-
butes, link clustering has a natural advantage over the
node clustering algorithm in the identification of net-
work modules. In this study, E. coli protein complexes
and functional modules were predicted by a link cluster-
ing method (ELPA [21]) in two high-quality PPI net-
works. Many studies showed that Markov Clustering

algorithm (MCL) was an excellent protein module iden-
tification algorithm and the most popular method for
detecting protein complexes [22–25], so we compared
the results of ELPA with MCL on the same PPI network
of E. coli. According to the gold-standard protein com-
plexes and function annotations provided by EcoCyc
dataset, the results showed that most protein modules
predicted by ELPA matched well with real protein com-
plexes, cellular processes, or biological functions, and
the performance was comparable with MCL. For ex-
ample, in the PPI network of E. coli provided by Hu
et al., 75.8% of predicted protein modules matched with
one or more real protein complexes, 88.1% of real pro-
tein complexes matched with one or more protein mod-
ules, and 88.3% of predicted protein modules matched
with at least one functional unit of E. coli. Furthermore,
some novel protein complexes and functional modules
were uncovered in both networks, and we compared the
protein complex with the corresponding functional
module predicted from the same protein module. The
results showed that the protein complex significantly
overlapped with the corresponding functional module,
and many functional modules contained more than one
protein complex. Therefore, we concluded that ELPA is
an effective method to predict protein complexes and
functional modules in PPI networks of E. coli.

Results
Identification of protein modules
ELPA predicted 120 and 171 protein modules in netH
and netC (Table S1), respectively. The size of predicted
modules ranged from two to hundreds of proteins. Also,
we found that many protein modules detected by ELPA
overlapped each other. This phenomenon was very con-
sistent with real protein complexes and functional mod-
ules, which meant that some proteins involved multiple
complexes or functional modules. It is also an important
research topic to study the overlapping proteins in dif-
ferent complexes or functional modules.

Prediction of protein complexes
Those protein modules of netH and netC identified by
ELPA were matched with 295 real benchmark protein
complexes of E. coli in the EcoCyc dataset, respectively.
In netH, 222 benchmark complexes (75.3%) matched 91
predicted protein modules (75.8%), and in netC, 200
benchmark complexes (67.8%) matched 144 predicted
protein modules (70.9%). Since most benchmark com-
plexes consist of no more than ten proteins, larger pro-
tein modules may contain multiple complexes, which is
consistent with the composition of real complexes.
When the Matching Score threshold was set to 0.2

[24, 26], 84 and 136 protein complexes were predicted
in netH and netC, respectively. By comparing with the
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benchmark complexes, we found that most of the pro-
tein complexes predicted by ELPA matched well with
the corresponding real complexes in both networks. For
example, in netH, module 50 consisted of eight proteins,
of which potF, potH, and potI were the three proteins in
the putrescine ABC transporter complex; potA, potB,
potC, and potD covered all four proteins of the putres-
cine/spermidine ABC transporter complex (as shown in
Fig. 1a). Module 54 protein module consisted of five
proteins, which were completely covered by two com-
plexes: the ferrichrome transport system and the ferric
coprogen transport system. The ferrichrome transport
system protein complex consisted of four proteins: fhuA,
fhuB, fhuC, and fhuD, while the ferric coprogen trans-
port system protein complex was composed of fhuB,
fhuC, fhuD, and fhuE. As shown in Fig. 1b, it could be
found that fhuB, fhuC, and fhuD were the three proteins
shared by these two complexes. In netC, module 37 con-
sisted of four proteins, of which ugpA, ugpB, ugpC, and
ugpE were exactly the four proteins that made up the
glycerol-3-phosphate/glycerol-2-phosphate ABC trans-
porter complex. As shown in Fig. 1c, module 76 and
module 112 were perfectly matched with the YhdW/
YhdX/YhdY/YhdZ ABC transporter complex and the
galactofuranose /galactopyranose ABC transporter com-
plex, respectively. The analysis above indicated that
ELPA is an effective method to predict E. coli protein
complexes in PPI network.

