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Abstract

Background: Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial
mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial
outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn5-
lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective
modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains
were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant
pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that
are resistant to in vitro MtDef4 treatments.

Results: Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa. A defensin
from Medicago truncatula, MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of
LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer
membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula, MtDef5,
failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy.
The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of
ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments.

Conclusions: MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide
resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the
MtDef4 antibacterial mode of action may also involve inhibition of translation.
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Background
Plants produce a suite of antimicrobial peptides (AMPs)
to defend against the extensive array of potential patho-
gens encountered in their environment. Plant AMPs are
classified based on their structure and presence of disul-
fide bonds [1]. With an abundance of representatives from
diverse plant species, plant defensins are among the most

widespread and best characterized plant AMPs [2]. Plant
defensins are cationic, cysteine-rich antimicrobial peptides
that usually contain four disulfide bonds. They have a con-
served three-dimensional structure, a cysteine-stabilized
aß (CSaß) motif, with a concentration of positively
charged amino acid residues on the ß2- ß3 loop, which is
classified as the γ-core motif (GXCX3-9C). The γ-core
motif alone has been shown to impart antimicrobial activ-
ity and mimic the activity of the corresponding full-length
defensin [3]. Plant defensins are promiscuous peptides,
which means that a single peptide can have multiple dis-
tinct functions [4]. Along with having antimicrobial activ-
ity, plant defensins control plant development, contribute
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to zinc tolerance, and act as inhibitors of digestive en-
zymes [5]. In crop plants, the transgenic expression of
plant defensins has been used to engineer fungal and
oomycete disease resistant plants. When MsDef1, a defen-
sin from alfalfa (Medicago sativa), was expressed in po-
tato, field-grown potatoes displayed resistance to
Verticillium dahliae [6]. NaD1, a defensin from sweet to-
bacco (Nicotiana alata), provided transgenic cotton with
resistance to Fusarium oxysporum f. sp. vasinfectum and
V. dahliae throughout 3 years of field trials [7].
Though considered to be primarily antifungal, plant

defensins have been shown to demonstrate antibacterial
activity against both plant and vertebrate bacterial path-
ogens [8]. Spinach defensin (So-D2) is the most fre-
quently cited plant defensin with antibacterial activity,
and transgenic sweet orange and grapefruit trees ex-
pressing So-D2 exhibited increased resistance to the bac-
terial diseases, citrus greening and citrus canker, caused
by Candidatus Liberibacter spp. and Xanthomonas axo-
nopodis pv. citri, respectively [9]. Plant defensins also
display in vitro antibacterial activity against human path-
ogens. For instance, J1–1, a defensin from bell pepper
(Capsicum annum) has a minimum inhibitory concen-
tration (MIC) value of 250 μg/mL against Pseudomonas
aeruginosa [10]. Also, PaDef, a defensin from avocado
(Persea americana var. drymifolia), displays antibacterial
activity against Staphylococcus aureus [11]. Therefore,
plant defensins not only appear to be a resource for im-
proving plant immunity to bacterial diseases but also for
combatting human and animal bacterial pathogens.
A major obstacle blocking the widespread usage of

plant defensins as antibacterial compounds is that their
antibacterial mode of action (MOA) is poorly character-
ized [8] although their MOA against fungal pathogens is
well-described [12–14]. Recently, the antibacterial activ-
ity of a defensin from Medicago truncatula, MtDef5, was
characterized [15]. MtDef5 is a bi-domain defensin with
two defensin domains (MtDef5A and MtDef5B) con-
nected by a 7-amino acid linker peptide. The cationic
amino acid residues found in both γ-core motifs of
MtDef5 were mutated and discovered to be essential for
antibacterial activity, which were the same residues pre-
viously found to be essential for antifungal activity [16].
Additionally, MtDef5 was shown to permeabilize the
plasma membrane of Xanthomonas campestris pv. cam-
pestris, a gram-negative bacterial plant pathogen, but not
the gram-positive plant pathogen Clavibacter michiga-
nensis subsp. nebraskensis [15]. The MtDef5 peptide
binds to DNA indicating that it may kill bacterial cells
by inhibiting DNA synthesis or transcription.
The MOA of human and invertebrate defensins against

bacterial pathogens is well characterized [17, 18]. Verte-
brate defensins interact with the negatively charged lipo-
polysaccharide (LPS) in the bacterial outer membrane,

