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Letrozole treatment of adult female mice
results in a similar reproductive phenotype
but distinct changes in metabolism and the
gut microbiome compared to pubertal
mice
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Abstract

Background: A majority of women with polycystic ovary syndrome (PCOS) have metabolic dysfunction that results
in an increased risk of type 2 diabetes. We previously developed a pubertal mouse model using the aromatase
inhibitor, letrozole, which recapitulates many of the reproductive and metabolic features of PCOS. To further our
understanding of the effects of androgen excess, we compared the effects of letrozole treatment initiated in
puberty versus adulthood on reproductive and metabolic phenotypes as well as on the gut microbiome.

Results: Letrozole treatment of both pubertal and adult female mice resulted in reproductive hallmarks of PCOS,
including hyperandrogenemia, anovulation and polycystic ovaries. However, unlike pubertal mice, treatment of
adult female mice resulted in modest weight gain and abdominal adiposity, minimal elevation in fasting blood
glucose and insulin levels, and no detectable insulin resistance. In addition, letrozole treatment of adult mice was
associated with a distinct shift in gut microbial diversity compared to letrozole treatment of pubertal mice.

Conclusions: Our results indicate that dysregulation of metabolism and the gut microbiome in PCOS may be
influenced by the timing of androgen exposure. In addition, the minimal weight gain and lack of insulin resistance
in adult female mice after letrozole treatment indicates that this model may be useful for investigating the effects
of hyperandrogenemia on the hypothalamic-pituitary-gonadal axis and the periphery without the influence of
substantial metabolic dysregulation.
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Background
Polycystic ovary syndrome (PCOS) is the most common
endocrine disorder in reproductive-aged women with an
estimated world-wide prevalence of 6–15%, but the eti-
ology of PCOS is not well understood [1]. Heritability
and twin studies have identified a strong genetic compo-
nent that is likely polygenic [2–4]. Recent genome-wide
association studies have reported multiple susceptibility

loci associated with an increased risk of developing
PCOS [5]. Environmental factors, such as prenatal ex-
posure to androgens may also play a role in the etiology
of PCOS [6]. Currently, diagnosis is made using the Rot-
terdam Consensus criteria (2003), which require at least
two of the following: hyperandrogenism, oligo- or amen-
orrhea and polycystic ovaries [1].
Studies have shown that women with PCOS often suf-

fer from profound, long-term health issues [7]. PCOS is
the leading cause of anovulatory infertility in women
and increases the likelihood of miscarriage and preg-
nancy complications [8, 9]. In addition, a majority of
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women with PCOS have abnormalities that increase
their risk of developing metabolic disease [1, 10–15]. A
large, retrospective study demonstrated that PCOS was
associated with an increased risk of obesity (16 vs. 3.7%)
and type 2 diabetes (12.5 vs. 3.8%) over a 15-year period
[16]. Studies show that hyperandrogenism is strongly
correlated with development of a metabolic phenotype.
Metabolic dysfunction occurs predominantly in women
diagnosed with hyperandrogenism and ovulatory dys-
function, independent of body mass index [17, 18].
A complex community of microorganisms (the micro-

biome) resides within the large intestine and is import-
ant for human health [19, 20]. Correlative studies have
demonstrated that the gut microbiome of individuals
with metabolic disorders, such as obesity and diabetes,
differ significantly from healthy individuals [21–25]. In
addition, mouse models of obesity are associated with
gut microbiome dysregulation [26–31]. Studies have also
shown that fecal transplantation of the gut microbiome
from obese individuals into germ-free mice results in an
obese phenotype [22, 32, 33], indicating a potential role
of the gut microbiome in the development of metabolic
disorders [34]. Recent studies indicate that changes in
the gut microbiome are associated with PCOS. Women
diagnosed with PCOS using the Rotterdam criteria were
reported to have a significant reduction in the overall
bacterial species richness (alpha diversity) of the gut mi-
crobial community and changes in the abundance of
several bacterial taxa compared to healthy women [35–
37]. Interestingly, a study from our lab also showed a
significant correlation between hyperandrogenism and
diversity of the gut microbiome, suggesting that andro-
gens may influence the composition of the gut micro-
biome in women [37].
Since hyperandrogenism is associated with PCOS, re-

searchers have created animal models to study the role
of androgens in the development and pathology of
PCOS [reviewed in [38–42]]. Several mouse models were
developed using treatment with exogenous dihydrotes-
tosterone but these models did not exhibit the elevated
LH levels associated with PCOS [43–47]. We developed
a PCOS mouse model in pubertal female mice using
treatment with the aromatase inhibitor, letrozole, to
limit the conversion of testosterone to estrogen which
results in increased testosterone and decreased estrogen
levels. This model is based on the findings that genetic
variants of the aromatase gene are associated with the
development of PCOS in women and that a higher an-
drogen/estrogen ratio is found in the ovaries of women
with PCOS [48–52]. We demonstrated that this mouse
model has many hallmarks of PCOS including hyperan-
drogenemia, elevated LH levels, acyclicity, and polycystic
ovaries [53, 54]. This model also exhibited a metabolic
phenotype including weight gain, abdominal adiposity,

