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Abstract

Background: The mammalian intestinal tract harbors diverse and dynamic microbial communities that play pivotal
roles in host health, metabolism, immunity, and development. Average daily gain (ADG) is an important growth
trait in meat rabbit industry. The effects of gut microbiota on ADG in meat rabbits are still unknown.

Results: In this study, we investigated the dynamic distribution of gut microbiota in commercial Ira rabbits from weaning
to finishing and uncover the relationship between the microbiota and average daily gain (ADG) via 16S rRNA gene
sequencing. The results indicated that the richness and diversity of gut microbiota significantly increased with age. Gut
microbial structure was less variable among finishing rabbits than among weaning rabbits. The relative abundances of the
dominant phyla Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria, and the 15 predominant genera significantly
varied with age. Metagenomic prediction analysis showed that both KOs and KEGG pathways related to the metabolism of
monosaccharides and vitamins were enriched in the weaning rabbits, while those related to the metabolism of amino acids
and polysaccharides were more abundant in the finishing rabbits. We identified 34 OTUs, 125 KOs, and 25 KEGG pathways
that were significantly associated with ADG. OTUs annotation suggested that butyrate producing bacteria belong to the
family Ruminococcaceae and Bacteroidales_S24-7_group were positively associated with ADG. Conversely, Eubacterium_
coprostanoligenes_group, Christensenellaceae_R-7_group, and opportunistic pathogens were negatively associated with ADG.
Both KOs and KEGG pathways correlated with the metabolism of vitamins, basic amino acids, and short chain fatty acids
(SCFAs) showed positive correlations with ADG, while those correlated with aromatic amino acids metabolism and immune
response exhibited negative correlations with ADG. In addition, our results suggested that 10.42% of the variation in
weaning weight could be explained by the gut microbiome.

Conclusions: Our findings give a glimpse into the dynamic shifts in gut microbiota of meat rabbits and provide a
theoretical basis for gut microbiota modulation to improve ADG in the meat rabbit industry.
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Background
The mammalian intestinal tract harbors large and di-
verse microbial communities. Due to mutualistic

relationships, gut microbiota play crucial roles in host
health, metabolism, immunity, and development [1, 2].
Moreover, gut microbiota are dynamic and vary accord-
ing to many factors, including diet, age, host phylogeny,
and gut morphology [3].
Previous studies have demonstrated that genetics, nu-

trition, and diseases could affect the production
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performance of food producing animals [4, 5]. Recently,
the role of gut microbiota in production performances has
received more attention. For instance, Díaz-Sánchez et al.
suggested using gut microbiota as biomarkers for prediction
of production performance in the selective breeding process
of chicken [6]. Warne et al. indicated that manipulation of
gut microbiota during critical developmental windows could
affect production performance in animals [7]. Hence, it is
important to understand the dynamic distribution of gut
microbiota in food producing animals at different growth
stages and to recognize how microbial taxa and functions
affect production performance.
Average daily gain (ADG) is an important index of pro-

duction performance in commercial meat rabbit breeds as it
is related to economic benefits for the meat rabbit industry.
It has been reported that gut microbiota is intimately corre-
lated with ADG in meat producing animals. He et al. re-
vealed that the phylum Firmicutes showed a positive
association with the ADG of meat duck, while the phylum
Proteobacteria exhibited the inverse correlation [8]. Ma et al.
indicated that broiler chickens with higher ADG harbored
more abundant Christensenellaceae and Caulobacteraceae in
the gut [9]. Jiao et al. found that Desulfopila was positively
associated with ADG in beef cattle [10]. Ramayo-Caldas
et al. suggested that increasing the proportion of Prevotella
in the gut microbial community could improve porcine
ADG [11]. However, the relationship between gut microbiota
and ADG in meat rabbits remains unclear.
In this study, we investigated the dynamic distribution

of gut microbiota in commercial Ira rabbits from wean-
ing to finishing via high-throughput 16S rRNA gene se-
quencing. Additionally, we identified microbial taxa and
potential functional capacities associated with ADG. Our
results not only highlight the shifts and differences of
gut microbial communities in meat rabbits at different
growth stages, but also provide important information
for improving ADG by modulating gut microbiota.

