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Abstract

Background: Gut bacteria are an important component of the microbiota ecosystem in humans and other animals,
and they play important roles in human health. The aim of this study was to investigate the relationship between
gut microbiota and multiple demographical-, behavioral-, or biochemical-related factors in subjects with chronic
disease. Subjects with a very wide age range who participated in community-based chronic disease prevention and
screening programs in China were enrolled. We analyzed the intestinal microbiota composition using 16S rRNA-
based high-throughput sequencing of fecal samples, analyzed the association between gut microbiota structure
and multiple demographical, behavioral, and biochemical factors, and compared the differences in microbiota
composition in age-stratified groups with different blood glucose levels.

Results: Our results showed that both age and blood glucose levels had a significant impact on the gut microbiota
structure. We also identified several taxa showed distinct abundance in groups with different glucose levels.
Lactobacillus and Bifidobacterium at genus level and their related taxa were more abundant in the GLU high group
comparing with GLU normal group and in NGR group comparing with DM group. Further analysis using the age-
stratified data showed that blood glucose levels had a more significant impact on the gut microbiota in the ≥76 y
age group than in the ≤75 y age group, which indicated that it is necessary to take age into account when
conducting such studies. Moreover, we identified several taxa that were highly associated with blood glucose levels
in the ≥76 y age group but not in the ≤75 y age group. Within the ≥76 y age group, Lachnospiraceae incertae
sedis and Bacteroides were more abundant in the GLU normal group, whereas Lactobacillus and Bifidobacterium at
genus level were more abundant in the GLU high group.

Conclusions: This result suggested that taxa that are capable of differentiating blood glucose levels might differ
significantly in different age groups.
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Background
Diabetes is a common metabolic disease characterized
by hyperglycemia resulting from defects in insulin secre-
tion, insulin action, or both. [1]. Worldwide, 415 million
people live with diabetes, and an estimated 193 million
people have undiagnosed diabetes. China is on pace to
become the country with the highest population of dia-
betics in the world, with 103 million people diagnosed.

Type 2 diabetes (T2D) accounts for more than 90% of
patients with diabetes [2] and leads to microvascular and
macrovascular complications that cause blindness, kid-
ney failure, lower limb amputation, etc. The care and
treatment of diabetics places considerable socioeco-
nomic pressures on the medical system.
Gut bacteria are an important component of the

microbiota ecosystem in humans and other animals, and
they play important roles in human health, such as nu-
trient absorption, homeostatic control of energy balance,
immunoregulation, gastrointestinal development, and
many other physiological processes. Gut bacteria can
mirror host physiology [3]. Gastrointestinal microbiota

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sgy@iccas.ac.cn; jason@muc.edu.cn
†Wu Enqi, Zhao Huanhu and Wu Ritu contributed equally to this work.
1School of Pharmacy, Minzu University of China, 27 South Street,
Zhongguancun, Beijing 100081, China
Full list of author information is available at the end of the article

Enqi et al. BMC Microbiology          (2019) 19:111 
https://doi.org/10.1186/s12866-019-1466-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-019-1466-y&domain=pdf
http://orcid.org/0000-0002-7267-5504
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sgy@iccas.ac.cn
mailto:jason@muc.edu.cn


represent a complex ecosystem with enormous diversity.
Gut microbiota not only participate in the synthesis of
dietary fatty acids and the absorption of fat-soluble
vitamins, but also affect the colonization of pathogenic
bacteria and regulate bile acid transformation, conse-
quently regulating energy homeostasis [4–6]. The diver-
sity and composition of gut microbiota are also affected
by host physiological factors, hereditary factors, and
dietary and environmental factors [7, 8]. Dysbiosis of gut
bacterial communities is associated with many chronic
diseases, such as type I diabetes (TID), obesity, inflam-
matory bowel disease (IBD), rheumatoid arthritis, cancer,
autism, and allergies [9]. Several studies have provided
evidence that the pathogeneses of type 2 diabetes (T2D),
such as chronic low-grade inflammation and insulin resist-
ance, are significantly associated with intestinal microbiota
compositional changes, which cause increased absorp-
tion of monosaccharides, increased production of insu-
lin resistance-related substances, changes in intestinal
lining permeability, and increased production of lipo-
polysaccharides (LPS) [10–12]. The differences between
the composition of the intestinal microbiota in humans
with T2D and non-diabetic persons [10, 13–20] indicate
that T2D is associated with differences in Actinomyceta-
ceae, Alistipes, Bacteroides, Betaproteobacteria, Bifidobac-
terium, Clostridia, Coriobacteriaceae, Desulfovibrionaceae,
Erysipelotrichaceae, Eubacterium, Faecalibacterium, Fir-
micutes, Fusobacterium, Lachnospiraceae, Lactobacillus,
Parabacteroides, Peptostreptococcaceae, Planococcaceae,
Prevotella, Propionibacteriaceae, Proteobacteria, Rose-
buria, Streptococcus, Veillonellaceae, and Verrucomicro-
bia. These studies provide evidence of an association
between intestinal dysbiosis and T2D. However, there are
great discrepancies across studies with respect to taxa
changes in T2D patients as compared with healthy con-
trols. This inconsistency could be explained by different
sequencing technologies, different statistical methods, and
the selection of thresholds of significance. However, inef-
fective control of confounding factors that might affect
the association between microbiota and the target popula-
tion also contributes to the observed inconsistency. It is
evident that the activity and composition of the gut micro-
biota change with advancing age [21]. Aging is considered
a chronic inflammation process [22], and dysbiosis
plays a pivotal role in the pathogenesis and develop-
ment of age-related diseases including T2D [23]. How-
ever, to our best knowledge, studies evaluating the
effects of age-related factors on the relationship be-
tween intestinal microbiota and T2D are lacking.
In this study, we investigated the relationship between gut

microbiota and plasma glucose levels, age, as well as mul-
tiple demographical-, behavioral-, and biochemical-related
factors in subjects with a very wide age range who partici-
pated in community-based chronic disease prevention and

screening programs in China. In addition, we compared
the composition of gut microbiota in groups with dif-
ferent plasma glucose levels after age stratification.

Results
Characteristics of the participants
Samples from a total of 133 participants including 55
males and 78 females were investigated in the study. The
major demographic, clinical, and behavioral characteris-
tics of the participants are shown in Table 1. The age of
the participants ranged from 44 to 88. According to
WHO diagnostic criteria for diabetes (1999), 78 partici-
pants who had fasting plasma glucose < 6.1 were in-
cluded in the normal blood glucose group (NGR).
Among the 55 participants who were included in the
high blood glucose group (HGR), 22 had fasting plasma
glucose level between 6.1 and 7.0 and were categorized
as the impaired fasting glucose group (IFG), while 33
had fasting plasma glucose level no less than 7.0 and
were categorized as the diabetic group (DM). Except for
the fasting plasma glucose level, all other variables were
comparable between NGR and HGR, or between NGR,
IGF, and DM groups.