dysglycemia, hyperinsulinemia, and insulin resistance
after 5 weeks of letrozole treatment [55]. Similar to
women with PCOS, we also showed that there was a sig-
nificant decrease in the alpha diversity of the gut micro-
biome in the letrozole-induced PCOS mouse model that
correlated with hyperandrogenism [54]. To gain more
insight into the effects of androgen excess, we investi-
gated whether the timing of testosterone exposure was
important for the pathophysiology of PCOS by evaluat-
ing the effects of letrozole treatment on reproductive
and metabolic phenotypes in pubertal versus adult fe-
male mice.

Results
Letrozole treatment of adult female mice resulted in
reproductive hallmarks of PCOS
In this study, we investigated whether the age at which
letrozole treatment was initiated affected development
of the PCOS phenotype in female mice (Fig. 1a). Five
weeks of letrozole treatment in pubertal and adult fe-
male mice resulted in elevated serum testosterone levels
(Fig. 1b-c). Letrozole treatment in adult female mice also
resulted in increased LH levels (Fig. 1d) and acyclicity
(Fig. 1e). Interestingly, the ovarian weight was similar in
placebo and letrozole-treated adult mice (Fig. 1f ). This is
in contrast to the increase in ovarian weight previously
observed in letrozole-treated pubertal mice [53, 54].
Similar to pubertal mice, letrozole treatment of adult
female mice resulted in ovaries with cystic follicles
and hemorrhagic cysts (Fig. 1g). Ovaries in the
letrozole-treated mice also lacked corpora lutea, indicat-
ing a lack of ovulation compared to placebo-treated
mice.

Letrozole treatment of adult female mice resulted in
minimal weight gain and abdominal adiposity after 5
weeks of treatment
Similar to previous reports [53, 54], letrozole treatment
of pubertal female mice for 2 weeks resulted in substan-
tial weight gain compared with placebo treatment, and
weight was still increased at the end of the study
(Fig. 2a). In contrast, letrozole treatment of adult female
mice resulted in a more modest weight gain after 2
weeks of treatment and weight was not statistically dif-
ferent compared to placebo-treated mice after 5 weeks
of treatment (Fig. 2a). Letrozole treatment of pubertal
female mice resulted in a significant change in abdom-
inal adiposity compared with placebo as reflected in an
increase in the weight of the parametrial fat pad relative
to total body weight (Fig. 2b). However, letrozole treat-
ment of adult mice did not result in increased abdominal
adiposity compared with placebo-treated mice (Fig. 2b).
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Fig. 1 Letrozole treatment of adult female mice resulted in reproductive hallmarks of PCOS. Letrozole (LET) treatment was initiated at 8 weeks of
age in the adult PCOS mouse model compared to 4 weeks of age in the pubertal PCOS mouse model (a). LET treatment of pubertal and adult
female mice for 5 weeks resulted in elevated serum testosterone (b-c). LET treatment of adult female mice resulted in elevated LH levels (d), and
decreased cyclicity as measured by percentage (%) of mice that had an estrous cycle between 4 and 5 weeks of treatment (e). In contrast to
pubertal mice, LET treatment of adult female mice did not result in an increase in ovarian weight (f). Pubertal PCOS model (n = 24 placebo (P), n
= 22 LET; adult PCOS model (n = 16 P, n = 14 LET). Student t-test; * p < 0.05. LET treatment of adult female mice resulted in ovaries lacking corpora
lutea (CL) and containing cystic follicles (CF) and hemorrhagic cysts (HC) compared to placebo-treated mice (g)
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Letrozole treatment of adult female mice resulted in less
elevation of fasting blood glucose and insulin levels and
did not result in insulin resistance
Both the pubertal and adult PCOS mouse models dis-
played dysglycemia and hyperinsulinemia but the pheno-
type was more modest in the adult model. Letrozole
treatment of pubertal female mice resulted in elevated
fasting blood glucose (FBG) levels and a 3-fold increase

in fasting blood insulin levels (Fig. 3a-b). In contrast,
letrozole treatment of adult female mice resulted in a
slight but statistically significant increase in FBG and a
2-fold increase in insulin levels. There was no significant
difference in the response to exogenous glucose in a glu-
cose tolerance test in mice treated with letrozole com-
pared to placebo in either the pubertal or adult PCOS
mouse models (data not shown). Finally, the pubertal
PCOS mouse model displayed signs of insulin resistance
compared to placebo-treated mice while the adult PCOS
mouse model remained insulin sensitive (Fig. 3c).