Results
Sequencing data and microbial diversity analysis
The 16S rRNA gene sequencing process generated a
total of 30,080,332 paired-end reads in both weaning
and finishing samples. After sequences filtering steps
and chimera removal, a total of 29,742,985 high-quality
reads were obtained (15,380,901 clean reads of weaning
samples, 14,362,084 clean reads of finishing samples).
Based on 97% sequences identity, 1460 and 1586 OTUs
were obtained from samples at weaning and finishing,
respectively. A total of 2072 OTUs were identified from
all samples, with 974 of those defined as core OTUs due
to their existence in both weaning and finishing samples
(Additional file 1: Fig. S1a). Additionally, 486 OTUs
were uniquely identified in weaning samples and 612
unique OTUs were found in finishing samples.

The observed species, Shannon, and Good’s coverage
index of alpha diversity were used to analyze the richness
and diversity of the gut microbial community. As shown
in Fig. 1a, the observed species index of the finishing sam-
ples was significantly higher than weaning samples (FDR
adjusted p < 0.0001). Finishing samples also presented sig-
nificantly higher Shannon index values than weaning sam-
ples did (Fig. 1b, FDR adjusted p < 0.0001). In addition,
Good’s coverage index values were 0.999 and 0.998 for
weaning and finishing rabbits, respectively, all showing ex-
cellent coverage (Additional file 1: Fig. S1b).
PCoA was performed to uncover the changes in gut mi-

crobial community structures in weaning and finishing sam-
ples. Both the unweighted and weighted UniFrac distances
indicated that the samples were clustered by age (Fig. 1c,
Additional file 1: Fig. S1c). Besides, the unweighted and
weighted UniFrac distance metric comparison analysis fur-
ther revealed less variation in the gut microbiota among fin-
ishing samples than among weaning samples (Fig. 1d,
Additional file 1: Fig. S1d, FDR adjusted p < 0.0001).

Gut microbiota composition at different taxonomical
levels
Gut microbial community composition was analyzed at
the phylum and genus level. A total of 10 phyla were
shared by weaning and finishing samples, including Acti-
nobacteria, Bacteroidetes, Cyanobacteria, Euryarchaeota,
Firmicutes, Lentisphaerae, Proteobacteria, Saccharibac-
teria, Tenericutes, and Verrucomicrobia (Additional file 1:
Fig. S2a). In addition, Synergistetes and Planctomycetes
were uniquely found in weaning and finishing samples, re-
spectively. Firmicutes, Bacteroidetes, Verrucomicrobia,
Proteobacteria, Cyanobacteria, and Tenericutes were the
top six phyla in all samples and they comprised more than
99% of the total sequences (Fig. 2a). Among these, four
phyla showed significant differences in relative abun-
dances between weaning and finishing samples (Fig. 2a,
Additional file 2: Table S2). The relative abundance of Fir-
micutes significantly increased from weaning (55.38%) to
finishing (75.85%). Conversely, a significant decrease in
the relative abundance of Bacteroidetes was observed from
weaning (33.39%) to finishing (17.65%). Moreover, wean-
ing samples exhibited a significantly higher abundance of
Verrucomicrobia than finishing samples did (8.62% vs.
2.22%, respectively), while finishing samples exhibited a
significantly higher abundance of Cyanobacteria than
weaning samples did (1.41% vs. 0.82%, respectively).
At the genus level, a total of 87 genera were identified in

all samples, including 54 common genera, 24 genera
unique to weaning samples, and 9 genera specific to fin-
ishing samples (Additional file 1: Figure. S2b). The 18
most abundant genera found in both weaning and finish-
ing samples were Akkermansia, Alistipes, Bacteroides,
Blautia, Christensenellaceae_R-7_group, Lachnospiraceae_
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NK4A136_group, Lachnospiracea_NK4B4_group, Para-
bacteroides, Phascolarctobacterium, Ruminiclostridium_6,
Ruminiclostridium_9, Ruminococcaceae_NK4A214_group,
Ruminococcaceae_UCG-005, Ruminococcaceae _UCG-010,
Ruminococcaceae_UCG-014, Ruminococcaceae_V9D2013_
group, Ruminococcus_1, and Tyzzerella_3 (Fig. 2b).