which leads to swift permeabilization through pore forma-
tion [19]. For instance, HNP-1, the most investigated human
α-defensin, has an antibacterial MOA typical of many
AMPs. HNP-1 dimerization occurs, and through electro-
static interactions of dimers with the bacterial membrane, β-
sheet dimers cross the membrane forming a pore with
higher order oligomers of HNP-1 forming upon the dimers
when HNP-1 is in high concentration [20]. Human β-
defensin-3 (HBD3) has another well-studied antibacterial
MOA. HBD3 inhibits bacterial cell wall biosynthesis through
interactions with lipid II components, which enables HBD3
to have broad-spectrum antibacterial activity against both
gram-positive and gram-negative bacterial species [21].
In response to the electrostatic interactions between cat-

ionic AMPs and negatively charged bacterial membranes,
gram-positive and gram-negative bacteria have demon-
strated the ability to modify their membrane surfaces [22].
In P. aeruginosa and many other gram-negative bacteria,
the PhoPQ/PmrAB systems control various genes re-
quired for resistance to AMPs [23]. The pmr operon
(PA3552-PA3559) is controlled by both PhoPQ and
PmrAB and is required for the addition of aminoarabinose
to mask the phosphates of lipid A in P. aeruginosa [24].
Upstream of PmrAB, the spermidine synthesis genes
PA4773 (speD2) and PA4774 (speE2) in P. aeruginosa are
required for production of this polycation on the outer
surface of the bacterial membrane [25]. These surface
modifications protect bacteria from cationic AMPs
through masking of the negative surface charges, which
limits AMP binding to bacterial membranes [24, 25]. The
mini-Tn5-luxCDABE mutant library in P. aeruginosa has
been used extensively to identify antimicrobial peptide
MOAs and bacterial resistance mechanisms [26].
Pseudomonas syringae pv. syringae is a bacterial plant

pathogen that causes bacterial stem blight of alfalfa,
which is an economically important disease with wide-
spread distribution in the Western United States [27].
Currently, there are no effective means to control bac-
terial stem blight of alfalfa. P. syringae pv. syringae strain
ALF3, pathogenic on alfalfa and M. truncatula, has a
draft genome sequence [28] and was shown to be sensi-
tive to M. truncatula defensins, MtDef5 and MtDef4,
with IC50 values of 0.1 and 0.4 μM, respectively [3]. Add-
itionally, MtDef4 displays activity against Xanthomonas
alfalfae subsp. alfalfae and the gram-positive bacterium
Clavibacter insidiosus, while MtDef5 displays no activity
against these pathogens [3]. There is insufficient know-
ledge to explain this observed specificity of plant defen-
sin antibacterial activity.
In this study, we investigated plant defensin MOA

against plant and vertebrate bacterial pathogens belonging
to the genus Pseudomonas. Characterized P. aeruginosa
lux-reporter strains with mutations in genes involved with
cationic antimicrobial peptide resistance mechanisms

Sathoff et al. BMC Microbiology          (2020) 20:173 Page 2 of 11



were screened for sensitivity to γ-core motif plant defensin
peptides. Transposon insertion libraries of P. syringae pv.
syringae were generated and screened for plant defensin
resistance. Generating tools to explore plant defensin
MOA against bacterial plant pathogens is necessary for
evaluating the risk of bacterial evolution towards defensin
resistance and for the development of plant defensins into
a spray-on peptide-based biological pesticide or transgenic
expression of defensins for plant protection. Furthermore,
knowing the antibacterial MOA of plant defensins will en-
hance their usage as antibacterial compounds and allow
for prediction of antibacterial activity without extensive
in vitro testing.

Results
Plant defensin derived inhibition of Pseudomonas
aeruginosa growth
The antibacterial activity of γ-core motif peptides from
MtDef4, MtDef5A, and So-D2 (Table 1) were evaluated
against wild-type and antimicrobial peptide sensitive mu-
tants of P. aeruginosa (Table 2). The P. aeruginosa lux-re-
porter strains had inactivated LPS modification genes,
either an interrupted outer membrane surface spermidine
synthesis gene (PA4774) or an interrupted lipid A aminoara-
binose modification gene (PA3553). These mutants are
incapable of producing outer membrane surface modifica-
tions used for protection against cationic antimicrobial pep-
tide treatments [26, 30, 31]. Using a spread-plate assay, the
y-core motif peptides exhibited antibacterial activity at mi-
cromolar concentrations. Against P. aeruginosa PAO1, the
y-core peptides inhibited bacterial growth with MtDef4 dis-
playing the greatest activity corresponding to an IC50 value
of 4.2 μM (Table 3). The lux-reporter P. aeruginosa strains
had the expected increase in sensitivity towards both
MtDef4 and So-D2 peptides compared to the wild type
strain (Table 3). Overall, MtDef5 displayed the least antibac-
terial activity of the evaluated y-core motif defensin peptides
with the highest recorded IC50 value of 14.6 μM against
PA4774::lux. In contrast, MtDef4 was the most potent
against PA4774::lux with an IC50 value of 1.7 μM.