Prediction of the functional module
Those protein modules of netH and netC identified by
ELPA were matched with benchmark functional annota-
tions of E. coli in the EcoCyc dataset, respectively. If the
Matching Score between a protein module and a given
GO term was greater than 0.5, this protein module was
recognized as a potential functional module. In netH,

most prediction modules (82.5%) were significant func-
tional modules, of which about 30% exactly matched a
certain functional term (Matching Score equal to 1). For
example, as shown in Fig. 2a, module 19 contained 25
proteins, of which 24 proteins matched GO: 0006810.
Obviously, it was a functional module. All the seven pro-
teins of module 40 were completely covered by GO:
0005886, GO:0016020, and GO:0017004, respectively (as
shown in Fig. 2b). In netC, 91.6% of predicted modules
were significant functional modules, of which 53.2%
were completely covered by at least one GO term. For
example, as shown in Fig. 2c and d, module 9 contained
seven proteins: mfd, nusA, pyrG, rpoB, rpsE, rpsU, and
uvrA, which were completly annotated by GO:0005829.
Similarly, ten proteins of module 26: dppA, dppB, dppC,
dppD, dppF, nikA, oppA, oppB, oppD, and sapA were all
annotated with GO:0006810. The analysis above indi-
cated that ELPA is an effective method to predict E. coli
functional modules in PPI network.

Comparative analysis of predicted protein complexes and
functional modules
A protein complex is a physical aggregation of several
proteins that interact at the same time and location
through molecular interactions. A functional module
also consists of multiple proteins that interact with each
other to control or perform a particular cellular func-
tion. However, unlike protein complexes, these proteins
do not necessarily interact at the same time and loca-
tion. Therefore, the comparative analysis of protein com-
plexes and corresponding functional modules is of great
scientific significance.
For example, as shown in Fig. 3a, module 21 in NetH

was mainly composed of three real complexes: NADH:
ubiquinone oxidoreductase I, hydrogenase 4 and formate
hydrogenlyase. All proteins in the hydrogenase 4

Fig. 1 Predicted protein complexes in netH. a The proteins of module 50 in netH matched with real complexes. b The proteins of module 54 in
netH matched with real complexes. c Three predicted modules perfectly matched with the corresponding protein complexes in netC
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Fig. 2 Predicted functional modules in netH and netC. a The proteins of module 19 in netH matched with GO annotations. b The proteins of
module 40 in netH matched with GO annotations. c The proteins of module 9 in netC matched with GO annotations. d The proteins of module
26 in netC matched with GO annotations

Fig. 3 Correlation between protein complexes and functional modules. a Module 21 in netH covered by three real complexes, and fully
annotated by GO:005514. Proteins functions in this module were all related to the above three real complexes. b Module 15 in netC mainly
covered by maltose ABC transporter complex and fully annotated by three functions. Proteins functions in this complex were all related to the
maltose ABC transporter
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complex were completely covered by this module, 10
out of 11 proteins of ubiquinone oxidoreductase I com-
plex matched this module, and 3 out of 5 proteins of
formate hydrogenlyase complex matched this module.
Also, we noticed that GO: 0055114 completely covered
the 18 proteins of this module, which meant that the
three protein complexes mentioned above might com-
bine to perform a certain function. hycE, hycF and hycG
were the components of the formate hydrogenlyase
complex, and their functional annotations were hydro-
genase 3, formate hydrogenlyase complex iron-sulfur
protein, and hydrogenase 3 and formate hydrogenlyase
complex-HycG subunit, respectively. This meant that
the functions of these three proteins were consistent
with the formate hydrogenlyase complex, and it also im-
plied that the hydrogenase 3 complex was related to the
formate hydrogenlyase complex. The Hydrogenase 4
complex proteins: hyfB, hyfD, hyfF, hyfG and hyfI were
annotated with hydrogenase 4-component B, D, F, and
large, small subunit respectively. This indicated that the
functions of these five proteins and the hydrogenase 4
complex were highly coherent. The ten remaining pro-
teins of this module: nuoB, nuoC, nuoE, nuoF, nuoG,
nuoH, nuoI, nuoL, nuoM, and nuoN were all related to
NADH: ubiquinone oxidoreductase complex. Therefore,
we predicted that the above three protein complexes
might significant functional correlations.
Figure 3b showed another similar case. Module 15 in