Akkermansia belongs to the phylum Verrucomicrobia, Alis-
tipes, Bacteroides, and Parabacteroides are members of the
phylum Bacteroidetes, and the other 14 genera derive from
phylum Firmicutes. Among these genera, the relative abun-
dances of 15 were significantly changed from weaning
to finishing (Additional file 2: Table S2). Similar to

Fig. 1 Differences in diversities and structures of gut microbiota between weaning and finishing samples. a Observed species index (“W” and “F”
represents for weaning and finishing samples, respectively; ***** FDR adjusted p < 0.0001). b Shannon index. c Principal Coordinate Analysis
(PCoA) of gut microbial community structures based on Unweighted Unifrac distance. d Unweighted Unifrac distance metric
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the dynamic changes in the relative abundances of the
dominant phyla, we found that the relative abundances of
Akkermansia, Alistipes, Bacteroides, and Parabacteroides
significantly declined from weaning to finishing, while the
relative abundances of most genera (e.g., Ruminococcaceae_
UCG-010, Ruminococcaceae_NK4A214_group, Christense-
nellaceae_R-7_group, and Ruminococcaceae _V9D2013_
group) of the phylum Firmicutes significantly increased
from weaning to finishing.

Potential functional profile of gut microbial community
To investigate the changes in gut microbial functional
profiles of weaning and finishing samples, KOs and
KEGG pathways were predicted based on 16S rRNA
gene sequencing data using Tax4Fun. We identified
6367 common KOs in all samples, while 41 KOs were
specific to weaning samples and 137 KOs were unique
to finishing samples (Additional file 1: Fig. S3a). In total,
177 KEGG pathways were identified and shared by both

Fig. 2 The dynamic distributions of gut microbiota at different taxonomic levels. a At phylum level. b At genus level. The IDs on the X-axis with
the same number but different letters (“W” and “F”) in the two groups represent the same rabbit at weaning and finishing stage, respectively

Fig. 3 Potential functional capacities of gut microbiota showing different enrichment between weaning and finishing samples. a KEGG Orthologs
(KOs). b KEGG pathways
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weaning and finishing samples (Additional file 1: Fig.
S3b). To identify different enrichment of functional cap-
acities between weaning and finishing samples, we per-
formed a LEfSe analysis using the relative abundances of
common KOs and pathways. As shown in Fig. 3a (and
Additional file 2: Table S3), 88 KOs showed distinct rela-
tive abundances between weaning and finishing samples.
Thirty-eight KOs enriched in the weaning samples were
mostly related to membrane transporters (e.g., K16091,
K11934, K03444, K07221, K02014, and K05306), fruc-
tose and mannose metabolism (e.g., K05305, K00895,
and K01993) and vitamins metabolism (e.g., K09516,
K00699, and K00652). Meanwhile, 50 KOs showing
higher abundances in the finishing samples were mostly
correlated with the metabolism of amino acids (e.g.,
K00270, K00263, K00613, K10219, and K05714), lipids
(e.g., K06118, K05898, K15868, and K16051), polysac-
charides (e.g., K05351, K01452, and K01210), and energy
(e.g., K02288, K02290, and K02381). Additionally, we
identified 83 KEGG pathways differentially enriched in
weaning and finishing samples (Fig. 3b, Additional file 2:
Table S3). Similarly, KEGG pathways related to the me-
tabolism of glycan (e.g., glycosaminoglycan and other
glycan degradation), monosaccharides (e.g., fructose,
mannose, and galactose metabolism), vitamins (e.g.,
lipoic acid and biotin metaboilsm) were more abundant
in weaning samples, while KEGG pathways related to
the metabolism of amino acids (e.g., cysteine, methio-
nine, arginine and proline metabolism) and short-chain
fatty acids (SCFAs) (e.g., butanoate mand propanoate
metabolism) were enriched in finishing samples.

Microbial taxa and potential functional capacities
associated with ADG
To identify microbial taxa associated with ADG, we per-
formed the two-part model analysis using the ADG
phenotypic values adjusted for sex and cage effects, and
the relative abundances of OTUs in finishing samples. A
total of 34 OTUs were identified that exhibited signifi-
cant associations with ADG. Among these OTUs, 18
were positively associated with ADG and 16 had nega-
tive associations with ADG. We annotated these OTUs
to microbial taxa using the SILVA database (Fig. 4, Add-
itional file 2: Table S4), the phylogenetic relationships
and abundances of these OTUs were shown in Add-
itional file 1: Fig. S4 and Fig. S5.
Among the positive ADG-associated OTUs, five were

annotated to family level, including two OTUs to each
of Bacteroidales_S24-7_group and Ruminococcaceae, and
one OTU to Erysipelotrichaceae. At the genus level, four
OTUs were annotated to Ruminococcaceae_UCG-014,
two OTUs to Ruminococcaceae_UCG-010, and one
OTU to each of Ruminiclostridium_5, Erysipelatoclostri-
dium, Lactonifactor, Rikenella, Coprococcus_1, and