Overall assessment of intestinal microbiota
A total of 25,375 K PE-reads of the 16S rDNA gene V3–
V4 region were generated from the 133 specimens, with
an average of 19,0791.3 (±39,560.7 SD) reads for each spe-
cimen, ranging from 85,363 to 368,127. A total of 19,305 K
high quality PE-reads were obtained after trimming and
filtering. In the OTU clustering process, a total of 37,668
sequences of chimeras were filtered and 7033 OTUs were
yielded. After alignment of the OTU representative se-
quences using the QIIME pipeline, a total of 1366 OTUs
were included for further data analysis.
In the taxonomical assignment process with a confi-

dence threshold of 80%, 1366 operational taxonomic
units (OTUs) were identified and annotated. Among
these, 1302 OTUs at the phylum level had an annotation
reliability over 0.8 and covered 16 phyla; 1231 OTUs at
the class level had an annotation reliability over 0.8 and
covered 28 classes; 1206 OTUs at the order level had an
annotation reliability over 0.8 and covered 45 orders;
1056 OTUs at the family level had an annotation reli-
ability over 0.8 and covered 99 families; and 652 OTUs
at the genus level had an annotation reliability over 0.8
and covered 232 genera.
Firmicutes (47.9%) and Bacteroidetes (37.8) were found

to be the dominant taxa at the phylum level, as were Clos-
tridia (38.8%) and Bacteroidia (37.8%) at the class level
and Clostridiales (38.8%) and Bacteroidales (37.8%) at the
order level. At the family level, Bacteroidaceae (27.3%),
Lachnospiraceae (21.0%), and Ruminococcaceae (15.6%)
were the most dominant taxa covering more than 10% of
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Table 1 Demographic, biochemical and behavior characteristics of the participants

Two Categorical Three Categorical Overall

GLU normal (n = 78) GLU high (n = 55) NGR(n = 78) IFG(n = 22) DM(n = 33)

Numerical Variables

Age (year) 69.08 ± 10.14 69.22 ± 10.04 69.08 ± 10.14 67.55 ± 10.80 70.33 ± 9.51 69.14 ± 10.06

BMI (kg/m2) 25.5 ± 3.31 26.25 ± 3.02 25.5 ± 3.31 26.35 ± 3.04 26.18 ± 3.05 25.82 ± 3.2

WHR 0.85 ± 0.07 0.88 ± 0.07 0.85 ± 0.07 0.87 ± 0.07 0.88 ± 0.07 0.87 ± 0.07

GLU (mmol/L) 5.37 ± 0.42 7.76 ± 1.66 5.37 ± 0.42 6.47 ± 0.23 8.62 ± 1.65 6.36 ± 1.62

CHO (mmol/L) 5.21 ± 1.05 5.17 ± 1.15 5.21 ± 1.05 5.04 ± 1.22 5.25 ± 1.10 5.19 ± 1.08

HDLC (mmol/L) 1.48 ± 0.38 1.36 ± 0.27 1.48 ± 0.38 1.36 ± 0.23 1.36 ± 0.30 1.43 ± 0.34

LDLC (mmol/L) 3.23 ± 0.78 3.31 ± 0.99 3.23 ± 0.78 3.17 ± 1.08 3.4 ± 0.94 3.26 ± 0.87

TG (mmol/L) 1.91 ± 1.12 1.9 ± 1.38 1.91 ± 1.12 2.03 ± 1.70 1.82 ± 1.14 1.91 ± 1.23

SBP (mmHg) 80.77 ± 10.95 78.16 ± 10.07 80.77 ± 10.95 79.23 ± 11.32 77.45 ± 9.26 79.69 ± 10.63

DBP (mmHg) 140.24 ± 20.17 135.64 ± 17.22 140.24 ± 20.17 140.55 ± 20.63 132.36 ± 13.91 138.34 ± 19.08

Categorical Variables

Gender(n = 133) male 27 28 27 10 18 55

female 51 27 51 12 15 78

Edu3 (n = 123) lower than college 25 15 25 8 7 40

college or higher 46 37 46 13 24 83

Exercise (n = 99) more than once
a week

38 34 38 12 22 72

less than once
a week

16 11 16 6 5 27

Meat (n = 128) not prefer 37 21 37 10 11 58

normal or prefer 38 32 38 12 20 70

Fruit (n = 127) not prefer 27 23 27 9 14 50

normal or prefer 47 30 47 13 17 77

Vegetable (n = 126) not prefer 9 4 9 1 3 13

normal or prefer 64 49 64 21 28 113

Alcohol (n = 127) more than 4 days
a week

3 3 3 2 1 6

1–3 days a week 2 3 2 2 1 5

less than ones
a week

69 47 69 18 29 116

Smoke (n = 121) not exposed 49 29 49 13 16 78

exposed 4 or more
days a week

13 20 13 8 12 33

exposed 1–3 days
a week

6 4 6 1 3 10

Sleeping (n = 124) less than 6 h a day 18 18 18 7 11 36

more than 6 h a day 55 33 55 13 20 88

Sleepless (n = 115) more than 3 days
a week

8 5 8 1 4 13

1–3 days a week 7 10 7 5 5 17

less than once
a week

51 34 51 13 21 85

Stress (n = 131) happy 44 33 44 13 20 77

normal 29 18 29 7 11 47

unhappy 3 4 3 2 2 7
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the overall reads. At the genus level, a total of 53
genera had an abundance of more than 0.1%; among
them, Bacteroides (27.3%), Prevotella (6.6%), Faecali-
bacterium (6.6%), Roseburia (5.2%), and Escherichia/
Shigella (5.1%) were the most dominant taxa covering
more than 5% of the overall reads.

Explanatory variables analysis
To understand the effects of subjects’ demographical, clin-
ical, and behavioral characteristics on gut microbiota, we
performed db-RDA analysis of each variable using
Bray-Curtis matrix. The result shows that only factor of
age and blood glucose level (GLU) have significant im-
pacts on the Bray-Curtis distance matrix (Table 2). Further
testing of the partial db-RDA analysis, which allows the
influence of a matrix of conditioning variables to be
partialed-out prior to analysis and thus enables evaluation
of independent impacts of each individual factor on the
gut microbiota structure shows that both GLU and age
had a significant independent impact on the Bray-Curtis
distance. Notably, the age factor has the most significant
impact on the Bray-Curtis distance matrix, which

explained 0.9% of total variances, independently. The 2D
PCoA plots of the stool microbiota of people from two
age group and different glucose levels based on Bray-Cur-
tis distance matrix was shown in Fig. 1.