Antimicrobial peptide resistance operons are induced by
the MtDef4 γ-core motif peptide
Transcriptional lux reporters of the P. aeruginosa pmr
operon (PA3552-PA3559) and spermidine synthesis
genes speD2E2 (PA4773-PA4774) have been previously

shown to be induced by a Mg2+ limiting environment,
acidic pH, the presence of extracellular DNA, or the
presence of antimicrobial peptides at a sublethal concen-
tration [23, 30, 31]. We used these lux reporters under
non-inducing conditions (diluted LB) to determine if ex-
posure of these reporters to sub-MIC concentrations of
plant defensins causes induced expression. The lux-re-
porter strains of P. aeruginosa were grown overnight in
diluted LB broth, treated with plant defensin γ-core
motif peptides, and monitored for bioluminescence in a
microplate reader, where bioluminescence would indi-
cate the induction of the inactivated bacterial membrane
modification genes. Therefore, if the γ-core peptides
cause bacterial membrane stress, the lux-reporter will be
induced and bioluminescence will be recorded. In re-
sponse to MtDef4 treatment at sublethal concentrations,
lux expression was greatly induced in a concentration
dependent manner in PA4774::lux compared to PA3553::
lux (Fig. 1). For PA4774::lux, the level of induction from a
treatment of 30 μg/mL of MtDef4 was greater than the in-
duction caused by the antibiotic positive control, poly-
myxin B (0.5 μg/mL). Additionally, PA3553::lux
expression was induced by MtDef4 at levels near those
achieved by polymyxin B. MtDef5 and So-D2 failed to in-
duce lux expression at levels near or greater than the anti-
biotic control in all mutant strains evaluated (Fig. 2).
However, during the first 3 h after defensin treatment, the
level of induced lux expression caused by all plant defen-
sin treatments was greater than the antibiotic control,
which indicates different kinetics and possibly MOAs be-
tween plant defensins and polymyxin B (Figs. 1 and 2).

LIVE/DEAD BacLight staining of defensin treated
Pseudomonas aeruginosa
The LIVE/DEAD BacLight kit consists of two fluores-
cent nucleic acid stains: green-fluorescent SYTO 9 stain
and red-fluorescent propidium iodine stain. SYTO 9 la-
bels bacterial cells with both intact and damaged mem-
branes, but propidium iodine can only penetrate and
label bacteria with damaged membranes. Therefore, bac-
teria with intact membranes will fluoresce green, while
bacteria with damaged membranes will fluoresce red
[32]. Both PA4774::lux and PA3553::lux were treated
with either the MtDef4 or MtDef5 γ-core motif peptide
and were stained with the BacLight kit. MtDef4 ap-
peared to damage the bacterial membranes of both
strains, especially PA4774::lux (Table 4, Fig. S1). MtDef5
seemed to cause limited bacterial outer membrane dam-
age compared to MtDef4 (Table 4, Fig. S2).

Pseudomonas syringae pv. syringae transposon
mutagenesis
The prior application of the mini-Tn5-luxCDABE mutant
library in P. aeruginosa lead us to develop transposon-

Table 1 Amino acid sequences of γ-core motif (bold) and C-
terminal region (italics) of plant defensins tested in vitro

Plant Species Defensin Amino Acid Sequence

Medicago truncatula MtDef4 GRCRGFRRRCFCTTHC

M. truncatula MtDef5A GACHRQGFGFACFCYKKC

Spinacia oleracea So-D2 GDCKGIRRRCMCSKPL
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insertion mutant screen of a bacterial plant pathogen, P.
syringae pv. syringae strain ALF3. The γ-core motif pep-
tide of MtDef4 was previously shown to have an IC50