Lachnospiraceae_NK4A136_group. One OTU was anno-
tated to species Clostridium sp. ID11. Among the nega-
tive ADG-associated OTUs, three were annotated to
each of the families Clostridiales_ vadinBB60_group and
Lachnospiraceae. Four OTUs were annotated to the
genus Eubacterium_coprostanoligenes_group, two to the
genus Christensenellaceae_ R-7_group, and one to each
of the genera Ruminococcaceae_UCG-009, Ruminococca-
ceae_UCG-005, and Parasutterella. At the species level,
one OTU was annotated to Sphingomonas paucimobilis.
To identify potential functional capacities correlated with

ADG, Spearman correlation analysis was performed for the
relative abundances of KEGG items and ADG phenotypic
values. As shown in Fig. 5a (and Additional file 2: Table S5),
125 KOs were significantly correlated with ADG (FDR ad-
justed p < 0.05, |r| > 0.4). Sixty-nine of 125 KOs showed posi-
tive correlations with ADG. Most of these KOs were related
to the metabolism of vitamins (e.g., K00207, K02822,
K08682, K03475, K08351, K02169, K01598), basic amino
acids (e.g., K01663, K00933, K01476, K12251, K03897,
K01585, K01843, K04486), and SCFAs (e.g., K00175,
K00246, K00174, K00929, K00634, K08325, K00239). Mean-
while, the other 56 KOs that exhibited negative correlations
with ADG were mostly associated with lipid metabolism
(e.g., K01054, K00507, K01897, K06122, K07406, K00865,
K06118), aromatic and non-protein amino acids metabolism
(e.g., K00495, K01775, K04073, K02618, K01424, K05350,
K00588), and immune responses (e.g., K03671, K03462,
K04079). In addition, we identified 25 KEGG pathways
showed significant correlations with ADG at |r| > 0.4 and
FDR adjusted p < 0.05 (Fig. 5b, Additional file 2: Table S5).
Among these, pantothenate and CoA biosynthesis, biotin
metabolism, lysine degradation, arginine and proline metab-
olism, butanoate metabolism, propanoate metabolism, and
glycine, serine and threonine metabolism were positively cor-
related with ADG, while NOD-like receptor signaling path-
way, D-Alanine metabolism, antigen processing and
presentation, cyanoamino acid metabolism, PPAR signaling
pathway, phenylalanine metabolism, glycerolipid metabolism,
and D-Glutamine and D-glutamate metabolism were nega-
tively associated with ADG.

Phenotypic variation of ADG explained by gut
microbiome
To estimate what proportion of variation in ADG could
be explained by the microbiome, we performed 100
times cross-validation analyses at different p value
thresholds (ranging from 10− 4 to 0.1). As shown in Fig. 6,
we found that the OTUs identified at p = 1.0 × 10− 4

could explain 5.83% of the variations in ADG. At p = 0.1,
the gut microbiome explained 10.42% of the variations
in ADG, given that more OTUs were included in the
analysis as the threshold increased.
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Discussion
Recently, investigations into mammalian gut microbiota
have revealed its vital role in host metabolism, physi-
ology, and immunology. However, few reports have been
published on the dynamic distributions of gut micro-
biota at different growth stages of commercial meat rab-
bits. ADG is an important growth trait, which is
inevitably related to growth stage, but the relation be-
tween the gut microbiota and ADG in commercial meat
rabbits is still elusive. In the present study, we analyzed
the gut microbial diversities and abundances of Ira rab-
bits at weaning and finishing age. The potential func-
tional profiles of gut microbial communities were then
predicted and compared between weaning and finishing
rabbits. In addition, we identified microbial taxa and
functional capacities associated with ADG.
We found that the richness and diversity of gut microbial

communities significantly increased with age (Fig. 1a-b). This
result is in agreement with previous findings for animals and
humans. Niu et al. reported that gut microbial richness and
diversity significantly increased with age in pigs, and sug-
gested that growth stages and conditions were important