Letrozole treatment of adult female mice was not
associated with a strong correlation between alpha
diversity and time
Gut microbial diversity profiles were generated from 84 fecal
samples taken prior to and during 5weeks of placebo or
letrozole treatment (weeks 0–5). Sequences collected before
placebo and letrozole treatment were compared for both the
pubertal and adult mouse models. No significant difference
in alpha and beta diversity was observed between the two
treatment groups at time 0, indicating that the gut micro-
biomes of the groups were similar prior to treatment for
both the pubertal and adult cohort (Additional file 1: Figure
S1). Similar to a previous study in pubertal mice [54],
placebo-treated adult mice showed a strong positive correl-
ation between alpha diversity and time as measured by spe-
cies richness and phylogenetic diversity but not evenness of
their gut communities (Fig. 4a, c, e). In contrast, letrozole
treatment of adult mice was associated with a relatively
weak positive correlation between alpha diversity and time
(Fig. 3b, d, f). To examine this further, we evaluated whether
there was a significant difference amongst the time points
using a repeated measures (RM) ANOVA. RM-ANOVA
found a highly significant effect of time on species richness
and phylogenetic diversity in placebo-treated mice but no
difference in letrozole-treated mice.

Letrozole treatment of adult female mice resulted in
changes in gut microbiome beta diversity
UniFrac analyses were used to compare the similarity
amongst gut microbial communities (beta diversity) in
fecal samples from placebo versus letrozole–treated
adult female mice. When all post-treatment data points
were combined together, clustering of the data based on
treatment was observed with unweighted UniFrac
(Fig. 5a). When the samples were separated by the indi-
vidual time points (Fig. 5b-f ), Analysis of Similarity
(ANOSIM) tests found a difference in the overall bacter-
ial community composition of the gut microbiome be-
tween placebo and letrozole–treated adult female mice
at weeks 4 and 5 post-treatment (p = 0.01 and p = 0.03
respectively). We also observed similar results using
weighted UniFrac (data not shown).

A

B

Fig. 2 Five weeks of letrozole treatment of adult female mice did
not result in substantial weight gain or abdominal adiposity. The
phenotype of pubertal (4 week-old) versus adult (8 week-old) female
mice treated with placebo (P) or letrozole (LET) for 5 weeks was
compared. In contrast to pubertal mice, 5 weeks of LET treatment of
adult female mice did not result in a significant increase in weight
(a) or abdominal adiposity as measured by parametrial fat relative to
total body weight (b). Pubertal PCOS model (n = 24 P, n = 22 LET;
adult PCOS model (n = 16 P, n = 14 LET). Student t-test, * p < 0.05
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Distinct bacterial genera discriminated between placebo
and letrozole treatment in the pubertal and adult PCOS
mouse models
In addition to studying changes in alpha and beta di-
versity, we also investigated whether the age at which
letrozole treatment was initiated was important for
changes in the taxonomic composition of the gut
microbiome. We combined the post-treatment data
(weeks 1–5) from placebo and letrozole-treated mice
in the pubertal and adult mouse models. Based on
the Greengenes taxonomic database, we identified a
total of 10 bacterial phyla and 51 bacterial genera in
the four different groups. Similar to our previous
study [54], the majority of Operational Taxonomic
Units (OTUs) in the adult mouse fecal samples were
identified as Bacteriodetes or Firmicutes (~ 84–95%).
We used RM-ANOVA to determine if the mean rela-
tive abundances of specific bacterial genera were dif-
ferent in the gut microbiome of placebo versus
letrozole-treated mice in the pubertal and adult
mouse models. A heatmap was generated to represent
the relative abundance of 9 different bacterial genera
that changed significantly with letrozole treatment
(FDR-corrected p < 0.05) in the pubertal mouse model
(Fig. 6a). Letrozole treatment of pubertal female mice
resulted in higher relative abundances of Coprococcus,
Allobaculum, Bifidobacterium, and an undescribed
genus belonging to the Ruminococcaceae, as well as
a lower abundance of AF12, Dehalobacterium, taxa
belonging to the uncultured order YS2, and unde-
scribed genera of Peptococcaceae and Bacteroidales
(Fig. 6a).
In contrast to the pubertal mice, letrozole treat-

ment of adult female mice resulted in changes in the
mean relative abundance of a distinct set of 8 bac-
terial genera (FDR-corrected p < 0.05). With the ex-
ception of uncultured members of the genus-level
CF231 group, the rest of the genera from the Bacter-
oidetes phylum increased with letrozole treatment in