Age supervised clustering of the microbiota
To investigate the impact of the age on the gut micro-
biota composition, we analyzed bacterial differentiated
abundance using age-supervised multivariate regress
trees (MRT). The results showed that when supervised
by age, the microbiota could be stratified into two
groups with 75.5 years as the cut-off age (Fig. 2).
Variation partitioning analysis was conducted to ex-

plore the explanatory power of a numerical age variant
or a categorical age variant. The results indicated that
using a categorical age variant with 75.5 years as the
cut-off value could explain the majority of age-related
gut microbiota changes.

Comparison of diversity of microbial communities among
groups with different glucose levels and age levels
To compare the alpha diversity, the Chao1, Shannon,
Simpson, PD whole tree, and Good’s coverage indexes
were calculated after randomly subsampling the OTU
table down to 60,265 reads per sample, the size of the
smallest sample to obtain equal sequencing depth. No
significant differences were found between different
groups of glucose levels and age levels (age of ≤75 y
or ≥ 76 y) (Table 3, Fig. 3).
In the analyses of beta diversity, consistent with the re-

sult of db-RDA analysis, Adonis tests also shows that
both glucose level variance and age levels (age of ≤75 y
or ≥ 76 y) were significantly associated with Bray-Curtis
distance matrix. However, in the Adonis test after
stratification into ≤75 y and ≥ 76 y age groups, the
association between glucose levels and Bray-Curtis
distance matrix for the≤75 y age group was no longer
significant, while in the ≥76 y age group, the associ-
ation was still significant with a significant higher
R-square values (Table 4). These results suggested
that the gut microbiota structure differed more sig-
nificantly as glucose levels changed in the ≥76 y age
group than in the ≤75 y age group.
We compared the microbiota Bray-Curtis distance

matrix of groups with different ages and glucose
levels using the Wilcoxon signed-rank test. The re-
sults showed that although inter-individual variation
within groups was considerably high, that of the low
glucose group was still significantly lower than that of
the high glucose group, and that of the ≤75 y age
group was significantly lower than that of the ≥76 y
age group. After stratification into ≤75 y and ≥ 76 y
age groups, the inter-individual variation of the high

Table 2 Analysis of the association of demographic, biochemical
and behavior characteristics variants and the microbiota based on
db-RDA and Partial db-RDA on Bray-Curtis distance matrix

db-RDA Partial db-RDA

Adjusted R2 p Adjusted R2 p

Gender 0.000786 0.286

Age 0.009047 0.003 0.00905 0.001

Edu3 0.000428 0.362

Exercise 0.001449 0.248

Meat −0.00074 0.583

Fruit −0.00051 0.534

Vegetable 0.001639 0.214

Alcohol −0.0008 0.54

Smoke 0.001909 0.249

Sleeping −0.00198 0.809

Sleepless 0.001241 0.293

Stress −0.00141 0.668

SBP 0.001487 0.181

DBP −0.00023 0.494

BMI −0.00147 0.834

WHR 0.000624 0.281

GLU 0.004232 0.017 0.00423 0.01

CHO 0.003007 0.057

HDLC 0.002124 0.11

LDLC 0.000757 0.272

TG −0.00045 0.561

Boldface indicate P< 0.05
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Fig. 1 The 2D PCoA plots of the stool microbiota of people from two age group and different glucose levels based on Bray-Curtis distance matrix. (a)
Comparison between the ≥ 76 y age group and ≤ 75 y age group. (b) Comparison between the GLU normal group and GLU high group

Fig. 2 Clustering of the microbiota data supervised by the age based on MRT (multivariate regression trees) analysis and the result of variation
partitioning analysis exploring explanatory power of numerical and categorial variant of age in relation to the microbiota data matrix. (a) The MRT
analysis indicates that supervised by the age variant, the microbiota data could be stratified as 75 and younger group and 76 and older group.
(b) The variation partitioning analysis indicates that the most part of the explanatory power of the numerical variant of age in relation to the
microbiota data matrix could be explained by the two categorial variant of age (age of ≤75 or≥ 76)
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glucose group was significantly higher than that of
the normal glucose group (Fig. 4).

Differences in stool microbiota taxa between groups with
different glucose levels
In Wilcoxon rank-sum test, a total of 9 taxa were
found to have different abundances between the GLU

normal group and GLU high group (q < 0.05 after cor-
rection for multiple testing by false discovery rate
(FDR) control with the Benjamini–Hochberg proced-
ure) (Table 5). Among them, the Actinobacteria at
phylum level, Actinobacteria and Bacilli at class level,
Bifidobacteriales, and Lactobacillales at order level,
Bifidobacteriaceae and Lactobacillaceae at family level,

Table 3 Comparison of the alpha diversity indexes across different group of samples

Overall comparison

Two Categorical GLU group Three Categorical GLU group Age group Total (n = 133)

GLU normal
(n = 78)

GLU high
(n = 55)

NGR
(n = 78)

IFG
(n = 22)

DM
(n = 33)

76 or older
(n = 45)

75 or younger
(n = 88)

min median max mean sd

PD_whole_tree 16.4 ± 4 16.2 ± 4.6 16.4 ± 4 16 ± 3.5 16.3 ± 5.3 16.6 ± 3.8 16.2 ± 4.5 9 15.8 30.7 16.3 4.2

Chao1 290.3 ± 82.7 286.2 ± 98.3 290.3 ±
82.7

278.6 ±
92

291.3 ±
103.4

291.4 ±
81.9

287.2 ± 93 154.5 272.2 576.5 288.6 89.1

Goods_coverage
1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 1 1 1 0

Shannon 4.5 ± 0.8 4.4 ± 0.9 4.5 ± 0.8 4.4 ±
0.6

4.4 ± 1 4.4 ± 0.9 4.5 ± 0.8 2.7 4.5 6.1 4.4 0.8

Simpson 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.6 0.9 1 0.9 0.1

Comparison among 76 ages and older subgroup

Two Categorical GLU group Three Categorical GLU group Total (n = 45)

GLU normal
(n = 26)

GLU abnormal
(n = 19)

NGR
(n = 26)

IFG
(n = 6)

DM
(n = 13)

min median max mean sd

PD_whole_tree 17.2 ± 3.9 15.8 ± 3.7 17.2 ± 3.9 15.8 ± 3.7 15.8 ± 3.9 9.0 16.3 25.2 16.6 3.8

Chao1 301.3 ± 81.9 278 ± 82.1 301.3 ± 81.9 262.7 ±
110.6

285 ± 69.7 162.3 272.1 479.5 291.4 81.9

Goods_coverage
1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1.0 1.0 1.0 1.0 0.0