factors affecting gut microbiota [12]. He et al. conclued that
diet and physiological changes may have resulted in the ob-
served increase of the richness and diversity of gut micro-
biota with increasing age in camels [13]. Additionally,
maternal enteric microbes exposure level and breast-milk
feeding rate significantly affected gut microbial diversity and
richness in the early life was in human infants [14]. Further-
more, we investigated the variation in microbial community
structure from weaning to finishing. PCoA analysis suggested
that samples were clustered according to age. Unifrac dis-
tances further indicated that the gut microbiota of finishing
samples showed significantly greater similarity than those of
weaning samples (Fig. 1c-d, Additional file 1: Fig. S1c-d).
These results could be explained by the fact that all the
weaned rabbits fed with the same fatten until finishing,
which could minimize the effects of maternal environment
and genetics on gut microbiota [15, 16].
As with previous studies [17, 18], we found that Firmi-

cutes, Bacteroidetes, Verrucomicrobia, Proteobacteria,
Cyanobacteria, and Tenericutes were the dominant
phyla in both weaning and finishing samples. Moreover,
the significant increases in the relative abundances of

Fig. 4 The 34 OTUs showing significant associations with ADG are shown as Z scores. The coral bar represents for positive association, the blue
bar corresponds to negative association, and the text on the bar shows the microbial taxa annotated to the OTU
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Firmicutes and Cyanobacteria were observed as the rab-
bits aged, along with a significant decline in the abun-
dances of Bacteroidetes and Verrucomicrobia (Fig. 2a,
Additional file 2: Table S2). Zhu et al. also noted that
the percentage of Firmicutes increased as rabbits aged
and demonstrated that Firmicutes played a vital role in
dietary fiber and cellulose degradation [19]. During the
fattening period, the rabbits were fed a diet with a high
fiber content which should further stimulate the growth

of Firmicutes (Additional file 2: Table S1). The intestinal
environment became more anaerobic as the host grad-
ually matured, and the increase in the abundances of
Cyanobacteria could facilitate obligate anaerobic fermen-
tation and synthesis of vitamins [20]. Bacteroidetes can
break down polysaccharides and proteins in breast milk
and diet, and facilitate the development of intestinal im-
mune system [21, 22]. Hence, the high prevalence of
Bacteroidetes present in the gut microbial community of

Fig. 5 Heatmap of predicted KEGG Orthologs (a) and pathways (b) significantly associated with ADG (FDR adjusted p < 0.05, |r| > 0.4). The
correlation coefficient was used to plot
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weaning rabbits fits with feeding pattern (breast milk
and solid feed mix-feeding) and immune physiology
function development stage. Verrucomicrobia is a rela-
tively newly-defined phylum with largely unknown func-
tions. Interestingly, Akkermansia muciniphila, a well-
known mucin-degrading bacterium belongs to this
phylum, which could improve nutrients extraction dur-
ing cecotrophy in weaning rabbits. However, its over-
growth in finishing rabbits is closely related to the
incidence of epizootic rabbit enteropathy [23, 24]. This
could be used to explain the decrease in relative abun-
dances of Verrucomicrobia in healthy finishing rabbits.
As shown in Fig. 2b (and Additional file 2: Table S2), from

weaning to finishing, we observed a significant decrease in
the relative abundances of genera Alistipes, Bacteroides, and
Parabacteroides, which belong to the phylum Bacteroidetes.
According to the published reports, Alistipes is able to de-
grade dietary polysaccharides and flourishes in the intestine
when host innate immunity at immaturity [25, 26]. Bacter-
oides constitutes essential components of the mammalian in-
testinal microbiota that is capable of degrading breast milk
polysaccharides and stimulating the formation of intestinal
mucosa during infancy [27, 28]. Parabacteroides is another
gut bacteria that participates in breast milk polysaccharides
metabolism and its abundance significantly declines with for-
mula milk feeding [29, 30]. Additionally, the abundance of
Akkermansia (a genus of the phylum Verrucomicrobia) sig-
nificantly declinesd as rabbits aged, which is in accordance

with the results observed for gut microbiota development
study in foals [31]. By contrast, genera from the phylum
Firmicutes, such as Ruminococcaceae_UCG-010, Rumino-
coccaceae_NK4A214_group, Christensenellaceae_R-7_group,
Ruminococcaceae_V9D2013_group, and Ruminococcaceae_
UCG-014 exhibited higher abundances in finishing samples.
These genera are suggested to exert key roles in dietary
cellulose, hemicellulose, and lignocellulose fermentation
and SCFAs production [32–34].
Comparison analysis of gut microbial functional cap-

