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Abstract

Background: Multi-drug resistant (MDR) Acinetobacter baumannii is one of the most important causes of
nosocomial infections. The purpose of this study was to identify antibiotic resistance patterns, biofilm formation and
the clonal relationship of clinical and environmental isolates of A. baumannii by Pulsed Field Gel Electrophoresis
method. Forty-three clinical and 26 environmental isolates of the MDR A. baumannii were collected and recognized
via APl 20NE. Antibiotic resistance of the isolates was assessed by the disk diffusion method, and the biofilm
formation test was done by the microtiter plate method. Pulsed Field Gel Electrophoresis (PFGE) was used to assess
the genomic features of the bacterial isolates.

Results: The resistance rate of clinical and environmental isolates against antibiotics were from 95 to 100%. The
difference in antibiotic resistance rates between clinical and environmental isolates was not statistically significant
(p > 0.05). Biofilm production capabilities revealed that 31 (44.9%), and 30 (43.5%) isolates had strong and moderate
biofilm producer activity, respectively. PFGE typing exhibited eight different clusters (A, B, C, D, E, F, G, and H) with
two significant clusters included A and G with 21 (30.4%) and 16 (23.2%) members respectively, which comprises
up to 53.6% of all isolates. There was no relationship between biofilm formation and antibiotic resistance patterns
with PFGE pulsotypes.

Conclusions: The results show that there is a close relationship between environmental and clinical isolates of A.
baumannii. Cross-contamination is also very important that occurs through daily clinical activities between
environmental and clinical isolates. Therefore, in order to reduce the clonal contamination of MDR A. baumannii
environmental and clinical isolates, it is necessary to use strict infection control strategies.
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Background

Acinetobacter baumannii is a gram-negative bacterium
and one of the important pathogens of nosocomial infec-
tions, including pneumonia, meningitis, bacteremia, urinary
tract infections, surgical wounds and soft tissue infections
[1]. It has a key role in worldwide nosocomial infections, es-
pecially in the adult intensive care units (ICUs) [2, 3]. Due
to numerous factors, including prolonged hospital admis-
sion, loss of the skin barrier, and complex treatment proto-
cols, patients admitted to ICU wards are significantly
susceptible to nosocomial infections [4].

Recently, due to the use of broad-spectrum antibiotics,
antimicrobial resistance between A. baumannii isolates
has increased significantly. Therefore, the emergence of
multi-drug resistant (MDR) and extensively drug-
resistant (XDR) A. baumannii isolates as an important
cause of nosocomial infections is one of the major health
problems in different countries of the world [2, 5, 6].
The impervious outer membrane and environmental ex-
posure to a large pool of resistance genes are considered
as selective pressures that cause XDR isolates in these
bacteria [7]. This pathogen possesses a remarkable abil-
ity to survive and widely spreading in hospital environ-
ments and mucosal surfaces [8]. Long-term survival is
likely to be a major cause of hospital transmission of this
organism, especially in ICU wards and through health-
care staff [1]. For this reason, particular attention has
been paid to the capability of A. baumannii to cause
outbreaks of nosocomial infections and to obtain resist-
ance to antibiotics [4]. The ability of A. baumannii to
form biofilms on living and non-living surfaces is an im-
portant factor in the persistence of bacteria because it
protects them against environmental stress conditions,
such as desiccation and exposure to antibiotics and dis-
infectants, which makes biofilm infections persistent and
challenging to treat [9]. For epidemiological studies, sev-
eral typing methods have been used to investigate out-
breaks caused by A. baumannii. The usually applied
methods focus on differences in the phenotypic proper-
ties that have insufficient reproducibility and discrimin-
atory power. Molecular approaches such as PFGE that
compare the DNA differences of bacteria have been ac-
cepted because of establishing the clonal association in
many bacteria including A. baumannii isolates [10]. So
far, few investigations have been done on the relation-
ship between environmental and clinical isolates of A.
baumannii in patients admitted to intensive care units.
Concurrent typing of clinical and environmental iso-
lates of A. baumannii is an important tool for finding
sources and ways of transmission of such epidemic iso-
lates. This research aimed to identify antibiotic resist-
ance patterns, biofilm formation and clonal association
of clinical and environmental isolates of A. baumannii
by PFGE technique.
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Results

Susceptibility to antibiotics

The results of the antimicrobial susceptibility test shown
in Fig. 1. All clinical and environmental isolates of A.
baumannii (100%) were susceptible to colistin and tige-
cycline and all isolates (100%) were resistant to cipro-
floxacin and cefepime. The resistance rate against
ampicillin-sulbactam, meropenem, imipenem, and ami-
kacin in the clinical isolates were 43(100%), 42(97.7%),
42(97.7%), 43(100%) and in environmental isolates were
24(92.3%), 26(100%), 25(96.2%), and 23(88.5%), respect-
ively. Most clinical (95.3%) and environmental (84.6%)
isolates of A. baumannii were resistant to all tested an-
tibiotics and designated as extensively drug-resistance
(XDR). The difference in antibiotic resistance rates be-
tween clinical and environmental isolates was not sta-
tistically significant (p > 0.05).