Fig. 3 Five weeks of letrozole treatment of adult female mice
resulted in a minimal increase in fasting blood glucose and insulin
levels and did not result in insulin resistance. The metabolic
phenotype of pubertal (4 week-old) versus adult (8 week-old) female
mice treated with placebo (P) or letrozole (LET) for 5 weeks was
compared. LET treatment of adult female mice resulted in reduced
fasting blood glucose (FBG) or insulin levels compared to pubertal
mice (a-b). Unlike pubertal female mice, LET treatment of adult
female mice for five weeks did not result in insulin resistance (c).
Pubertal PCOS model (n = 24 P, n = 22 LET; adult PCOS model (n = 8
P, n = 8 LET). Student t-test or two-way repeated-measures ANOVA
with post-hoc Student t-tests to directly compare P versus LET at
specific time points were performed; * p < 0.05
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adult female mice, including Prevotella, an uncul-
tured genus within Parabacteroides and a genus-level
group within the S24–7 family (Fig. 6c). Letrozole
treatment of adult mice also resulted in a higher
relative abundance of genera from Lachnospiraceae,
Ruminococcaceae, and Peptococcaceae, as well as a
lower abundance of Lactobacillus (Fig. 6c).

Random Forest classifier identified bacterial genera
predictive of placebo and letrozole treatment in the
pubertal and adult PCOS mouse models
The Random Forest (RF) classifier was trained to deter-
mine how well placebo or letrozole treatment could be
predicted based on bacterial relative abundances in the
two models (pubertal and adult). Forty-five of the 51

A B
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Fig. 4 Letrozole treatment of adult female mice did not result in a strong correlation between time and alpha diversity of the gut microbial
community. Chao 1 species richness estimate per sample at each collection time for placebo (a) and letrozole-treated adult female mice (b), (n =
8 placebo, n = 6 letrozole). Faith’s phylogenetic diversity (PD) estimate per sample at each collection time for placebo (c) and letrozole-treated
adult female mice (d). Equitability (evenness) estimate per sample at each collection time point for placebo (e) and letrozole-treated mice (f). Line
of best fit along with results of linear regression (LM) and repeated measures (RM) ANOVA are shown in box inset
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total bacterial genera identified in the four different
groups were used for RF classification (six were excluded
due to low relative abundances). Our results showed that
RF predicted treatment category in the pubertal group
with 78.5% accuracy while it predicted treatment cat-
egory in the adult group with 84% accuracy (Table 1).
Variable importance by mean decrease in accuracy was
calculated for the RF models. Figure 6b and d illustrate

10 bacterial genera whose removal caused the greatest
decrease in model accuracy (i.e. the most important for
classification) in the pubertal and adult mouse models
respectively. In the pubertal model, the removal of
Coprococcus, Allobaculum, AF12, Mucispirillum, Rose-
buria, Sutterella, and an unknown genus from Bacteroi-
dales had the greatest impact on classification (mean
decrease accuracy > 8; Fig. 6b). In the adult mice, the
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Fig. 5 Letrozole treatment of adult female mice resulted in a significant shift in the beta diversity of the gut microbiome. Principal Coordinates
Analysis (PCoA) of unweighted UniFrac for samples collected post-treatment (weeks 1–5) were compared between placebo (n = 8) and letrozole-
treated (n = 6) mice (a). Proportion of variance explained by each principal coordinate axis is denoted in the corresponding axis label. Samples
from placebo- and letrozole-treated mice were then compared for each time point (b-f). Results of Analysis of Similarity (ANOSIM) tests are
shown in the box inset
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removal of Lactobacillus, CF231 and Parabacteriodes
caused the greatest decrease in prediction accuracy
(mean decrease accuracy > 8; Fig. 6d).

Discussion
Our study demonstrated that initiation of letrozole
treatment during puberty or adulthood in female mice
resulted in reproductive hallmarks of PCOS, including
elevated testosterone levels, anovulation and ovaries
with cystic follicles. This suggests that the timing of
androgen exposure (puberty versus adulthood) may

not be important for development of the PCOS re-
productive phenotype. On the other hand, our study
did find a clear divergence between the metabolic
phenotypes of the pubertal and adult mouse models.
Similar to previously published studies [53, 54], letro-
zole treatment in pubertal female mice resulted in
multiple metabolic features of PCOS, including obes-
ity, abdominal adiposity, hyperinsulinemia, and insulin
resistance. On the other hand, letrozole treatment in
adult female mice did not result in substantial weight
gain, abdominal adiposity or insulin resistance, indicating