Shannon 4.6 ± 0.8 4.2 ± 0.9 4.6 ± 0.8 4.2 ± 0.8 4.2 ± 1 2.7 4.6 5.7 4.4 0.9

Simpson 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.6 0.9 1.0 0.9 0.1

Comparison among 75 ages and younger subgroup

Two Categorical GLU group Three Categorical GLU group Total (n = 88)

GLU normal
(n = 52)

GLU abnormal
(n = 36)

NGR
(n = 52)

IFG
(n = 16)

DM
(n = 20)

min median max mean sd

PD_whole_tree 16 ± 4 16.4 ± 5.1 16 ± 4 16.1 ± 3.6 16.6 ± 6.1 9.9 15.6 30.7 16.2 4.5

Chao1 284.8 ± 83.3 290.6 ± 106.7 284.8 ± 83.3 284.6 ±
87.3

295.4 ±
122

154.5 274.2 576.5 287.2 93.0

Goods_coverage
1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1.0 1.0 1.0 1.0 0.0

Shannon 4.4 ± 0.7 4.5 ± 0.8 4.4 ± 0.7 4.5 ± 0.5 4.5 ± 1 2.7 4.5 6.1 4.4 0.8

Simpson 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0 0.9 ± 0.1 0.7 0.9 1.0 0.9 0.1

Table 4 Adonis analysis on the association of microbiota and different glucose levels based on Bray-Curtis distance matrixes

GLU normal VS GLU high NGR VS IGF VS DM

R square value P value R square value P value

Overall data 0.01961 0.003 0.05439 0.002

Aged 76 and older group 0.09618 0.002 0.11801 0.002

Aged 75 and younger group 0.01955 0.117 0.03661 0.091

Boldface indicate P< 0.05
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and Lactobacillus and Bifidobacterium at genus level
were more abundant in the GLU high group.
The discriminatory power of taxa was further assessed

by calculating the AUC of a logistic regression model.
As a result, the AUC values of all 9 taxa were above
0.65, and among them, the taxa Lactobacillus at genus
level and Lactobacillaceae at family level were shown to
have AUC values higher than 0.7, which represents rea-
sonable discrimination power.
The HGR was further divided into IFG and DM

subgroups, which were then compared with the NGR
group. No taxa were found have different abundances
between the NGR group and IFG group, after correc-
tion for multiple testing by FDR control with the

Benjamini–Hochberg procedure. In the comparison of
the NGR group and DM group, all the 9 taxa, which
were more abundant in the GLU high group compar-
ing to GLU normal group were also found have dif-
ferent abundances (q < 0.05 after correction for
multiple testing by FDR control with the Benjamini–
Hochberg procedure). The AUC values of the 9 taxa
ranged from 0.69 to 0.75, and the AUC values of taxa
Actinobacteria at phylum level, Actinobacteria at class
level, Bifidobacteriales at order level, Bifidobacteria-
ceae and Lactobacillaceae at family level, and Bifido-
bacterium and Lactobacillus at genus level were
higher than 0.7, which represents reasonable discrim-
ination power.

Fig. 3 Comparison the alpha diversity between different groups of glucose levels and age levels
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Comparison of stool microbiota taxa between groups
with different glucose levels after age-stratification using
76 years as the cut-off age
We compared differentiated taxa in groups with different
glucose levels after stratification with 75-years as the
cut-off age using the Wilcoxon rank-sum test (Table 5).
The results showed no differentiated taxa between groups

with different glucose levels in the ≤75 y age group. How-
ever, in the ≥76 y age group, 13 taxa showed differentiated
abundances between the high GLU group and normal
GLU group (q < 0.05 after correction for multiple testing
by FDR control with the Benjamini–Hochberg procedure).
The Bacteroidaceae and Lachnospiraceae at family level,
and Lachnospiraceae incertae sedis and Bacteroides at

Fig. 4 Comparison of inter-individual variation within group among samples from different groups of glucose levels stratified by age

Enqi et al. BMC Microbiology          (2019) 19:111 Page 8 of 15



Ta
b
le

5
D
iff
er
en

ce
s
in

st
oo

lm
ic
ro
bi
ot
a
ta
xo
n
be

tw
ee
n
di
ffe
re
nt

gr
ou

ps
of

gl
uc
os
e
le
ve
ls

O
ve
ra
ll
co
m
pa
ris
on

Ta
xo
n

G
LU

no
rm

al
(M

ea
n
±
SD

)
G
LU

hi
gh

(M
ea
n
±
SD

)
W
ilc
ox
on

ra
nk
-

su
m

te
st

D
is
cr
im

in
at
or
y

po
w
er

G
LU

no
rm

al
(M

ea
n
±
SD

)
D
M

(M
ea
n
±
SD

)
W
ilc
ox
on

ra
nk
-

su
m

te
st

D
is
cr
im

in
at
or
y

po
w
er

p-
va
lu
e

q-
va
lu
e

A
U
C
va
lu
e

si
g.

p-
va
lu
e

q-
va
lu
e

A
U
C
va
lu
e

si
g.