value of 3.4 μM against P. syringae pv. syringae [3], so the
transposon-insertion mutants were screened for resistance
at 40 μM MtDef4 (10 x IC50). Out of thousands of plated
colonies, three slow-growing, MtDef4 resistant P. syringae
pv. syringae mutants were recovered following two repeti-
tions of the γ-core defensin peptide treatment. Genomic
DNA was extracted, digested with EcoRI, and self-ligated
with T4 DNA ligase to generate plasmids that were trans-
formed into E. coli. Plasmid DNA surrounding the trans-
poson insertion sites was sequenced for two mutants.
Although sequencing was attempted from several clones
of the third mutant, no sequence was obtained suggesting
that the mutation was not due to a transposon insertion.
The resulting sequence data from the two MtDef4 insensi-
tive mutants (ALF3::Tn5–1 and ALF3::Tn5–2) were char-
acterized using BLAST analyses. The transposon insertion
sites for both ALF3::Tn5–1 and ALF3::Tn5–2 were found
to be located on scaffold 32544_1.1 of the ALF3 genome
assembly and are 3824 base pairs apart. The mutated gene
(RS24240) in ALF3::Tn5–1 is annotated as a 16S riboso-
mal RNA gene, and the mutated gene (RS24220) in ALF3::
Tn5–2 is annotated as a 23S ribosomal RNA gene
(Table 5).

Discussion
Plant defensins are able to kill a broad spectrum of
gram-positive and gram-negative bacteria, and therefore,

they are valuable candidates for generating a new class
of antibiotics to treat multidrug-resistant bacteria. Full-
length defensin peptides have IC50 values approximately
ten-fold lower than those from the corresponding γ-core
motif peptides [3], which indicates that full-length defen-
sins may have a more nuanced MOA where another un-
discovered motif may be acting in synergy with the γ-
core. A major drawback of peptide-based antibiotics is
that they are much more expensive to produce than
conventional antibiotics, so to reduce cost, the size of
the peptide should be minimized [33]. Truncated plant
defensins (γ-core motif peptides) were assessed to evalu-
ate a more realistic peptide-based antibacterial treat-
ment. The plant defensin γ-core motif peptides
demonstrated potent activity against P. aeruginosa
(Table 3).
Gram-negative bacteria contain an outer membrane

composed of LPS in the outer leaflet. Divalent inorganic
cations (Mg2+ and Ca2+) stabilize the outer leaflet by bind-
ing neighboring LPS molecules, and the displacement of
these cations by antimicrobial peptides results in mem-
brane destabilization and bacterial cell death [34]. Polyca-
tion spermidine production and aminoarabinose-
modification of lipid A contribute to reduce outer mem-
brane permeability and therefore, the entrance of cationic
AMPs [25, 35]. Random mini-Tn5 transposon mutagen-
esis has been performed on P. aeruginosa PAO1, and the
sites flanking the insertion have been sequenced and
mapped, which has allowed for the characterization of
outer membrane modification mutants [26]. These P. aer-
uginosa membrane modification mutants have increased
sensitivity to MtDef4 and So-D2 y-core motif peptides
with IC50 values reduced by 2–4 fold compared to PAO1
(Table 3). This suggests that these plant defensins may
have a MOA that involves pore creation in which the dis-
placement of divalent metal cations causes destabilization
of the LPS and disruption of membrane integrity. When
evaluated against the MtDef5A y-core motif peptide,
PA3553::lux shows a limited increase in susceptibility and
PA4774::lux has a modest increased resistance. This lack
of greatly enhanced susceptibility implies that MtDef5

Table 2 Bacterial strains used in this study

Strain or
Mutant

Description Reference

PAO1 Wild-type Pseudomonas aeruginosa [29]

PA3553::lux Transposon mutants and transcriptional fusion, homolog to pmr gene (pmrF) responsible for the addition of
aminoarabinose to lipid A

[26]

PA4774::lux Transposon mutant and transcriptional fusion, homolog to speE gene responsible for spermidine synthesis [26]

ALF3 Wild-type Pseudomonas syringae pv. syringae [28]

ALF3::Tn5–1 ALF3 with random transposon insertion conferring MtDef4 insensitivity, Mu_4–1 This
paper

ALF3::Tn5–2 ALF3 with random transposon insertion conferring MtDef4 insensitivity, Mu_5–1 This
paper

Table 3 Activity of the γ-core motif defensin peptides against
Pseudomonas aeruginosa strainsa

Pseudomonas aeruginosa strains MtDef4
core

MtDef5A
core

So-D2
core

PAO1 4.2 ± 0.4 11.8 ± 1.4 11.6 ± 0.6

PA3553:lux 2.7 ± 0.3 8.5 ± 0.8 3.0 ± 0.3

PA4774:lux 1.7 ± 0.2 14.6 ± 1.0 5.2 ± 0.5
aThe mean IC50 (μM) values are reported ± SE of three independent
experiments (n = 3)
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does not directly act on the bacterial outer membrane and
may have an intracellular target considering that MtDef5
does not induce gene expression of the reporters. Accord-
ingly, the fluorescent microscopy images revealed that
MtDef5 caused limited outer membrane damage (Fig. S2).
MtDef5 was previously shown to be internalized in X.
campestris pv. campestris [15]. Also, MtDef5 demonstrates
no activity towards gram-positive pathogens, C. insidiosus
and C. nebraskensis, while MtDef4 had high antibacterial
activity against C. insidiosus [3, 15]. This could be due to
the inability of MtDef5 to enter the bacterial cell through
the thick outer layer of peptidoglycan present in the cell
wall of gram-positive cells and interact with its