A B

C D

Fig. 6 Repeated measures analysis of variance and Random Forest classification identified distinct bacteria associated with letrozole treatment in
the pubertal versus adult PCOS mouse model. Repeated measures analysis of variance (corrected for multiple comparisons via FDR) was used to
determine whether the abundance of specific bacterial genus differed in placebo versus letrozole-treated pubertal or adult mice. A heatmap was
generated for the bacterial genera that had a FDR adjusted p-value of < 0.05 and mean taxa abundance above 0.001 (a, c). The Random Forest
classifier was used to identify bacterial genera that distinguished between placebo and letrozole treatment in pubertal or adult female mice (b,
d). The top ten most discriminant bacterial genera in the models were displayed in the variable importance plots using a total of forty-five
genera in the analysis. An increase in mean decrease accuracy reflects the prediction strength of the variable in classifying the different
treatment groups

Torres et al. BMC Microbiology           (2019) 19:57 Page 8 of 15



that androgen exposure is not sufficient to induce the full
PCOS-like metabolic phenotype in adult female mice.
Interestingly, studies using post-natal treatment with
DHT to create a hyperandrogenic mouse model observed
a similar pattern: the metabolic phenotype depended on
when DHT treatment was initiated. Compared with
placebo-treated mice, female mice treated with DHT start-
ing at 3 weeks of age gained significantly more weight, had
greater levels of abdominal adiposity and were glucose in-
tolerant [43, 47]. In contrast, while female mice treated
with DHT in adulthood had impaired glucose tolerance,
they did not become obese or display increased abdominal
adiposity [56].
Our results also suggest that the timing of excess an-

drogen exposure may be an important component in the
development of the PCOS metabolic phenotype. Since
PCOS often manifests in the early reproductive years,
puberty has been suggested to be a critical developmen-
tal time period for the development and pathology of
PCOS [6, 57]. Indeed, PCOS has been hypothesized to
originate from abnormal pubertal development due to a
lack of transition from an androgen-dominated state in
early puberty to an estrogenic state in late puberty [58,
59]. Puberty is a time of considerable hormonal and
metabolic change, including an increase in insulin resist-
ance [60]. Although physiological insulin resistance is
common in healthy adolescents, it usually resolves to
prepubertal levels in adulthood [61]. Pubertal insulin re-
sistance has been reported to increase the risk of devel-
oping type 2 diabetes along with accelerating the
complications of diabetes [62–65]. Thus, it is possible
that insulin resistance and the hyperinsulinemia that oc-
curs during puberty may also contribute to the risk of
developing obesity and metabolic dysfunction in PCOS.
Another factor that changes during the transition from

childhood to adulthood is the gut microbiome. Studies
have shown that children or adolescents have a distinct
gut microbial community compared to adults [66, 67].
Moreover, prepubertal mice were reported to have a dif-
ferent gut microbiome than adult mice [68, 69]. Studies

in humans and mice have shown a strong positive asso-
ciation between gut bacterial alpha diversity and age, in-
dicating that the complexity of the gut microbiome
increases as the host ages [70–72]. In contrast to pla-
cebo, there was no significant effect of time on alpha di-
versity in letrozole-treated mice when the data was
adjusted for within subject error using RM-ANOVA
(Fig. 4) [54]. With regards to beta diversity, letrozole
treatment of both pubertal and adult female mice re-
sulted in a distinct shift in the gut microbial composition
(Fig. 5). However, closer examination of the types of bac-
teria that changed after letrozole treatment showed that
the taxa driving the shift in beta diversity were quite dis-
tinct in the two mouse models (Fig. 6).
Letrozole treatment initiated during puberty resulted

in changes in the abundances of bacterial genera previ-
ously reported to be altered in diet-induced obesity
mouse models. In the pubertal model, RF and statistical
analysis of relative bacterial abundances determined that
Coprococcus, Allobaculum and an unknown genus from
Bacteroidales differentiated the gut microbiomes of
placebo and letrozole-treated mice (Fig. 6a and b).
Significant differences were also observed in the relative
abundance of Bifidobacterium, reported to have
strain-specific effects on weight gain in rodents [73], as
well as Dehalobacterium and unknown genera belonging
to the Rikenellaceae and Ruminococcaceae families, all
of which have been associated with obesity [28, 74–77].
The genus with the strongest effect on RF classification,
namely Coprococcus, was previously reported to be more
abundant in obese individuals [78, 79], in agreement
with the higher levels observed after letrozole treatment
in pubertal mice. The second most important genus in
terms of classification, Allobaculum, was reported to be
lower in the gut of obese mice fed a high-fat diet [80,
81], in contrast to the increase in Allobaculum observed
after letrozole treatment.
In comparison to pubertal mice, letrozole treatment of

adult female mice had a distinct impact on the compos-
ition of the gut microbial community. With the excep-
tion of a genus within the Peptococcaceae, the bacterial
genera most affected by letrozole treatment in adult fe-
males were not altered in pubertal mice and vice versa
(Fig. 6a, c). It should be noted that the genera that chan-
ged in the pubertal and adult female mice after letrozole
treatment were present at both ages, indicating that the
differential effects of letrozole treatment in the two
models was not due to the absence of specific bacteria.
The most striking difference in letrozole treatment of
adult female mice was the importance that Lactobacillus,
Parabacteroides and the uncultured Paraprevotellaceae
group CF231 played in classifying the treatment groups
(Fig. 6d). The mean relative abundance of these bacteria
changed significantly after letrozole treatment in adult