netC consisted of ten proteins and contained two real
complexes: Sec Translocation Complex and SecD-SecF-
YajC-YidC Secretion Complex. All four proteins of
SecD-SecF-YajC-YidC Secretion Complex were covered
by this module and Sec Translocation Complex, and they
were all matched with GO:0016021, among them yidC
were annotated with inner-membrane protein insertion
factor. 7 out 9 proteins of Sec Translocation Complex
matched this module, and the seven proteins: secA, secD,
secF, secG, secY, yajC and yidC were enriched with the
term “protein transport” of GO: 0015031, which meant
their functions were consistent with the complex. Be-
sides one uncharacterized protein ydiE, the two
remaining proteins rplN and rpsE were enriched with
the term “translation” of GO: 0006412, and the term
“rRNA binding” of GO:0019843, respectively. The results
above indicated that those predicted protein modules
are significant related to corresponding protein com-
plexes and functional modules. Usually, a functional
module might cover more than one protein complex.

Comparison with MCL
Most biological network module identification methods
were based on node clustering, and among them, MCL
has been proven to be superior to other methods in identi-
fying the protein modules in most cases [23, 26, 27]. ELPA

is a module identification method based on link clustering.
It considered the attitudes of nodes and links at the same
time, and can better reflect the network structure than
nodes [21, 28]. ELPA is a parameter-free method, and
MCL used the default parameters. And the clustering re-
sults of ELPA and MCL were compared in both networks,
respectively.
Three metrics: Precision, Recall, F-measure were utilized

to compare the performance of MCL and ELPA in pre-
dicting protein complexes. In netH, the performance com-
parison of two methods for predicting protein complexes
was shown in Fig. 4a. The values of Precision, Recall and
F-measure of ELPA were 72.5, 61.5, and 66.5%, respect-
ively, while the corresponding results of MCL were 55.1,
65.5, and 59.9%, respectively. Similar results were obtained
in netC. As shown in Fig. 4c, the values of Precision, Recall
and F-measure of ELPA were 67, 62.3 and 64.6%, while
the corresponding results of MCL were 67.9, 60 and
63.7%, respectively. From the Fig. 4, we found that the
performance of ELPA and MCL is comparable in the pre-
diction of protein complexes. For example, in netH, Fla-
gellum complex matched with module 10 of ELPA and
module 59 of MCL, and the corresponding matching
scores were 58.9 and 43%, respectively. Enterobactin syn-
thase complex matched with module 53 of ELPA and
module 46 of MCL, and corresponding matching scores
were 50 and 45%, respectively. SecD-SecF-YajC-YidC Se-
cretion complex matched with module 69 of ELPA and
module 149 of MCL, and the corresponding matching
scores were 56.3 and 45%, respectively.
In general, Precision and AMS are two effective met-

rics to evaluate the predicted quality of functional mod-
ules. The performance comparison of two methods for
predicting functional modules was shown in Fig. 4b.
Values of Precision and AMS of ELPA were 82.5 and
70.9%, respectively, and that of MCL were 85.9 and 70%,
respectively. Analogous results were obtained in netC.
As shown in Fig. 4d, values of Precision and AMS of
ELPA were 91.6 and 77.5%, while the corresponding re-
sults of MCL were 93 and 77.8%, respectively. We con-
cluded that the performance of both methods is
comparable in the prediction of functional modules. For
example, in netC, both module 190 of ELPA and module
66 of MCL were enriched in the GO: 0000018, and cor-
responding matching scores were 100 and 66.7%, re-
spectively. Both module 29 of ELPA and module 101 of
MCL were enriched in the GO: 0006281, and corre-
sponding matching scores were 100 and 75%, respect-
ively. Both module 83 of ELPA and module 168 of MCL
were enriched in the GO: 0009060, and the correspond-
ing matching scores were 80 and 75%, respectively. The
results above showed that ELPA is an effective method
to predict E. coli protein complexes and functional
modules.
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Discussion
Besides well-characterized protein complexes and func-
tional modules, we also identified modules that had not
been matched to an EcoCyc protein complex or func-
tional category in both networks. In netH and netC, we
discovered 36 and 67 novel protein complexes, and
21and 17 novel functional modules, respectively (Table
S2). A notable example of a novel protein complex was
module 36 in netH, composed of five proteins: pheS,
pheM, thrS, argS and erfK. ThrS is also a translational re-
pressor protein, and it controls binds its own mRNA in
the operator region upstream of the start codon. ThrRS
represses translation by preventing the ribosome from to
mRNA, and tRNA acts as an antirepressor allowing fine
level control of enzyme synthesis. ThrS, argS, pheS and
pheM are all involved in aminoacyl-tRNA ligase activity,
and they are the members of arginine-tRNA ligase,
phenylalanine-tRNA ligase alpha chain, phenylalanyl-
tRNA synthetase operon leader peptide and threonine-
tRNA ligase superfamily, respectively. In addition, pheS,