intracellular target. These results suggest differing MOAs
between MtDef5 and the other plant defensins evaluated.
The P. aeruginosa mini-Tn5-luxCDABE mutants con-

tain a promoterless luciferase gene cassette, which serves
as a sensitive, real-time reporter of gene expression for
the inactivated gene [26]. Highly induced expression of
the lux gene following plant defensin treatments at sub-
lethal concentrations signals that the defensin peptide
acts on the bacterial membrane, similar to other known
antimicrobial peptides [23]. MtDef4 y-core motif peptide
treatments cause a strong concentration-dependent in-
duction of lux in the P. aeruginosa mutant, PA4774::lux
(Fig. 1). PA4774::lux also displayed the greatest level of

Fig. 1 MtDef4 γ-core motif peptide induces PA4774 and early PA3553 gene expression. Effects of MtDef4 γ-core peptide at sub-minimal inhibitory
concentrations of 0, 5, 15, or 30 μg/mL or polymyxin B at 0.5 μg/mL on the expression of the PA4774::lux (a) and PA3553::lux (b) transcriptional
fusion in planktonic cultures in LB broth. Gene expression was normalized for growth and counts per second (CPS)/OD600 values for the average
of the triplicates are presented. Each growth experiment was performed three times and representative curves are shown. The standard errors
were within 10% of the mean
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bacterial outer membrane damage following MtDef4
treatment (Table 4, Fig. S1). The PA4774::lux mutant is
deficient in production of outer membrane spermidine,
a polyamine, which serves as a substitute for inorganic
cations that bind to and stabilize LPS in the outer mem-
brane [36]. Antimicrobial peptides compete with cations
for binding to LPS, but spermidine protects the outer
membrane by ensuring that the negative surface charges
are masked [25]. High concentrations of exogenous
spermidine (20 mM) have been demonstrated to increase
the resistance of P. aeruginosa to cationic peptides [37].
Therefore, bacteria with high production levels of
spermidine or other polyamines may be more resistant
to plant defensin treatments.

Fig. 2 So-D2 and MtDef5 γ-core motif peptides fail to induce PA4774 gene expression. Effects of So-D2 γ-core peptide (a) and MtDef5 γ-core
peptide (b) at sub-minimal inhibitory concentrations of 0, 5, 15, or 30 μg/mL or polymyxin B at 0.5 μg/mL on the expression of the PA4774::lux
transcriptional fusion in planktonic cultures in LB broth. Gene expression was normalized for growth and counts per second (CPS)/OD600 values
for the average of the triplicates are presented. Each growth experiment was performed three times and representative curves are shown. The
standard errors were within 10% of the mean

Table 4 Membrane permeating activity of the γ-core motif
defensin peptides against Pseudomonas aeruginosa strainsa

Treatment PA3553:lux PA4774:lux

% Liveb % Deadc % Live % Dead

MtDef4 core 71.6 ± 5.4 28.4 ± 2.5 49.4 ± 3.8 50.8 ± 1.3

MtDef5A core 99.0 ± 0.8 0.9 ± 0.3 95.4 ± 1.7 4.6 ± 2.1
aThe mean percentage of colonies are reported ± SE of three independent
experiments (n = 3)
bLive cells have intact cell membranes and were stained fluorescent green
cDead cells are permeable to propidium iodine and were stained fluorescent
red, which indicates membrane disruption
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The emergence of multidrug-resistant (MDR) gram-
negative bacterial isolates has led to the renewed usage
of both polymyxin B and colistin (polymyxin E) as thera-
peutic agents [38]. Polymyxins have a polycationic ring
that binds to the LPS on the outer bacterial membrane
and competitively displaces Ca2+ and Mg2+ leading to
membrane destabilization and increased permeability
[39]. With the increased prevalence of polymyxin treat-
ments, polymyxin-resistant P. aeruginosa isolates have
been reported worldwide [40, 41]. Throughout our
study, a polymyxin B treatment was used as positive
control against P. aeruginosa. In all lux-reporter assays,
the plant defensin treatments displayed rapid levels of
lux induction, and lux-expression was induced faster
with plant defensin treatments compared to polymyxin
B treatments (Fig. 1). These different induction dynam-
ics in the lux-reporter assays suggest that plant defensins
and polymyxin B have different MOAs on the outer
membrane. Therapeutic compounds with novel MOAs
are needed to treat MDR bacterial isolates, and plant
defensins may be an untapped reservoir.
The transposon insertion mutants of P. syringae pv.