Table 1 Classification error rates carried out using Random
Forest classifiers composed of 500 trees

Predicted classes Classification
error rates

OOB
estimate
of error
rate

Accuracy

Placebo Letrozole

Pubertal 21.5% 78.5%

Placebo 32 7 0.18

Letrozole 10 30 0.25

Adult 16.0% 84.0%

Placebo 30 1 0.03

Letrozole 7 13 0.35
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female mice (Fig. 6c). This is in contrast to the increased
abundance of some Lactobacillus species observed in
obese humans [82–84], though direct comparisons are
difficult since there may be strain-specific effects of
Lactobacillus on weight gain [85]. While CF231 has not
been described in much detail, members of the Parapre-
votellaceae are found in the gut of many mammals [86,
87] and have been suggested to be involved in the deg-
radation of plant polysaccharides into short chain fatty
acids [88]. Parabacteroides are also known to metabolize
non-digestible carbohydrates, but the increase in Para-
bacteroides relative abundance after 5 weeks of letrozole
treatment contrasts with the decrease observed in mice
fed a high-fat diet [27, 89].

Conclusions
In summary, our study demonstrated that the timing of
androgen exposure may be important for development
of the PCOS metabolic phenotype and associated
changes in the gut microbiome. While letrozole treat-
ment of female mice during puberty and in adulthood
both resulted in reproductive hallmarks of PCOS, in-
cluding hyperandrogenemia, anovulation and polycystic
ovaries, letrozole treatment in adulthood did not result
in the weight gain, abdominal adiposity or insulin resist-
ance observed in the pubertal PCOS mouse model. In
addition, letrozole treatment in adulthood resulted in
distinct changes in the gut microbiome, particularly in
Lactobacillus. Although evidence is accumulating that
changes in steroid hormones are associated with an al-
tered gut microbiome [90], the mechanisms involved in
steroid hormone/gut microbe interactions are currently
unknown. Future studies investigating whether steroid
hormones regulate the gut microbiome through actions
in the gastrointestinal tract, immune system or other tis-
sues will begin to address the mechanisms involved.
Given that many of the previous studies that report an

association of specific bacterial genera with obesity in
humans and high fat diet-induced mouse models are
contradictory, it is possible that these results are due to
modulation of specific bacterial species and strains
within genera. Future studies should employ higher reso-
lution methods such as metagenomic sequencing or
quantitative PCR to fully understand the effects of
hyperandrogenism on the gut microbiome. Moreover,
since many studies of the role of the gut microbiome in
obesity are confounded by the effect of diet on the
microbiome, the letrozole-induced PCOS mouse model
provides an opportunity to study the effects of androgen
excess on the gut microbiome and metabolism in a
diet-independent setting, since food intake is not altered
by letrozole treatment [55]. Moreover, the adult PCOS
mouse model can be used to study the effects of hyper-
androgenism in female mice without the confounding

variable of insulin resistance. Further studies addressing
whether the gut microbiome plays a causal role in the
development of PCOS or if manipulation of the gut
microbiome can improve the PCOS phenotype will be
informative. In addition, prospective studies with adoles-
cent girls may be crucial to understand the etiology and
development of PCOS, particularly the metabolic dysreg-
ulation and changes in the gut microbiome associated
with this disease.

Methods
PCOS mouse model
C57BL/6NHsd female mice purchased from Envigo
were housed in a vivarium for one week under spe-
cific pathogen-free conditions with an automatic 12
h:12 h light/dark cycle (light period: 06.00–18.00) and
ad libitum access to water and food (Teklad Global
18% Protein Extruded Diet, Envigo). Prior to the be-
ginning of the study, the mice were sorted by weight
to ensure that the starting weight was similar between
the two treatment groups. To establish the pubertal
or adult PCOS models, 4 or 8 week-old female mice,
respectively were implanted subcutaneously with a
placebo or 3 mg letrozole pellet (3 mm diameter; In-
novative Research of America) that provided a slow,
constant release of letrozole (50 μg/day) over 5 weeks.
For the duration of the experiment, the mice were
housed 2 per cage: 2 placebo or 2 letrozole-treated
mice. Placebo and letrozole-treated mice were not
housed together to avoid the influence of coprophagy
on the PCOS mouse model. At the end of the study,
the mice were sacrificed using 2.5% isoflurane deliv-
ered with a precision vaporizer followed by a physical
method of euthanasia.