thrS and argS are in Aminoacyl-tRNA biosynthesis path-
way, and pheM is significant related to Aminoacyl-tRNA
biosynthesis. We knew little about erfK except that it
was involved in the peptidoglycan biosynthesis pathway.
These annotations indicated that these proteins might
constitute a protein complex involved in aminoacyl-
tRNA biosynthesis.
An example for the novel functional module was mod-

ule 10 in netC, and it consisted of seven proteins: rpsN,
rpmC, rplV, rlmJ, sbcB, holC and hflC. RpsN binds 16S
rRNA, required for the assembly of 30S particles and
may also be responsible for determining the conform-
ation of the 16S rRNA at the A site. RplV binds specific-
ally to 23S rRNA. Its binding is stimulated by other
ribosomal proteins, and makes multiple contacts with
different domains of the 23S rRNA in the assembled 50S
subunit and ribosome. RpmC binds 23S rRNA, and con-
tacts trigger factor. RlmJ specifically methylates the ad-
enine in position 2030 of 23S rRNA, and it required for
the utilization of extracellular DNA as the sole source of

Fig. 4 Comparative performance of ELPA and MCL in netH and netC. a Comparison of protein complex predictions in netH. b Comparison of
functional modules predictions in netH. c Comparison of protein complex predictions in netC. d Comparison of functional modules predictions
in netC

Kong et al. BMC Microbiology          (2020) 20:243 Page 6 of 9



carbon and energy. HolC is part of the beta sliding
clamp loading complex, which hydrolyzes ATP to load
the beta clamp onto primed DNA to form the DNA rep-
lication pre-initiation complex. SbcB degrades single-
stranded DNA (ssDNA) in a highly possessive manner,
and also functions as a DNA deoxyribophosphodiester-
ase that releases deoxyribose-phosphate moieties follow-
ing the cleavage of DNA at an apurinic/apyrimidinic
(AP) site by either an AP endonuclease or AP lyase. HflC
controls the lysogenization frequency of phage lambda.
Together, these annotations suggested that these pro-
teins form part of a translation module.

Conclusion
In this paper, a link clustering algorithm (ELPA) was
used to identify protein complexes and functional mod-
ules in the E. coli PPI network. Through comparison
with the EcoCyc database, we have discovered some
novel and interesting complexes and functional modules.
In addition, we compared and analyzed protein com-
plexes and functional modules derived from the same
predicted protein modules. It was found that protein
complexes are highly overlapped with the corresponding
functional modules, many of which contain more than
one protein complex, which helps to understand the dy-
namic relationship between protein complexes and func-
tional modules. Finally, the results of ELPA were
compared with that of MCL, and we found that their
performance is comparable in most cases. Therefore, we
concluded that ELPA can be used as an effective cluster
analysis tool for different types of biological networks. In
further work, we will explore the key regulatory proteins
and pathways in the transcriptional regulatory network
of E. coli, based on the corresponding protein complexes
and functional modules.