syringae, ALF3::Tn5–1 and ALF3::Tn5–2, had increased
resistance to MtDef4 γ-core motif peptide treatments,
which may be due to amino acid synthesis mutations or
changes in ribosome structure (Table 5). The ribosome
is a common target for antibacterial compounds because
the alteration of bacterial ribosomes causes disruption of
translation [42]. For example, aminoglycoside antibiotics
target 16S rRNA in the small ribosomal subunit and
tylosin targets 23S rRNA in the large ribosomal subunit
[43, 44]. Target site mutations are a frequently utilized
bacterial resistance mechanism. To gain resistance to sev-
eral antibiotics, Mycobacterium tuberculosis acquired mu-
tations in multiple regions of the rrs gene, which encodes
16S rRNA [45]. But, the multiplicity of rRNA genes in
most bacterial species slows the development of this type
of resistance [46]. Also, the antifungal MOAs of MtDef4
against Fusarium graminearum and Neurospora crassa re-
quires y-core motif mediated entry into fungal cells, which
implies that MtDef4 has an intracellular target [47].
Our results suggest that the antibacterial MOA of the

MtDef4 y-core motif peptide may involve ribosomal tar-
geting, and the transposon insertions in P. syringae pv.
syringae rRNA encoding genes could be target site mu-
tations leading to increased MtDef4 resistance. Further-
more, spermidine interacts closely with RNA because in

E. coli cells spermidine exists predominantly as a
polyamine-RNA complex [48]. Polyamines play crucial
roles as modulators of RNA structure and can induce
changes in RNA structure in context-dependent manner
[49]. Polyamine binding to 23S rRNA on the central
loop region of domain V, a site where several antibiotics
are known to bind, caused structural alterations, which
is suggested to restrict spiramycin binding to the ribo-
some [50]. In addition to having decreased outer mem-
brane spermidine content, PA4774::lux may also have a
reduction of intracellular spermidine. Both spermidine
and MtDef4 may normally interact with 23 and 16S
rRNA, but in PA4774::lux, this intracellular spermidine-
based protection does not occur, which leads to in-
creased susceptibility to MtDef4. The P. syringae pv. syr-
ingae transposon insertion mutants may also disrupt the
interaction between MtDef4 and rRNA, which would ex-
plain the observed resistance to MtDef4. Additionally,
the antibacterial MOA of MtDef4 against different
Pseudomonas species may not be conserved or multiple
MOAs could be utilized. The AMP melittin, the main
component of European honeybee (Apis mellifera)
venom, killed bacterial cells of the plant pathogen
Xanthomonas oryzae pv. oryzae using multiple MOAs
including membrane permeabilization, inhibition of pro-
tein synthesis, and DNA/RNA binding [51]. Also, the an-
tifungal MOA of MtDef4 is not conserved between
ascomycete fungi, N. crassa and F. graminearum [52].

Conclusions
In this report, we gain insights into the antibacterial
MOA of plant defensins against two pseudomonads, P.
aeruginosa and P. syringae pv. syringae. In P. aeruginosa,
we propose that MtDef4 and So-D2 interact with the
bacterial outer membrane and possibly create pores
leading to bacterial cell death. MtDef5 appears to have a
different antibacterial MOA where outer membrane
binding is not as vital and, therefore, may have an intra-
cellular target. This hypothesis is consistent with the re-
ported antibacterial MOA of MtDef5 against X.
campestris pv. campestris in which DNA binding by
MtDef5 likely interferes with DNA synthesis and tran-
scription [15]. Additionally, plant defensins seem to have
a different MOA than polymyxin B. The P. syringae pv.
syringae mutational analysis suggests that MtDef4 may
also target the ribosome and interfere with bacterial
translation. Resistance mechanisms that bacteria use to

Table 5 BLASTn results from the Pseudomonas Genome Database identifying the transposon insertion site in the Pseudomonas
syringae pv. syringae ALF3 Tn5 mutant strains

Pseudomonas syringae pv. syringae ALF3 mutant strain Transposon insertion site Interrupted Gene

ALF3::Tn5–1 1346 in scaffold 32544_1.1 16S ribosomal RNA gene (RS24240)

ALF3::Tn5–2 5170 in scaffold 32544_1.1 23S ribosomal RNA gene (RS24220)
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combat MtDef4 and other plant defensins may include
increased cell membrane thickness through outer mem-
brane spermidine synthesis or target site mutations.
Plant defensin γ-core motif peptides can be utilized for
the development of treatments against both plant and
human bacterial pathogens and for furthering knowledge
of mechanisms of antimicrobial resistance.