p_
_A

ct
in
ob

ac
te
ria

0.
02
53

±
0.
03
63

0.
07
61

±
0.
09
21

0.
00
03

0.
01
8

0.
68
48

0.
00
04

0.
02
53

±
0.
03
63

0.
08
46

±
0.
08
8

0
0.
00
28

0.
74
63

0.
00
03

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria

0.
02
53

±
0.
03
63

0.
07
61

±
0.
09
21

0.
00
03

0.
01
8

0.
68
48

0.
00
04

0.
02
53

±
0.
03
63

0.
08
46

±
0.
08
8

0
0.
00
28

0.
74
63

0.
00
03

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria
.o
__
Bi
fid

ob
ac
te
ria
le
s

0.
01
61

±
0.
02
6

0.
06
31

±
0.
08
15

0.
00
01

0.
00
99

0.
69
76

0.
00
03

0.
01
61

±
0.
02
6

0.
07
14

±
0.
08
55

0
0.
00
28

0.
74
75

0.
00
04

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria
.o
__
Bi
fid

ob
ac
te
ria
le
s.f

__
Bi
fid

ob
ac
te
ria
ce
ae

0.
01
61

±
0.
02
6

0.
06
31

±
0.
08
15

0.
00
01

0.
00
99

0.
69
76

0.
00
03

0.
01
61

±
0.
02
6

0.
07
14

±
0.
08
55

0
0.
00
28

0.
74
75

0.
00
04

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria
.o
__
Bi
fid

ob
ac
te
ria
le
s.f

__
Bi
fid

ob
ac
te
ria
ce
ae
.g
__
Bi
fid

ob
ac
te
riu

m
0.
01
61

±
0.
02
6

0.
06
2
±
0.
08
03

0.
00
01

0.
00
99

0.
69
69

0.
00
03

0.
01
61

±
0.
02
6

0.
06
96

±
0.
08
4

0
0.
00
28

0.
74
57

0.
00
04

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli

0.
00
33

±
0.
00
69

0.
03
57

±
0.
09
42

0.
00
08

0.
04
2

0.
67
14

0.
00
21

0.
00
33

±
0.
00
69

0.
03
15

±
0.
07
99

0.
00
1

0.
04
76

0.
69
81

0.
00
28

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli
.o
__
La
ct
ob

ac
ill
al
es

0.
00
32

±
0.
00
69

0.
03
53

±
0.
09
23

0.
00
09

0.
04
44

0.
66
9

0.
00
21

0.
00
32

±
0.
00
69

0.
03
15

±
0.
07
99

0.
00
1

0.
04
76

0.
69
85

0.
00
27

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli
.o
__
La
ct
ob

ac
ill
al
es
.f_
_L
ac
to
ba
ci
lla
ce
ae

0.
00
11

±
0.
00
53

0.
02
71

±
0.
08
12

0
0.
00
99

0.
70
64

0.
01
55

0.
00
11

±
0.
00
53

0.
02
38

±
0.
07
52

0
0.
00
28

0.
74
79

0.
02
68

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli
.o
__
La
ct
ob

ac
ill
al
es
.f_
_L
ac
to
ba
ci
lla
ce
ae
.g

__
La
ct
ob

ac
ill
us

0.
00
11

±
0.
00
53

0.
02
71

±
0.
08
12

0
0.
00
99

0.
70
64

0.
01
55

0.
00
11

±
0.
00
53

0.
02
38

±
0.
07
52

0
0.
00
28

0.
74
79

0.
02
68

C
om

pa
ris
on

am
on

g
76

ag
es

an
d
ol
de

r
su
bg

ro
up

Ta
xo
n

G
LU

no
rm

al
(M

ea
n
±
SD

)
G
LU

hi
gh

(M
ea
n
±
SD

)
W
ilc
ox
on

ra
nk
-

su
m

te
st

D
is
cr
im

in
at
or
y

po
w
er

G
LU

no
rm

al
(M

ea
n
±
SD

)
D
M

(M
ea
n
±
SD

)
W
ilc
ox
on

ra
nk
-

su
m

te
st

D
is
cr
im

in
at
or
y

po
w
er

p-
va
lu
e

q-
va
lu
e

A
U
C
va
lu
e

si
g.

p-
va
lu
e

q-
va
lu
e

A
U
C
va
lu
e

si
g.