Methods
Source of PPI data
Two high-throughput experiments of protein-protein in-
teractions (PPIs) datasets of E. coli were retrieved from
the original paper of Hu et al. [5] and Cong et al. [8], re-
spectively. Most of the data from these resources came
from Yeast-Two- Hybrid (Y2H) and Tandem Affinity
Purification (TAP). The dataset provided by Hu et al. in-
cluded a large-scale TAP-derived network and a func-
tional network. Our analysis merged the two networks
into a single combined network which contained 7613
interactions among 2283 proteins. The dataset recently
published by Cong et al. is a large-scale Y2H-derived
network of E. coli, which contained 1618 interactions
among1, 476 proteins. To predict protein complexes
more efficiently, only those binary interactions associ-
ated with known complex proteins were considered. As
a result, 3280 interactions among 1298 proteins were

retrieved from the dataset of Hu et al., and 1299 interac-
tions among 785 proteins were retrieved from the data-
set of Cong et al.

Benchmark for protein complexes and functional
annotations
In most studies, protein complexes and functional anno-
tations of E. coli downloaded from EcoCyc database [29]
were regarded as the “gold standard”, and all these data
sets downloaded are up-to-date. As we all know, many
protein complexes of E. coli contain only two proteins,
thus those complexes containing at least two proteins in
the E. coli K-12 dataset of EcoCyc were kept as bench-
mark complexes. In this way, we obtained 295 bench-
mark protein complexes containing 732 proteins.
Furthermore, the EcoCyc Gene Ontology (GO) database
was taken as the benchmark functional classes of E. coli.
In total, we obtained three protein datasets: EcoCyc, Hu
et al., and Cong et al., and we found the relationships
among them by Venn diagrams (shown in Fig. 5).

Prediction of protein modules
In the past decade, many clustering algorithms for com-
plex networks have been developed, most of which are
based on node clustering. However, only a few methods
can be used in complex biological networks. In this
paper, an algorithm based on link clustering: Edge Label
Propagation Algorithm (ELPA) [21], was utilized to
identify the protein modules of E. coli in the above two
PPI networks. The original paper [21] have shown that
the performance of ELPA outperforms other link clus-
tering algorithms [30, 31]. In contrast to node clustering,
link clustering has the natural advantages of being com-
patible with the node attributes and link attributes of
complex networks and can reflect the network topology
structure better. Then, the protein modules detected by
ELPA were matched with the “gold standard” protein
complexes and functional annotations of EcoCyc and
predicted the meaningful protein complex modules and
protein functional modules.

Evaluation methods
Two criteria were employed to evaluate the performance
of ELPA. One was matching the identified protein mod-
ules with known protein complex of EcoCyc benchmark
dataset. The other was the functional enrichment of the
identified protein modules.
To determine the matching efficiency of a predicted

complex p and corresponding real complex b in the
benchmark complex set, the Matching Score (MSpb) be-
tween them was calculated as [32]:
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MSpb ¼
n2pb

np � nb ð1Þ

Where npb is the number of proteins shared by the
predicted complex p and the real complex b, np is the
number of proteins in complex p, and nb is the number
of proteins in complex b. A predicted complex and a
real complex were considered to be a match if their
matching score was no less than a specific threshold
(typical threshold is 0.2 [24, 26]).
To evaluate the predicted protein complexes, we

checked how well the predicted complexes matched the
actual complexes. Three types of popular evaluation cri-
teria: Precision, Recall and F-measure [28], were used to
quantify the quality of the predicted protein complexes.
Let P and B denote the set of predicted and actual com-
plexes, respectively. Let NP denote the number of pro-
tein complexes, and let NB denote the number of actual
complexes in the benchmark dataset. Let NPC denote the
number of predicted complexes that matched at least
one real complex, and let NBC be the number of actual
complexes that matched at least one predicted complex.
Precision and Recall were then defined as follows:

Precision ¼ NPC

NP
ð2Þ

Recall ¼ NBC

NB
ð3Þ

F ¼ 2� Precision� Recall
Precisionþ Recallð Þ ð4Þ

The arithmetic mean of matching score (AMS) was an-
other metric to evaluate the predicted protein
complexes.
To evaluate the functional enrichment of a predicted

protein module, the matching score between a predicted
protein module and a given GO term was used to esti-
mate whether the proteins in the predicted module were
enriched for the GO term. Then, Precision and AMS
were used to evaluate predicted functional modules.
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