acities indicated that both KOs and KEGG pathways re-
lated to the metabolism of monosaccharides and
vitamins were enriched in the weaning samples, while
those related to the metabolism of amino acids and poly-
saccharides were more abundant in the finishing samples
(Fig. 3, Additional file 2: Table S3). These alternations in
the functional profiles should be correlated with the dy-
namic shifts in gut microbiota at different taxonomic
levels. For instance, mannose is an important monosac-
charide for protein glycosylation in mammals, and man-
nose metabolism associated with a higher percentage of
Bacteroides has been reported in previous studies [35, 36].
Galactose is an essential component of milk oligosaccha-
rides, and a higher relative abundance of Bacteroides cor-
related with the utilization of galactose was observed in
the gut microbiome of nursing piglets [37]. Both Bacter-
oides and Akkermansia are involved in the metabolism of
vitamins, such as biotin and retinol [38, 39]. Previous
studies demonstrated that specific bacteria of phylum Fir-
micutes involved in amino acids (e.g., cysteine and argin-
ine) metabolism could enhance intestinal mucosa
immunity and reduce intestinal oxidative stress during the
post-weaning period [40, 41]. Besides, both Meale et al.
and Ke et al. suggested that dietary polysaccharides me-
tabolism is enhanced with an increase in abundance of
Firmicutes [42, 43].
Thirty-four OTUs were significantly associated with

ADG (Fig. 4, Additional file 1: Fig. S4 and Fig. S5, Add-
itional file 2: Table S4). Among these, OTUs positively
associated with ADG were mostly annotated to members
of family Ruminococcaceae (e.g., Ruminococcaceae_
UCG-014, Ruminiclostridium_5, and Ruminococcaceae_
UCG-010) and Bacteroidales_S24-7_group. These bac-
teria are able to produce butyrate by degrading indigest-
ible fibers and polysaccharides [44–46]. Butyrate is not
only an energy source for gut microbial growth, but has
also been linked to intestinal epithelial cell proliferation
and heat shock protein 70 (Hsp70) production [47].
Hsp70 plays an important role in maintaining the func-
tional and structural properties of intestinal epithelial
cells in response to pathogens challenge and oxidative
stress during weaning transition [48, 49]. These actions
of butyrate that promote the intestinal development and
health of productive animals are crucial for improving

Fig. 6 The variation of ADG explained by gut microbiome at
different levels of significance
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their growth performances [50]. Importantly, butyrate
can maintain metabolic homeostasis and modulate im-
mune and inflammatory responses via binding to G pro-
tein–coupled receptors FFAR3 and GPR109A, respectively
[51, 52], and the optimized metabolic and immune status
is beneficial for the growth of farm animals [53]. In
addition, butyrate produced by gut microbiota has been
found to modulate the growth of animals by inducing se-
cretion of intestinal satiety hormones [e.g., peptide tyro-
sine tyrosine (PYY) and glucagon-like peptide 1 (GLP1)]
and growth hormones [e.g., growth factor insulin like
growth factor 1 (IGF-1)] [54, 55]. In contrast, OTUs anno-
tated to Eubacterium_coprostanoligenes_group, Christense-
nellaceae_R-7_group, Parasutterella, and Sphingomonas
paucimobilis showed negative associations with ADG.
Oral administration of Eubacterium_coprostanoligenes_
group bacteria in mice reduced body weight by affecting
cholesterol metabolism [56, 57]. A Study of the relation-
ship between gut microbiota and ADG in meat ducks in-
dicated that a decline in the abundance of Eubacterium_
coprostanoligenes_group was accompanied by an increase
in ADG [58]. Christensenellaceae has long been known to
affect host body weight [59]. This may be due to its nega-
tive correlation with the ratio of goblet cell to villus height,
which affects host’s inherent immunity and nutrient ab-
sorption [60, 61]. Additionally, Parasutterella and Sphin-
gomonas paucimobilis are opportunistic pathogens related
to intestinal barrier dysfunction and inflammation, which
are detrimental to host growth [62, 63].
We also identified 125 KOs and 25 KEGG pathways