p_
_A

ct
in
ob

ac
te
ria

0.
02
93

±
0.
03
63

0.
13
22

±
0.
09
17

0
0.
00
04

0.
87
25

0.
00
11

0.
02
93

±
0.
03
63

0.
15
81

±
0.
09
34

0
0.
00
02

0.
92
6

0.
00
17

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria

0.
02
93

±
0.
03
63

0.
13
22

±
0.
09
17

0
0.
00
04

0.
87
25

0.
00
11

0.
02
93

±
0.
03
63

0.
15
81

±
0.
09
34

0
0.
00
02

0.
92
6

0.
00
17

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria
.o
__
Bi
fid

ob
ac
te
ria
le
s

0.
02
31

±
0.
03
48

0.
11
69

±
0.
09
07

0
0.
00
04

0.
87
25

0.
00
15

0.
02
31

±
0.
03
48

0.
13
84

±
0.
09
59

0
0.
00
02

0.
92
01

0.
00
23

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria
.o
__
Bi
fid

ob
ac
te
ria
le
s.f

__
Bi
fid

ob
ac
te
ria
ce
ae

0.
02
31

±
0.
03
48

0.
11
69

±
0.
09
07

0
0.
00
04

0.
87
25

0.
00
15

0.
02
31

±
0.
03
48

0.
13
84

±
0.
09
59

0
0.
00
02

0.
92
01

0.
00
23

p_
_A

ct
in
ob

ac
te
ria
.c
__
A
ct
in
ob

ac
te
ria
.o
__
Bi
fid

ob
ac
te
ria
le
s.f

__
Bi
fid

ob
ac
te
ria
ce
ae
.g
__
Bi
fid

ob
ac
te
riu

m
0.
02
31

±
0.
03
48

0.
11
64

±
0.
09

0
0.
00
04

0.
87
45

0.
00
15

0.
02
31

±
0.
03
48

0.
13
78

±
0.
09
51

0
0.
00
02

0.
92
01

0.
00
22

p_
_B
ac
te
ro
id
et
es
.c
__
Ba
ct
er
oi
di
a.
o_

_B
ac
te
ro
id
al
es
.f_
_B
ac
te
ro
id
ac
ea
e

0.
29

±
0.
16
38

0.
13
33

±
0.
12
86

0.
00
15

0.
04
64

0.
77
33

0.
00
52

0.
29

±
0.
16
38

0.
12
49

±
0.
11
86

0.
00
28

0.
08
67

0.
78
99

0.
00
94

p_
_B
ac
te
ro
id
et
es
.c
__
Ba
ct
er
oi
di
a.
o_

_B
ac
te
ro
id
al
es
.f_
_B
ac
te
ro
id
ac
ea
e.
g

__
Ba
ct
er
oi
de

s
0.
29

±
0.
16
38

0.
13
33

±
0.
12
86

0.
00
15

0.
04
64

0.
77
33

0.
00
52

0.
29

±
0.
16
38

0.
12
49

±
0.
11
86

0.
00
28

0.
08
67

0.
78
99

0.
00
94

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli

0.
00
32

±
0.
00
53

0.
08
22

±
0.
14
38

0.
00
01

0.
00
42

0.
83
4

0.
00
47

0.
00
32

±
0.
00
53

0.
06
8
±
0.
11
72

0.
00
02

0.
00
91

0.
84
91

0.
00
48

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli
.o
__
La
ct
ob

ac
ill
al
es

0.
00
32

±
0.
00
53

0.
08
11

±
0.
14
06

0.
00
01

0.
00
42

0.
83
2

0.
00
47

0.
00
32

±
0.
00
53

0.
06
79

±
0.
11
71

0.
00
02

0.
00
91

0.
84
91

0.
00
48

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli
.o
__
La
ct
ob

ac
ill
al
es
.f_
_L
ac
to
ba
ci
lla
ce
ae

0.
00
12

±
0.
00
37

0.
06
47

±
0.
12
44

0
0.
00
01

0.
90
69

0.
02
59

0.
00
12

±
0.
00
37

0.
05
74

±
0.
11
16

0
0.
00
02

0.
92
01

0.
02
62

p_
_F
irm

ic
ut
es
.c
__
Ba
ci
lli
.o
__
La
ct
ob

ac
ill
al
es
.f_
_L
ac
to
ba
ci
lla
ce
ae
.g

__
La
ct
ob

ac
ill
us

0.
00
12

±
0.
00
37

0.
06
47

±
0.
12
44

0
0.
00
01

0.
90
69

0.
02
59

0.
00
12

±
0.
00
37

0.
05
74

±
0.
11
16

0
0.
00
02

0.
92
01

0.
02
62

p_
_F
irm

ic
ut
es
.c
__
C
lo
st
rid

ia
.o
__
C
lo
st
rid

ia
le
s.f
__
La
ch
no

sp
ira
ce
ae

0.
23
3
±
0.
12

0.
10
87

±
0.
07
99

0.
00
03

0.
01
53

0.
80
57

0.
00
31

0.
23
3
±
0.
12

0.
09
25

±
0.
05
74

0.
00
02

0.
00
91

0.
85
5

0.
00
48

p_
_F
irm

ic
ut
es
.c
__
C
lo
st
rid

ia
.o
__
C
lo
st
rid

ia
le
s.f
__
La
ch
no

sp
ira
ce
ae
.g

__
La
ch
no

sp
ira
ce
a_
in
ce
rt
ae
_s
ed

is
0.
03
05

±
0.
02
6

0.
01
07

±
0.
00
99

0.
00
14

0.
04
64

0.
77
53

0.
01
47

0.
03
05

±
0.
02
6

0.
01

±
0.
00
94

0.
00
28

0.
08
67

0.
78
99

0.
03
03

Enqi et al. BMC Microbiology          (2019) 19:111 Page 9 of 15



genus level were more abundant in the GLU normal
group, whereas the Actinobacteria at phylum level, Acti-
nobacteria and Bacilli at class level, Bifidobacteriales and
Lactobacillales at order level, Lactobacillaceae and Bifido-
bacteriaceae at family level, and Lactobacillus and Bifido-
bacterium at genus level were more abundant in the GLU
high group. All had AUC values greater than 0.80. Among
the 13 taxa, Lactobacillaceae and Lactobacillus had AUC
values greater than 0.90, which suggested these two taxa
had satisfactory discrimination power. Among those 13
taxa, 10 taxa also showed differentiated abundances be-
tween NGR and DM groups with AUC values greater than
0.85. no taxa showed differentiated abundances between
the NGR and IFG group.

Discussion
In this study, we investigated the association between
gut microbiota and variables including plasma glucose
levels and demographic, behavioral, and biochemical
characteristics in a population with chronic disease. The
results indicated that plasma glucose level and age con-
tributed significantly to a differentiated gut microbiota
structure. We also identified several taxa whose abun-
dance differed significantly in subgroups with different
glucose levels. After age stratification, we found that the
plasma glucose level affected the gut microbiota struc-
ture more significantly in the ≥76 y age group than in
the ≤75 y age group. Moreover, the taxon abundance
changed significantly with glucose level in different age
groups.
With the widespread application of next-generation se-

quencing technology, more and more studies have dem-
onstrated a close relationship between gut microbiota
and human health and disease. Multiple host demo-
graphic factors and behavioral factors play important
and confounding roles in the relationship between gut
microbiota and physio-pathological indicators.
Our study analyzed the association between gut micro-

biota structure and glucose level and multiple demo-
graphic, behavioral, and biochemical factors using
db-RDA. The results demonstrated that age and glucose
level were significantly associated with gut microbiota
structure.
Several studies have investigated the relationship be-

tween age or glucose level and microbiota composition,
and several hypotheses have been proposed. During the
aging process, the physiology of the intestinal tract is af-
fected, dietary habits and lifestyles change, and immuno-
senescence occurs, all of which contribute to age-related
imbalance of the intestinal microbial community. Re-
ported age-related changes in the intestinal microbiota in-
clude dysbiosis, loss of microbial diversity, increased
vulnerability to environmental perturbations, loss of pro-
biotics, shifts in the dominant species within several

bacterial groups, increase in the total number of faculta-
tive anaerobes, and reduced SCFA production rates. These
modifications of the intestinal microbiota may contribute
to risk for several diseases like inflammatory bowel condi-
tions, metabolic diseases, as well as musculoskeletal con-
ditions [24]. Previous studies have suggested that
abnormal blood glucose levels might cause gut microbiota
changes, such as dysbacteriosis, compositional changes of
microbiota, and changes in metabolites. For example, as
the blood glucose level changes, the concentration of
short-chain fatty acids (SCFAs), which have significant im-
mune system effects in the intestinal mucosa, decreases,
while the concentration of LPS from gram-negative bac-
teria increases. As a result, the pro-inflammatory signal
transduction pathway is activated and consequently causes
chronic low-grade inflammatory status, reduced insulin
sensitivity, and a series of changes that eventually lead to
the occurrence of T2D [25, 26]. All of these studies indi-
cate that dysbacteriosis is closed associated with aging and
abnormal blood glucose levels [25, 26]. However, an ob-
jective and comprehensive definition of intestinal flora im-
balances is still lacking.
Some studies have attempted to identify the