Biofilm formation

One of the major virulence-related features of A. bau-
mannii is the ability of biofilm formation. Therefore, we
decided to measure potential biofilm formation in XDR
of clinical and environmental isolates. In our study, we
found that 68 (98.6%) of the isolates were capable of
forming biofilm. The mean OD 595 values for clinical
and environmental isolates were 0.680 +0.289 and
0.540 £ 0.265, respectively. Biofilm production capabil-
ities revealed that 31 (44.9%), 30 (43.5%), 7 (10.2%), and
1 (1.4%) isolates had strong, moderate, weak, and no bio-
film producer activity in the microplate assay, respect-
ively. No statistically significant difference in biofilm
formation was seen among the clinical and the environ-
mental isolates (p > 0.05).

PFGE results

The PFGE method by Apal enzyme was used for access
typing and genetic relationship between the A.bauman-
nii isolated from clinical and environmental samples.
From 26 environmental and 43 clinical isolates, 8 com-
mon PFGE clusters (A, B, C, D, E, F, G, and H were ob-
tained (Fig. 1). The similar strains in two hospital were
seen. PFGE clusters A, E, and F were seen in the clinical
and environmental isolates that recovered from Besat
hospital. PFGE cluster A was the predominant clones
with 21 members, which of them, 13 members isolated
from patients and 8 from environmental surfaces
(Table 1).

Discussion

Acinetobacter baumannii is becoming an increasingly
well-known pathogen because of the increase in the
number of infections caused by this organism and the
development of MDR and XDR strains [11]. The poten-
tial of A. baumannii to persist in either moist or dry
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Table 1 The frequency distribution of A. baumannii in clinical and environmental isolates based on the location of specimen

collection and PFGE type

Pattern Clinical isolates No (%) Environmental isolates No (%) Total No (%) Status of pulsotypes

A 13 (30.2) 8 (30.8) 21(304) Major pulsotype

B 7 (16.3) 3(11.5) 10 (14.5) Intermediate pulsotype
C 2 (46) 2(7.7) 4(5.8) Minor pulsotype

D 5(11.6) 4 (15.4) 9 (13.0) Intermediate pulsotype
E 2 (46) 1(3.8) 3 (4.3) Minor pulsotype

F 2 (46) 138 3(43) Minor pulsotype

G 10 (23.3) 6 (23.1) 16 (23.2) Major pulsotype

H 2 (4.6) 1(3.8) 3 (4.3) Minor pulsotype

Total 43(100) 26(100) 69(100) -

conditions in the hospital environment is a consequence
of the presence of multiple antibacterial resistance genes
and biofilm formation makes this bacterium a successful
pathogen among nosocomial bacteria [12]. The unique
ability of this bacterium to survive in the environment
for a long time demonstrates its role in the outbreaks of
nosocomial infections [13]. Contaminated environmental
surfaces can contribute directly to the transmission of
pathogens to patients or from the hands of health care
workers to patients [14].

The results of this study show high environmental pol-
lution in the three intensive care units in our area. The
incidence of XDR A. baumannii isolated from environ-
mental surfaces 22(84.6%) which, were resistant to all
tested antibiotics was greater than that detected in previ-
ous studies in Germany (7.3%), United States (9.8%), and
13.1% in China [1, 13, 15]. These results can probably be
attributed to inappropriate strategies of disinfection and
hand washing by health workers in hospitals. Further-
more, 41(95.3%) clinical isolates were resistant to all
tested antibiotics and were XDR, which agrees with
other investigations conducted in Iran [16, 17]. Of the 8
antimicrobials tested, the most potent ones were colistin
and tigecycline (100%) for all clinical and environmental
isolates. In agreement with previously research who re-
quested, the most effective drug in controlling A. bau-
mannii is polymyxin B [18].