Analysis of reproductive and metabolic phenotype
The mice were weighed weekly. The stage of the estrous
cycle for placebo and letrozole-treated mice was deter-
mined from the predominant cell type in vaginal epithe-
lium smears obtained during weeks 4–5 of treatment.
After 5 weeks of placebo or letrozole treatment, the mice
were fasted for 5 h and blood from the tail vein was col-
lected to measure fasting insulin levels. Blood glucose
was measured using a handheld glucometer (One Touch
UltraMini, LifeScan, Inc) and an intraperitoneal (IP) in-
sulin tolerance test (ITT) was performed. Tail vein blood
glucose was measured just before (time 0) an IP injec-
tion of insulin (0.75 U/kg in sterile saline; Humulin R
U-100, Eli Lilly) was given and at 15, 30, 45, 60, 90, and
120 min post injection.
At the end of the experiment, blood was collected

from the posterior vena cava, parametrial fat pads were
dissected and weighed, and the ovaries were dissected,
weighed, fixed in 4% paraformaldehyde at 4 °C overnight,
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and stored in 70% ethanol before processing for hist-
ology. Paraffin-embedded ovaries were sectioned at
10 μm and stained with hematoxylin and eosin (Zyagen).
Serum testosterone were measured using a mouse
ELISA (range 10–800 ng/dL) while LH levels were mea-
sured using a radioimmunoassay (range 0.04–75 ng/mL)
by the University of Virginia Center for Research in
Reproduction Ligand Assay and Analysis Core Facility.
Serum insulin was measured using a mouse ELISA
(ALPO) by the University of California, Davis Mouse
Metabolic Phenotyping Center. The data from four mice
in the pubertal and adult letrozole-treated groups were
removed from the analyses because these mice did not
have a significant elevation in serum testosterone when
compared to the average of the placebo-treated mice.
The analysis of the reproductive and metabolic pheno-
types was performed with data from 2 unpublished co-
horts of the adult PCOS model (total n = 16 placebo, n
= 14 letrozole) and 3 cohorts of the pubertal PCOS
model (total n = 24 placebo, n = 22 letrozole) including 2
unpublished and 1 previously published cohort [54]. Dif-
ferences between placebo and letrozole treatment were
analyzed by Student t-test or two-way repeated measures
ANOVA followed by post-hoc comparisons of individual
time points.

Fecal sample collection and DNA isolation
Fecal samples were collected from one cohort of
8-week-old female mice (n = 8/group) prior to treatment
with placebo or letrozole and once per week thereafter
for 5 weeks. Fecal samples were frozen immediately after
collection and stored at − 80 °C. Bacterial DNA was ex-
tracted from the fecal samples using the MoBio Power-
Soil DNA Extraction Kit following the manufacturer’s
protocol, and the DNA was stored at − 80 °C.

16S rRNA amplicon sequencing
The V4 hypervariable region of the 16S rRNA gene was
PCR amplified with primers 515F (GTGCCAGCMGCCG
CGGTAA) and 806R (GGACTACHVGGGTWTCTAAT)
[91]. The reverse primers contained unique 12 base pair
Golay barcodes that were incorporated into the PCR
amplicons [92]. The barcoded primers allowed for pooling
of multiple PCR amplicons in a single sequencing run.
Thermocycling parameters were as follows: denaturing at
98 °C for 2min followed by amplification for 35 cycles at
98 °C for 30 s, 50 °C for 30 s and 72 °C for 60 s, and a final
extension of 72 °C for 10min. The resulting amplicons
were submitted to The Scripps Research Institute Next
Generation Sequencing Core Facility where they were
cleaned using Zymo DNA Clean & Concentrator™-25 col-
umns, quantified using a Qubit Flourometer (Life Tech-
nologies) and pooled. Pooled PCR products were size
selected on a 2% agarose gel (290–350 bp), purified using

a Zymoclean™ Gel DNA recovery kit and used to prepare
sequencing libraries following the recommended Illumina
protocol involving end-repair, A-tailing and adapter
ligation. The DNA library was then size selected on a 2%
agarose gel (410–470 bp), cleaned using the Agencourt
SPRI system (Beckman Coulter, Inc.) and PCR amplified
with HiFi Polymerase (Kapa Biosystems) for 12 cycles.
The amplified DNA products were again size selected on
a 2% agarose gel and purified using the Zymoclean™ Gel
DNA recovery kit. The purified DNA library was quanti-
tated, denatured in 0.1 N NaOH and diluted to a final con-
centration of 5 pM before being loaded onto the Illumina
single read flow-cell for sequencing on the Illumina MiSeq
system along with 4 pM PhiX control library.