alpha-diversity related characteristics in the gut micro-
biota of aged populations. Biage et al. observed that the
microbial composition and diversity of the gut ecosys-
tem of young adults differs significantly from that of Ital-
ian centenarians [27]. However, Bian et al. and Kong et
al. reported that the microbiota of healthy aged adults
differs little from that of healthy young adults in the
Chinese population [28, 29]. Similarly, it is debatable
whether alpha-diversity related microbiota characteris-
tics are associated with abnormal blood glucose levels,
with some studies reporting associations between lower
microbiota diversity and T2D or insulin resistance [16,
30], while others do not support such associations [14,
17, 20]. In this study, we compared five alpha-diversity
indices between different age groups with various blood
glucose levels and did not find significant differences.
Discrepancies in the association between microbiota
alpha-diversity and age or blood glucose levels could be
explained by ethnic or demographic difference between
studies. For example, Wang et al. investigated and com-
pared the composition and richness of the gut micro-
biota of healthy individuals and diabetes patients from
two ethnic groups, Uyghurs and Kazaks. Significant dif-
ferences in microbial richness and a higher number of
OTUs were found between the Kazak healthy and dia-
betic groups, while no major differences in intestinal
microbiota were found between the Uyghur healthy and
diabetic groups [13]. Another possible explanation might
be that alpha-diversity is affected by multiple confound-
ing factors. When the factors are not well controlled, the
results might be biased.
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Inter-individual variation within groups is another par-
ameter that can reflect the stability of gut microbiota.
Individuals with healthy and hemostatic gut microbiota
share higher similarity regarding the composition and
richness of microbes, while those with imbalanced
microbiota show different changes and tend to have
higher inter-individual variations. This is similar to the
so-called Anna Karenina principle, derived from Leo
Tolstoy’s dictum that “all happy families look alike; each
unhappy family is unhappy in its own way”, and has
been used for successful modeling in many different
fields such as business, psychology, economics, biology,
and recently in microbiota [31]. In this study, we com-
pared the inter-group differences of the distances matrix
under different age and plasma glucose conditions using
the Wilcoxon signed-rank test. The results showed con-
siderable inter-individual variation within groups. How-
ever, the inter-individual variation of the low blood
glucose group was significantly lower than that of the
high blood glucose group, and the inter-individual vari-
ation of the ≤75 y age group was significantly lower than
that of the ≥76 y age group. These results are consistent
with Bian’s report [28] in which the 94-year-old group
had a larger beta diversity than did younger groups, and
with Qin’s report [14] in which T2D was found to be a
significant factor in the variation in examined gut micro-
bial samples. These studies all support the hypothesis
that microbiota homeostatic imbalance is age and blood
sugar level-related. The elderly or individuals with ab-
normal blood sugar levels tend to have higher
inter-individual variation in gut microbes or the vari-
ation tends to be greater.
Further Wilcoxon signed-rank tests in the

age-stratified groups showed that although the
inter-individual variation of the high-blood glucose
group was significantly higher than that of NGP in both
≤75 y and ≥ 76 y age groups, compared with the ≤75 y
age group, the differences of the inter-individual vari-
ation were more significant in the ≥76 y age group. This
result is consistent with the Adonis analysis of the
age-stratified groups and indicated that the association
between blood glucose level and gut microbiota stability
differs in different age groups. Therefore, it is necessary
to consider the effects of age when investigating the rela-
tionship between blood glucose and gut microbiota.
In this study, we analyzed the taxonomic differences in

gut microbiota in groups with different blood glucose
levels. We found that Lactobacillus species and their re-
lated taxa had higher richness in the high blood glucose
group (> 6.0) as compared with the normal blood glu-
cose group (≤6.0). Similarly, Lactobacillus species and
their related taxa had higher richness in the DM group
than in the NGT group. This is consistent with previous
studies on diabetic subjects in different populations of

the world indicating a significantly higher abundance of
Lactobacillus species in fecal samples of high blood glu-
cose groups [16, 19, 20]. In children with
insulin-dependent diabetes mellitus (IDDM), high saliv-
ary glucose levels lead to increased salivary lactobacilli
counts [32]. Therefore, increased abundance of Lactoba-
cillus in the gastrointestinal tract could be the result of
increased intestinal glucose levels [16]. In fact, our re-
sults also demonstrated that the abundance of Lactoba-
cillus tends to increase as the blood glucose level
increases in NGT, IFG, and DM groups.
The richness of Bifidobacterium species and their re-

lated taxa was also found significantly associated with el-
evated blood glucose levels. This result is contrary to
those of Wu et al. [18] and Sedighi et al. [19]. They
found lower concentrations of Bifidobacterium in T2DM
patients than in normal controls. However, our result is
consistent with that of Sepp et al., in which the counts
and proportions of Bifidobacterium were associated with
higher glucose levels [15]. Therefore, the association be-
tween the richness of Bifidobacterium species and blood
glucose levels is controversial and needs further
investigation.
The controversy over the association between gut

microflora composition and blood glucose levels could
be explained by differences in the participating popula-
tions, the microbial detection methods, the statistical
methods, etc. In addition, multiple confounding factors
could cause contradictory results. In our study, we can
conclude that age is an important factor affecting the as-
sociation between blood glucose levels and gut microbial
composition.
It is generally accepted that an age of 60 or 65 years

is defined as elderly or old. However, the definition of
aged gut microbiota is still debatable. Current investi-
gations of the association between age and gut micro-
biota are mainly based on different age groups, but
the results vary significantly [27, 28, 33, 34]. When
conducting age-related microbiota studies, using
study-specific age standard may improve the reliability
of the results. Therefore, we used a supervised clus-
tering method and found the microbiota could be
strictly stratified into two groups with 75.5 years as
the cut-off age. Further variation partitioning analysis
shows that the categorical age variant with 75.5 years
as the cut-off value could explain the majority of
age-related gut microbiota changes, therefore the age
of 75.5 years might be the best cut-off to stratify the
population of this study. The finding of the potential
switch in the microbiota structure at the age of 76
years in this study population is very interesting and
indicative, however more researches must be con-
ducted to evaluate whether the cut off age of 75.5
years is also applicable to other populations.
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After stratification by age at 75 years, the differentiated
taxa were analyzed and compared in groups with differ-
ent blood glucose levels. The result showed that the
blood glucose-related taxa differed significantly between
the ≤75 y and ≥ 76 y age groups. In the ≤75 y age group,
the differences of blood glucose-related taxa showed a
similar trend as in the ≥76 y age group. However, after
correcting by q value, the difference was not significant
(data not shown). In the ≥76 y age group, the differences
of these taxa were much more significant. For example,
Lactobacillus genus and 3 related taxa, as well as Bifido-
bacterium genus and 5 related taxa, were able to differ-
entiate high glucose and normal glucose, as well as DM
and NGT, with an AUC value greater than 0.8.
In addition, in the ≥76 y age group, 2 taxa, the Lach-

nospiraceae family and the Lachnospiracea incertae sedis
genus showed significantly higher abundances in the
normal blood glucose group. Of them, the Lachnospira-
ceae family also displayed significant associations with
blood glucose level when we compared the DM and
NGR groups. An association between the Lachnospira-
ceae family and blood glucose level has been reported,
but the results are inconsistent. According to Bhute et
al. [16], Lachnospiraceae were significantly more abun-
dant in NGTs subjects than in the DM group, while Qin
et al. reported that an metagenomic linkage group
(MLG) assigned to the Lachnospiraceae family was sig-
nificantly associated with T2D [14]. In our study, the as-
sociation between Lachnospiraceae and its related taxa
and blood glucose levels were not significant in the ≤75
y age group (p > 0.05), but very significant in ≥76 y age
DM group with all the AUC values greater than 0.85 (p
< 0.01, q > 0.05). These results suggested that the associ-
ations between these taxa and blood glucose levels might
change with different age levels.
There are some limitations of this study. First, due to

the cross-sectional experimental design, we were not
able to determine the causal connection between aging,
abnormal glucose, and changes in gut microbiota. Sec-
ond, we used 16 sRNA gene sequencing to analyze the
gut microbiome. This method could introduce bias dur-
ing several processes, including the selection of the gene
amplification area, the gene amplification procedure, the
selection of gene sequence database, and OTU cluster-
ing. In addition, this study included many elderly partici-
pants. Older people generally have a higher burden of
multimorbidity and polypharmacy than younger ones,
and both these elements could be associated with a dif-
ferent fecal microbiota composition. This could also
introduce some bias in the results of this study. How-
ever, compared with other studies that have investigated
the relationship between blood glucose level and gut
microbiota, the strengths of our work includes, we en-
rolled participants with a wider age range, all the

participants were from the same community and their
behavioral and physiological parameters were collected.