showed potential correlations with ADG (Fig. 5, Add-
itional file 2: Table S5). Our results suggested that both
KOs and KEGG pathways related to the metabolism of vi-
tamins, basic amino acids, and SCFAs were positively as-
sociated with ADG. Vitamins produced by gut microbiota
could prevent oxidative stress and anti-inflammation,
which maintains intestinal homeostasis and has been
linked to promote food intake and body weight gain in
mice [64, 65]. In addition, the metabolism of basic amino
acids and SCFAs mediated by gut microbiota was shown
to affect body weight in pigs. Li et al. found that the me-
tabolism of arginine, butanoate, and propanoate was more
active in the gut microbiota of pigs with higher body
weight gain [66]. Cheng et al. suggested that gut micro-
biota modulate increases in the concentrations of acetate,
propionate, and butyrate, which contribute to a higher
ADG in pigs [67]. In contrast, gut microbiota that partici-
pated in aromatic amino acids metabolism and immune
response exhibited negative associations with ADG. Previ-
ous studies revealed that gut microbiota involved in aro-
matic amino acids metabolism related to colitis, and
producing specific metabolites could reduce host body
weight gain [68–70]. Immune response pathways medi-
ated by gut microbiota included the NOD-like receptor

signaling pathway and PPAR signaling pathway. These
pathways are related to pro-inflammatory cytokines pro-
duction and immune cells proliferation which exert nega-
tive effects on host health and growth [71, 72].
Additionally, we found that the gut microbiome could

explain 5.83–10.42% (Fig. 6) of the variation in ADG
that effects similar to host genetics on ADG (5.2–9.6%)
[73]. This result implies that the effects of gut micro-
biota should not be underestimated in attempts to im-
prove growth performances of meat rabbits.

Conclusions
Our study characterized the gut microbiota profiles of
weaning and finishing Ira rabbits. Gut microbial richness
and diversity increased with age. Significant differences in
gut microbial structure were observed between weaning
and finishing rabbits. Dynamic shifts in microbial taxa at
the phylum and genus level were uncovered between
weaning and finishing rabbits. The metagenomic pre-
dicted KOs and KEGG pathways exhibited differential en-
richment in weaning and finishing rabbits. Our results
emphasized the importance of both butyrate producing
bacteria and gut microbiota that modulate the metabolism
of vitamins, basic amino acids, and SCFAs in promoting
the ADG of meat rabbits. In addition, we found that gut
microbiome had a similar effect size on ADG as host gen-
etics. Taken together, our results improve our comprehen-
sive understanding of the dynamic distributions of gut
microbial communities in meat rabbits, and offer a direc-
tion for gut microbiota modulation to improve ADG in
the meat rabbit industry.

Methods
Animals and sample collection
ADG is a complex quantitative trait [74], therefore, a total of
105 Ira rabbits (53 males and 52 females) were used in the
present study derived from Laidewang Animal Husbandry
Co., Ltd., Sanming, China. Six to eight pup rabbits per cage
were raised with their dam under natural light and room
temperature in the same commercial farm. A commercial
pellet diet (details are shown in Additional file 2: Table S1)
was provided to lactating dams twice a day and pup rabbits
had free access to the feed. Pup rabbits were weaned at 28 ±
2 days, at which point one or two rabbits were randomly se-
lected from 90 cages to measure weaning body weight. Hard
fecal samples were collected by stimulating the anus. To re-
duce the effect of differences in initial body weight, 105 rab-
bits had similar weaning weight (0.9 ± 0.06 kg) were selected
and randomly assigned to separate cages (one rabbit per
cage) and fed with a fattening diet (details are shown in
Table S1) until finishing (72 ± 2 days). Finishing body weight
was measured to calculate ADG and hard fecal samples were
collected. All rabbits were healthy and had not received anti-
biotics, anticoccidial drugs, probiotics or prebiotics during
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experimental period. All fecal samples were dipped into li-
quid nitrogen for transportation and stored at − 80 °C in the
laboratory. At the end of experiments, all rabbits were trans-
ported to the local slaughterhouse, stunned with electronar-
cosis (80V for 10 s) and quickly bled by cutting the jugular
veins and carotid arteries. To avoid the effect of artificial bias,
the authors were not involved in the processes of rabbits’ se-
lection, grouping, body weight measurement, and further
16S rRNA gene sequencing.

DNA extraction and 16S rRNA gene sequencing
Microbial genomic DNA was extracted from feces using the
QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden,
Germany) following the manufacturer’s instructions. Before
PCR amplification and sequencing, we assessed the purity
and integrity of total DNA by using the Nanodrop ND-2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) and 1.5% agarose gel electrophoresis, respectively.
The V3-V4 hypervariable region of the 16S rRNA gene

was amplified by the barcoded fusion primers 341F (5′-
CCTACGGGNGGCWGCAG-3′) and 806R (5′- GGACTA
CHVGGGTATCTAAT-3′). The PCR conditions were as
follows: initial denaturation step at 95 °C for 3min, followed
by 28 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30
s, and a final extension step at 72 °C for 10min. The PCR
products purification was performed using the Agencourt
AMPure XP system (Beckman Coulter, Brea, CA, USA). The
final DNA libraries were sequenced on a Hiseq-2500 plat-
form (Illumina, San Diego, CA, USA) according to the man-
ufacturer’s instructions.