16S rRNA gene sequence analysis
16S rRNA sequences for the adult mice were
de-multiplexed using the Quantitative Insights Into Mi-
crobial Ecology (QIIME v.1.9.1, http://www.qiime.org)
pipeline [93] using the default split_libraries.py script
parameter [94]. This resulted in approximately 4.3 mil-
lion Illumina sequences across all samples with an aver-
age of 50,000 sequences per sample. Sequences from
two mice in the letrozole-treated group were removed
from the analysis because these mice did not have a sig-
nificant elevation in serum testosterone levels compared
to the average of the placebo-treated mice. The 16S
rRNA gene sequencing quality control and analysis for
the samples from the adult mice followed the same pipe-
line as the samples in a previously published study with
placebo or letrozole-treated pubertal female mice [54].
Sequences were clustered using the pick_de_novo_o-
tus.py script with usearch [95]. Sequences were assigned
to OTUs with an assumed 97% threshold of pairwise
identity for bacterial species by comparison with the
Greengenes reference database [96] using the RDP clas-
sifier [97]. Before performing downstream analysis, sin-
gletons and OTUs present in less than 25% of the
samples were discarded from the database to minimize
the effect of spurious, low abundance sequences using
the filter_otus_from_otu_table.py script. Sequences were
then aligned using PyNast [93] and a phylogenetic tree
constructed using FastTree [98]. The alpha_diversity.py
script was used to estimate several different attributes of
alpha diversity. Species richness was estimated using
Chao1 to define the total number of unique species in a
community [99]. Faith’s Phylogenetic Diversity was used
to measure the phylogenetic diversity of a community by
calculating the total branch lengths on a phylogenetic
tree of all members of the community [100]. Evenness
was estimated using the Equitability index [101]. The
beta_diversity_through_plots.py script was used to com-
pute weighted and unweighted UniFrac distances [102].
The smaller the UniFrac distance between two microbial
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communities, the more similar the communities are in
their overall diversity. The weighted UniFrac distance
metric incorporates the abundance of specific taxa in
each community into the UniFrac distance calculation
while unweighted UniFrac ignores abundance informa-
tion. Taxonomic distributions across sample categories
were calculated (from phylum to genus) using the sum-
marize_taxa_through_plots.py script. Several bacterial
genera such as Anaeroplasma and an unknown Entero-
bacteriaceae were excluded from the analysis because of
extremely low abundance, suggesting that they may have
been artifacts. Sequences from placebo-treated samples
collected during week 5 (9 weeks of age) of the pubertal
cohort were compared to samples collected from week 1
(9 weeks of age) from the adult cohort. No significant
difference in alpha and beta diversity was observed be-
tween the two cohorts, indicating that the gut micro-
biome at the end of placebo treatment in the pubertal
cohort was similar to the gut microbiome at the begin-
ning of placebo treatment in the adult cohort.

Statistical analysis
Pearson’s product-moment correlation was performed
when analyzing alpha diversity over time using the RStu-
dio statistical package (version 0.99.893). RM-ANOVA
was used to model alpha diversity measures accounting
for within subject error. Two-dimensional PCoA plots
were constructed using the make_2d_plots.py script in
QIIME. ANOSIM tests for weighted and unweighted
UniFrac distances between treatments were performed
using the compare_categories.py script. The biom table
of post treatment samples (weeks 1–5) from the adult
study was merged with the biom table from the pubertal
study, resulting in approximately 6.2 million sequences
from 170 samples (pubertal = 100 samples; adult = 70
samples). The merged dataset was used to compare dif-
ferences among treatment group and developmental
stage. RM-ANOVA adjusting for within subject error
(corrected for multiple comparisons via FDR) was used
to determine whether the abundance of specific bacterial
genus differed between treatments. The RF supervised
machine-learning classifier was used to determine how
well a given set of factors (e.g. bacterial genera) classified
discrete categories and which factors were most import-
ant for the classification [70, 116]. RF was implemented
in R using the “randomForest” library, and was used to
identify bacterial genera that differentiated placebo and
letrozole treatment within pubertal or adult mice.

Additional file

Additional file 1: Figure S1. No differences in gut microbial
community diversity between placebo and letrozole-treated mice were
observed prior to treatment. No significant differences in gut microbiome

alpha diversity (Faith’s PD) between placebo- and letrozole-treated mice
were observed prior to treatment (week 0) in the pubertal (placebo n =
10, letrozole n = 10) (A) or adult (placebo n = 8, letrozole n = 6) (B) model.
Similarly, no differences in beta diversity (unweighted UniFrac) were ob-
served between placebo- and letrozole-treated mice prior to treatment in
the pubertal (C) or adult model (D). Student t-test was used to compare
alpha diversity between groups and Analysis of Similarity (ANOSIM) test
was used to compare beta diversity between groups. (PDF 1335 kb)
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