Methods
Bacterial strains and growth media
All bacterial strains utilized in this study are listed in
Table 2. Pseudomonas aeruginosa strains were obtained
from Dr. Lewenza at the University of Calgary. The P.
aeruginosa lux-reporter strains have inactivated lipopoly-
saccharide (LPS) modification genes, which are bacterial
genes involved in the resistance to cationic antimicrobial
peptides. PA4774::lux has an interrupted outer mem-
brane surface spermidine synthesis gene. PA3553::lux
has an interrupted lipid A modification gene, which is
responsible for the addition of aminoarabinose to lipid
A. When the lux-reporter bacteria produce biolumines-
cence, they act as a real-time reporter for the induction
of the inactivated gene [26]. PAO1 was used as the wild
type strain of P. aeruginosa. The P. aeruginosa strains
were cultured on Luria-Bertani (LB) agar (Difco, Sparks,
MD) at 37 °C. From a glycerol stock, the sequenced bac-
terial strain, Pseudomonas syringae pv. syringae ALF3,
originally isolated from an infected alfalfa plant near
Cheyenne, WY, was cultured on nutrient broth yeast ex-
tract (NBY) agar at 30 °C [28]. ALF3 was used as the
wild type strain of P. syringae pv. syringae.

Plant defensin peptide synthesis
The γ-core motif peptides derived from plant defensins,
MtDef4, MtDef5A, and So-D2 [16, 53, 54] (Table 1)
were chemically synthesized and purified by HPLC (Life-
Tein, Somerset, NJ). Lyophilized defensin peptides were
rehydrated in sterile water prior to each assay.

Determination of plant defensin antibacterial activity
against Pseudomonas aeruginosa
To quantify defensin antibacterial activity, a spread-plate
assay was used as previously described [3]. This assay
was repeated three times for each strain of P. aeruginosa.
Lawns of P. aeruginosa were grown on acidic LB (pH ad-
justed to 5.5 with HCl) plates for 15 h at 37 °C, condi-
tions which induce antimicrobial peptide resistance
mechanisms [31]. The plates were flooded with sterile
water to harvest the bacteria. Cultures were diluted with
sterile water to an OD600 of 0.1. In microcentrifuge
tubes, 200 μL of bacteria were incubated at 37 °C with
shaking for 3 h with various concentrations of a γ-core
motif defensin peptide (0, 2.5, 5, 10, 20, or 30 μg/mL).
After the defensin peptide treatment, 10-fold serial

dilutions were made, and 100 μL were plated in triplicate
onto LB plates. Colony forming units (CFUs) were
counted for P. aeruginosa after incubation for 24 h at
37 °C. Regression of the average CFUs across experimen-
tal replications versus the defensin peptide concentration
was used to create a dose response curve using Micro-
soft Excel 2016. From these dose response curves, the
IC50 value, the amount of γ-core motif defensin peptide
needed to inhibit the growth of bacterial strains by 50%,
was calculated. The IC50 values are presented as mean ±
standard error from the three repeated experiments.

Lux-reporter gene expression assay
Lux-reporter gene expression assays, adapted from Mul-
cahy et al. (2008), were performed in a high-throughput
manner using 96-well microplates. P. aeruginosa cultures
were grown overnight in acidic LB broth adjusted to a
pH of 5.5. Overnight cultures were diluted by 1000 into
LB broth, and 150 μL of diluted culture medium with γ-
core motif defensin peptide added at a sublethal concen-
tration (0, 5, 15, or 30 μg/mL) was added to flat clear
bottom 96-well microplates (Corning, Corning, NY) and
overlaid with 50 μL of mineral oil to prevent evapor-
ation. As a positive control, the antibiotic, polymyxin B,
which is known to cause high gene induction of the lux-
reporter strains, was added at a sublethal concentration
of 0.5 μg/mL. Samples were assayed in triplicate. Micro-
plate cultures were incubated at 37 °C for 18 h in a Syn-
ergy H1 microplate reader (BioTek, Winooski, VT) with
optical density (600 nm) and luminescence (counts per
second [CPS]) readings taken every 20 min throughout
the incubation period. Gene expression values were nor-
malized to growth (CPS/OD600).