16S rRNA gene sequencing data analysis
Quality control of raw data was performed using QIIME
(v.1.9.1), including the removal of the primers, barcodes,
and low quality sequences [75]. FLASH (v.1.2.11) was
used to merge high-quality paired-end reads into tags
[76]. To normalize the sequencing depth, we rarefied the
library size of microbial sequences to 40,000 tags per
sample before further analysis [77]. Tags were clustered
into operational taxonomic units (OTUs) at 97% se-
quence identity using USEARCH (v.10.0) [78]. We fil-
tered out those OTUs with relative abundance < 0.1%
and those that were presented in less than 3% of the ex-
perimental rabbits from further analysis. The SILVA
database (v.132) was used to assign taxonomic category
to OTUs [79]. The alpha and beta diversity indices were
calculated using Mothur (v.1.41.1) and QIIME (v.1.9.1),
respectively [75, 80]. Potential functional capacities of
gut microbiota were predicted using Tax4Fun [81].

Statistical analysis
Wilcoxon test with false discovery rate (FDR) correction
was used to determine differences in observed species,
Shannon, Good’s coverage, weighted and unweighted

UniFrac distance metric between weaning and finishing
rabbits. Principal coordinate analysis (PCoA) was
performed using both unweighted and weighted
UniFrac distances. The dynamic changes in the
relative abundances of microbiota at the phylum
and genus level were presented as alluvial diagrams.
The numbers of shared OTUs, phyla, genera, KOs,
and KEGG pathways were showed as the Venn dia-
grams. Linear discriminant analysis Effect Size
(LEfSe) was used to analyze the differential enrich-
ment of KOs and KEGG pathways in weaning and
finishing samples.
After sex and cage effects correction, the residuals

of ADG were used for further association analysis
between ADG phenotypic values and the relative
abundances of OTUs. To overcome the problem of
non-normal distribution of OTUs, a two-part model
analysis was performed to identify microbial taxa as-
sociated with ADG as described previously [82].
Briefly, the two-part model association analysis con-
sisted of binary, quantitative, and meta models. The
binary model describes a binomial analysis that tests
for associations between ADG and detection of a mi-
crobe. The quantitative model tests for associations
between ADG and the abundance of microbes, but
only the samples where the microbe was present
were included in the analysis. The meta model was
used to combine the effects of both binary and
quantitative analysis. The final association p value
was assigned from the minimum of p values from
the binary analysis, quantitative analysis, and meta-
analysis. Skewness correction was performed by
1000 × permutation tests. FDR < 0.05 was set as the
significance threshold. The phylogenetic relationships
of the identified microbes were analyzed using
neighbor-joining algorithm and heatmap of their
abundances were generated using the SEED2 pro-
gram [83]. Spearman’s correlation analysis with FDR
correction was performed to uncover ADG-
associated KOs and KEGG pathways.
To investigate the contribution of the gut micro-

biome to the variation in ADG, a 100 × cross-valid-
ation was performed as described by Fu et al. [84].
We randomly divided the dataset into an 80% discov-
ery dataset and a 20% validation dataset. In the dis-
covery dataset, the two-part model association
analysis was performed to identify a number of (n)
OTUs that were significantly associated with pheno-
type at a certain p value and assessed the effect sizes
of binary and quantitative features (β1 and β2) of each
OTUs. In the validation dataset, the effect of gut
microbiome on ADG (rm) for each individual was es-

timated by an additive model: rm =
Pn

j¼1
ðβ1 þ bj þ β2q jÞ
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, where bj and qj represents the binary and quantita-

tive feature of j OTU, respectively. We calculated the
squared correlation coefficient (R2) between rm and
the phenotypic value (corrected for sex and cage),
which represents the phenotypic variance explained
by the gut microbiome. We repeated the cross-
validation for 100 times and calculated the average
value of the explained variations to ensure validity
and stability of the estimation.
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1186/s12866-020-01797-5.
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