Of the 41 XDR A. baumannii strains isolated from pa-
tients’ respiratory tracts, the bacteria isolated from tra-
cheal aspirate specimens were the most common
respiratory isolates, which is consistent with previous
studies [19, 20]. Consistent with the earlier study, the re-
sistance rate of clinical and environmental isolates of A.
baumannii to antibiotics was 95-100% and there was no
significant difference between antibiotic resistance in
clinical and environmental isolates (p >0.05) [21]. One
of the important features related to the virulence of A.
baumannii is its ability to form biofilms. In our study,
we determined that 68 (98.6%) isolates of XDR A.

baumannii formed biofilm, which is in agreement with
previous studies [2, 17, 22]. According to our results,
44.9% of isolates showed strong ability to biofilm forma-
tion. Our results are consistent with previous reports
which showed that more than 75% of A. baumannii iso-
lates form biofilms [23, 24]. Previous studies have re-
ported a positive relationship between biofilm formation
and antibiotic resistance in A. baumannii isolates [17,
25, 26]. In our study, all strong biofilm forming A. bau-
mannii isolates were XDR.

To track and evaluate the outbreaks, the genetic associ-
ation of the isolates, and to attribute one strain to the rele-
vant clonal lineage, several molecular typing techniques
have been developed [27, 28]. Among these methods,
PFGE is considered the gold standard due to its discrimin-
atory power, reproducibility, and sensitivity, and to deter-
mine the single-colonal pattern of hospital outbreaks, the
prevalence of pathogens within and between hospitals and
their stability in the environment are used [28].

In the current study typing of XDR A. baumannii iso-
lates was done for tracks of outbreak and analyses of a
population survey of bacteria based on their genotypes,
predominant genotypes, distribution and probability
transmission of isolates between patient and environ-
mental surfaces. By the PFGE technique, 43 clinical and
26 environmental A. baumannii isolates were typed.
PFGE typing showed 8 different PFGE cluster (A, B, C,
D, E, F, G, and H) with two major cluster A and G with
21 (30.4%) and 6 (23.2%) members, respectively, which
contains up to 53.6% of all isolates. In our study, a close
genetic relationship between clinical and environmental
isolates of A. baumannii was observed that is consistent
with other studies [4, 21]. These results indicate that the
hospital environment is frequently colonized by different
A. baumannii clones, which may be responsible for the
transmission of A. baumannii isolates between patients
and their surroundings.

In our study, two clinical isolates (No 5 and 31) which
were found in two distinct hospitals were clustered into
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pulsotype A. This issue may indicate the possible trans-
fer of related isolates from one ICU to another in the
same hospital or different hospitals from patients admit-
ted to the ICUs or the hospital health team in the same
city. This type of transmission has been reported in sev-
eral countries [2, 29]. Comparing the frequency of bio-
film formation ability in clinical and environmental
isolates with pulsotypes, no significant correlation was
found, which is consistent with the study of Wroblewska
et al. [30].

In our study, the correlation analysis of PFGE typing
and antibiotic resistance profiles showed that most iso-
lates were XDR and no difference in antibiotic resistance
was found in the PFGE clusters. Therefore, there is no
significant relationship between different PFGE clusters
and antimicrobial resistance patterns. This indicates that
antimicrobial resistance patterns have low discriminatory
power for bacterial typing and highlights the necessity of
genotyping techniques such as PFGE to categorize iso-
lates with similar phenotypes and distinct genetic re-
latedness during the evaluation of outbreak episodes or
horizontal transmission of isolates in the hospital envi-
ronments [31].

Conclusions

Our investigation shown the high frequency of biofilm
forming XDR A. baumannii with a high prevalence of
biofilm formation. Tracing the sources of environmental
isolates indicates that there is a close genetic link be-
tween environmental and clinical isolates of A. bauman-
nii. Besides, it suggests that the occurrence of cross-
contamination events is likely to occur between environ-
mental and clinical isolates during routine clinical activ-
ities. Therefore, the use of strict infection control
strategies to reduce cross-contamination of endemic
clones of A. baumannii isolates is essential.

Methods

Bacterial isolates

In this cross-sectional study, 43 MDR A. baumannii
were collected from respiratory tracts of patients admit-
ted to ICU wards of Besat, Sina, and Beheshti educa-
tional hospitals of Hamadan University of Medical
Sciences in Hamadan, west of Iran, during a period be-
tween November 2015 and August 2016.

The Besat hospital is a major tertiary referral hospital
where patients are referred from neighboring provinces
and Sina and Beheshti hospitals have infectious and in-
ternal medicine departments respectively, which accept
patients in Hamadan province. Simultaneously, 26 MDR
A. baumannii strains isolated from different environ-
ments and equipment surfaces such as ventilators, sink,
and ground, hands of Staff, trolleys, bedside table, pillow
and linens. For sampling from the environment and
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equipment of ICU wards, an area of about 10 cm2 was
selected and sampled using a sterile humidified swab
with physiological serum.