Assessment of bacterial membrane permeability through
fluorescent microscopy
The PA4774::lux and PA3553::lux strains of P. aerugi-
nosa were grown overnight in acidic LB broth adjusted
to a pH of 5.5. Overnight cultures were diluted by 1000
in sterile water. In microcentrifuge tubes, 150 μL of the
diluted bacterial suspension was treated with 30 μg/mL
of either the MtDef4 or MtDef5 γ-core peptide and in-
cubated at 37 °C for 3 h with shaking. Defensin treated
bacteria were stained using a LIVE/DEAD BacLight Bac-
terial Viability Kit (Thermo Fisher) following the manu-
facturer’s instructions. On a slide with one droplet of
BacLight mounting oil, 5 μL of the stained bacterial sus-
pension was observed using fluorescent microscopy.

Pseudomonas syringae pv. syringae transposon
mutagenesis
An EZ-Tn5 < R6Kγori/KAN-2 > Tnp Transposome Kit
(Lucigen, Middleton, WI) was used to generate mutants
of Pseudomonas syringae pv. syringae strain ALF3
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through random transposon insertions. The transpo-
some was transformed into the ALF3 strain using the P.
syringae pv. syringae electroporation protocol previously
described by Scholz-Schroeder [55]. The transformed
bacteria were plated onto NBY agar plates with 50mg/L
kanamycin and incubated at 25 °C for 48 h. Colonies
were pooled by flooding the plates with sterile water.
Bacterial cultures were diluted with sterile water to an
OD600 of 0.1. In microcentrifuge tubes, the MtDef4 γ-
core motif peptide at 80 μg/mL, approximately 10 times
the IC50 concentration, was added to 200 μL of the
transformed bacteria, and the cultures were incubated at
25 °C with shaking for 3 h. After the defensin treatment,
10-fold serial dilutions were made and 100 μL were
plated in triplicate onto NBY plus kanamycin plates.
Plates were grown at 25 °C overnight. Single colonies
were selected, restreaked on NBY plus kanamycin plates,
grown overnight at 25 °C, and the defensin treatment was
repeated. From the recovered P. syringae pv. syringae mu-
tants resistant to the MtDef4 γ-core motif peptide, genomic
DNA was extracted and digested with EcoRI (NEB, Ipswich,
MA). The DNA was self-ligated using T4 DNA ligase
(NEB). Electrocompetent TransforMax EC100D pir-116 E.
coli (Lucigen) were electroporated with 2 μL of the ligation
mix. The transformed E. coli were plated on LB agar plus
50mg/L kanamycin and grown overnight at 37 °C. Plasmid
DNA was extracted using a QIAprep Spin Miniprep Kit
(Qiagen, Valencia, CA). The plasmid DNA was Sanger se-
quenced on both sides of the transposon insertion at the
University of Minnesota Genomics Center using the sup-
plied primers from the Tnp Transposome kit, KAN-2 FP-1
(5′-ACCTACAACAAAGCTCTCATCAACC − 3′) and
R6KAN-2 RP-1 (5′- CTACCCTGTGGAACACCTACAT
CT-3′). The resulting DNA sequences near the transposon
insertion were validated using Sequencer (Gene Codes Cor-
poration, Ann Arbor, MI). Nucleotide BLAST searches
using the Pseudomonas Genome Database [56] were per-
formed on the DNA sequences near the transposon inser-
tion site to identify the locations in the ALF3 genome of
the insertions and the corresponding interrupted genes
with annotations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12866-020-01852-1.

Additional file 1: Figure S1. MtDef4 γ-core motif peptide causes mem-
brane permeabilization in both the PA4774::lux (a) and PA3553::lux (b)
strains of Pseudomonas aeruginosa. Observed fluorescence using optical
filters set for SYTO 9 green-fluorescent staining (left), propidium iodine
red-fluorescent staining (center), and the merged images (right). Green
fluorescence reveals bacterial cells with intact membranes while red fluor-
escence reveals bacterial cells with damaged membranes. Scale bar is
5 μm.

Additional file 2: Figure S2. MtDef5 γ-core motif peptide causes lim-
ited membrane permeabilization in both the PA4774::lux (a) and

PA3553::lux (b) strains of Pseudomonas aeruginosa. Observed fluorescence
using optical filters set for SYTO 9 green-fluorescent staining (left), propi-
dium iodine red-fluorescent staining (center), and the merged images
(right). Green fluorescence reveals bacterial cells with intact membranes
while red fluorescence reveals bacterial cells with damaged membranes.
Scale bar is 5 μm.
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