Conclusions
In this study, we found that both blood glucose level and
age have significant impacts on the composition of gut
microbiota. The association between glucose level and
the composition and activity of gut microbiota was af-
fected profoundly by age and displayed distinct charac-
teristics at different age groups. Our findings suggest
that it is necessary to take age into account when inves-
tigating the association between glucose and gut micro-
biota. We also identified multiple taxa that were highly
associated with high glucose levels in the ≥76 y age
group, but not in the ≤75 y age group. More research is
required to determine the underlying biological
mechanisms.

Methods
Sample collection and processing
With approval from the Ethics Committee of Minzu
University of China (MUC), the subjects of the present
study were enrolled from populations that participated
in community health examinations in Beijing in August
2015. The inclusion criteria included 1) Subject is a male
or female aged over 40. 2) Subject did not take any
medicine in recent 2 weeks. 3) subject have no previous
chronic gastrointestinal disease. The exclusive criteria
included usage of any medicine, probiotics, or prebiotics
within 2 weeks, diagnosis of psychiatric disorders, intes-
tinal diseases, and neoplasia. A total of 133 subjects were
enrolled in the study after obtaining both written and
verbal consent from the subjects.
Height, weight, waist-to-hip ratio, and blood pressure

were measured for all subjects, and risk factor informa-
tion of lifestyle profile (such as exercise, diet, smoking,
alcohol, sleeping, and stress) were collected by a ques-
tionnaire during the waiting time of the physical exam-
ination. Blood samples before breakfast were collected
to measure blood lipids and glucose. Fecal samples were
collected with sterile cups and were frozen at − 20 °C
immediately, then transferred to the laboratory within
24 h and stored at − 80 °C before DNA extraction.
Blood samples before breakfast were tested for glu-

cose, serum total cholesterol (CHO), low-density lipo-
protein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), and triglycerides (TG) using an
automatic biochemical analyzer.
Extraction of total DNA from stool samples was con-

ducted according to the manual of the PowerSoil® DNA
Isolation Kit. The purity of DNA was evaluated using
the A260/280 ratio. Samples with A260/280 ratios between
1.8 and 2.2 were used for further experiments.

Enqi et al. BMC Microbiology          (2019) 19:111 Page 12 of 15



Microbiota sequencing
The V3-V4 region of the bacterial 16S rRNA gene was
amplified with the common primer pair (forward primer,
5′- ACTCCTACGGGAGGCAGCA-3′; reverse primer,
5′- GGACTACHVGGGTWTCTAAT-3′) combined with
adapter sequences and barcode sequences. PCR amplifica-
tion was performed in a total volume of 50 μl, which con-
tained 10 μl buffer, 0.2 μl Q5 High-Fidelity DNA
Polymerase, 10 μl High GC Enhancer, 1 μl dNTP, 10 μM
of each primer, and 60 ng genomic DNA. Thermal cycling
conditions were as follows: an initial denaturation at 95 °C
for 5min, followed by 15 cycles at 95 °C for 1 min, 50 °C
for 1 min, and 72 °C for 1min, with a final extension at 72
°C for 7min. The PCR products from the first step PCR
were purified through VAHTSTM DNA Clean Beads. A
second round of PCR was then performed in a 40-μl reac-
tion which contained 20 μl 2 × Phusion HF MM, 8 μl
ddH2O, 10 μM of each primer, and 10 μl PCR products
from the first step. Thermal cycling conditions were as fol-
lows: an initial denaturation at 98 °C for 30 s, followed by
10 cycles at 98 °C for 10 s, 65 °C for 30 s min, and 72 °C for
30 s, with a final extension at 72 °C for 5min. Finally, all
PCR products were quantified by the Quant-iT™ dsDNA
HS Reagent and pooled together. High-throughput se-
quencing analysis of bacterial rRNA genes was performed
on the purified, pooled sample using the Illumina Hiseq
2500 platform (2 × 250 paired ends) at Biomarker Tech-
nologies Corporation, Beijing, China.

Bioinformatics analysis
The raw reads were demultiplexed and then trimmed,
merged, and filtered by Usearch9.0.2132_i86linux32 fol-
lowing the UPARSE pipeline. All reads were trimmed to
the position of the first base with quality score ≤ 2, and se-
quences shorter than 64 after trimming were discarded.
Paired reads with a number of expected error > 1.00 were
further filtered out during the filtering step. Sequences
were dereplicated and clustered with a threshold of 97%
similarity for picking operational taxonomic units (OTUs)
representative after Chimera checking. After that, all se-
quences were mapped back to the representative se-
quences resulting in an OTU table for all samples. The
RDP Classifier was used to assign 16S rRNA gene se-
quences to a taxonomical hierarchy with a confidence
threshold of 80%. OTU representative sequences were
aligned and further filtered to create a phylogenetic tree
using the QIIME pipeline. The OTU table was randomly
subsampled down to the size of the smallest sample to ob-
tain equal sequencing depth. Finally, a total of 60,265
reads per sample were used for further analysis.

Statistical analysis
Categorical variables are presented as frequencies and
percentages. Chi-squared tests and Fisher’s exact test

were used to assess statistical associations between vari-
ables. Numerical variables are expressed as mean ±
standard deviation (SD). ANOVA (one-way analysis of
variance) was used to compare the differences between
groups.
The Chao1, Shannon, Simpson, PD whole tree, and

Good’s coverage indexes were used for richness and di-
versity estimations of the gut microbiota.
The db-RDA and Adonis tests were performed on the

Bray-Curtis distance matrix to investigate the differences
of beta diversity between different characteristics vari-
ables of the participants.
Multivariate regression tree methodology was used for

cluster analysis of bacterial abundance where clusters
were age stratified. This analysis enabled us to determine
the age limit with the highest explanatory power.
The Wilcoxon rank-sum test were performed on

abundance data to explore the taxa significantly different
among groups. The discriminatory power of a taxon was
further assessed by calculating the area under
receiver-operating characteristic curve (AUC) of a logis-
tic regression model.
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