Culture and identification

After taking the samples, the swabs were inoculated in
Brian heart infusion broth (BHI) media and incubated
overnight at 35°C and further subcultured on MacCon-
key’s agar plates at 37°C for 24h. The Acinetobacter
spp. were identified by colony morphology, growth at
44.°C, oxidase, OF (Oxidation and fermentation), Simon
citrate, and API 20NE system (BioMérieux Co, France).
The A. baumannii isolates identification was confirmed
by PCR of the blaOXA-51 gene. A. baumannii ATTC
19606 was used as a reference strain [32].

Antibacterial susceptibility test

Antimicrobial susceptibility test was accomplished by the
Kirby-Bauer disk diffusion method using the ampicillin/
sulbactam (10 pg /10 pg), imipenem (10 pg), meropenem
(10 pg), amikacin (30 ug), cefepime (30pg), colistin
(10 pg), tigecycline (15 pg), and ciprofloxacin (5 pg), anti-
biotic disks (Mast Group Co, UK). The results interpreted
according to Clinical and Laboratory Standard Institute
guidelines (CLSI) [33]. Pseudomonas aeruginosa ATCC
27853 was used as a control strain. MDR A. baumannii
isolates were defined as resistant to three or more classes
of antibiotics as previously described [34].

Biofilm assay
The ability of A. baumannii isolates to produce biofilm
was assessed by the microtiter plate method as previ-
ously described [35]. Briefly, biofilm formation was per-
formed in triplicate from overnight cultures diluted in
Tryptic soy broth (TSB) medium supplied with 1% glu-
cose to an optical density (OD) of 0.01 at 600 nm and
deposited in 96-well plates. TSB medium without inocu-
lum was used as a negative control. The plate was incu-
bated at 37°C for 24h with gentle shaking. The wells
were washed three times with Phosphate Buffer Saline
(PBS) solution. Absolute methanol was added per well to
biofilm fixation. Biofilm was stained with 1% crystal vio-
let (w/v) and quantified at 595 nm after solubilization
with absolute ethanol for 15 min at room temperature.
Biofilm production was interpreted according to the cri-
teria of Stepannovic et al. [36]. The optical density cut-
off value (ODc) was established as three standard devia-
tions (SD) above the mean of the optical density (OD) of
the negative control as showed in the following formula:
ODc = average OD of negative control+(3 SD of negative
control).

The results were divided into the four following cat-
egories according to their optical densities as strong bio-
film producer (4 ODc < OD); medium biofilm producer
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(2 ODc < OD <4 ODc); weak biofilm producer (ODc <
OD <2 ODc); and non-biofilm (OD < ODc) [36].

Pulsed-field gel electrophoresis typing

Genetic similarities among clinical and environmental
isolates of A. baumannii were investigated by PFGE as
previously described [37]. Briefly, an overnight culture of
bacteria was suspended in 100 ul of cell suspension buffer
and was mixed with an identical volume of 2% low melt-
ing agarose and distributed in a plug mold. Genomic
DNA in agarose plugs was lysed in the cell lysis solutions I
and II, washed and digested with Apal restriction enzyme
(Thermo Scientific, USA). The Lambda PFG Ladder (New
England, Biolabs) was used as a DNA size marker. Electro-
phoresis of digested DNA was performed in a pulsed-field
electrophoresis system (Chef Mapper; Bio-Rad Laborator-
ies, USA) by programming two states with the following
conditions: temperature 14.°C; voltage 6 V/cm; switch
angle, 120°; switch ramp 2.2-35s for 19 h.

Cluster analysis
Gel images were studied by BioNumerics software ver-
sion 7.5 (Applied Maths, StMartens-.

Latem, Belgium). Dendrograms were obtained for all
of the isolates. A comparison of the banding patterns
was done by the unweighted pair group method with
mathematical averaging (UPGMA), and DNA similarity
was considered by using the band-based Dice coefficient
with a tolerance setting of 1.5% band tolerance and 1.5%
optimization setting were applied during comparison of
the DNA patterns. The PFGE results were compared ac-
cording to the criteria by Tenover et al; a PFGE cluster
was based on a similarity cutoff of 80% [38].

Statistical analysis

Statistical analysis was performed using SPSS 23.0 (SPSS,
Chicago, IL, USA). The frequency of susceptibility and
biofilm formation category were determined in clinical
and environmental isolates. The relationship among bio-
film formation and the antibiotic resistance with PFGE
type were made using chi-square tests. A P-value of less
than 0.05 was considered as statistically significant.
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