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Abstract

Background: The increased rate of resistance among two highly concerned pathogens i.e. methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) necessitates the discovery of novel anti-MRSA
and anti-VRE compounds. In microbial drug discovery, Streptomyces are well known source of two-thirds of natural
antibiotics used clinically. Hence, screening of new strains of streptomycetes is the key step to get novel bioactive
compounds with antimicrobial activity against drug resistant bacteria.

Results: In the present study, Streptomyces antibioticus strain M7, possessing potent antibacterial activity against
different pathogenic bacteria, was isolated from rhizospheric soil of Stevia rebudiana. 16S rRNA sequence of M7
(1418 bp) showed 96.47–100% similarity with different Streptomyces spp. and the maximum similarity (100%) was
observed with Streptomyces antibioticus NBRC 12838T (AB184184). Phylogenetic analysis using neighbor joining
method further validated its similarity with Streptomyces antibioticus NBRC 12838 T (AB184184) as it formed clade
with the latter and showed high boot strap value (99%). Antibacterial metabolites isolated from the fermentation
broth were characterized using NMR, FT-IR and LC-MS as actinomycins V, X2 and D. The purified actinomycins
exhibited potent antibacterial activities against test bacteria viz. B. subtilis, K. pneumoniae sub sp. pneumoniae, S.
aureus, S. epidermidis, S. typhi, E. coli, MRSA and VRE. Among these actinomycins, actinomycin X2 was more
effective as compared to actinomycins D and V. The minimum inhibitory concentration values of purified
compounds against a set of test bacterial organisms viz. VRE, MRSA, E. coli (S1-LF), K. pneumoniae sub sp.
pneumoniae and B. subtilis ranged between 1.95 and 31.25 μg/ml.

Conclusions: This study demonstrates that actinomycins V, X2 and D produced by S. antibioticus strain M7 hold
the potential to be used against multidrug resistant bacteria, particularly VRE and MRSA.
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Background
Antimicrobial resistance among microbial pathogens is
a significant public health issue, as infections caused by
multidrug resistant bacteria take the lives of many
people in every year all over the world [1]. Among
Gram-positive pathogens, a global pandemic of resist-
ant Staphylococcus aureus and Enterococcus species
currently pose the biggest threat. A single pathogen i.e.
methicillin-resistant Staphylococcus aureus (MRSA),
which was first discovered in 1961, has become a major
source of nosocomial and community associated MRSA
infections [2, 3]. Clinical isolates of MRSA have high
rate of morbidity and mortality as compared to the
methicillin susceptible Staphylococcus aureus [4, 5].
Also, Enterococcus faecium associated with human in-
fections has been developed as multidrug resistant
pathogen to vancomycin, ampicillin, and high-levels of
aminoglycosides [6, 7].
Vancomycin was the most potent antibacterial drug

used against infections caused by MRSA and Enterococcus.
However, the first case of MRSA exhibiting resistance to
vancomycin was reported from Japanese patient in 1996
[8]. According to CDC (Centers for Disease Control and
Prevention) April 2013 report, 30% of hospital-acquired
infections responsible for 1300 deaths per year were due
to vancomycin-resistant Enterococcus (VRE) pathogens
[9]. While powerful antimicrobial drugs such as synercid,
linezolid and daptomycin (lipopeptide) are being used to
combat the MRSA and VRE, but some reports showed
that these pathogens also have emerged resistance to these
effective drugs [10–13]. Because each new antibiotic even-
tually develops resistance within few years after it is pro-
moted there is always a necessity to find new
antimicrobial agents to control antibiotic resistant strains
of pathogenic microorganisms.
Recent advances in medical science have sparked to

discover the potent therapeutic drugs from the micro-
bial sources. Among microbes, actinobacteria, espe-
cially Streptomyces spp. are of immense importance as
they are known prolific producers of many novel com-
pounds with diverse biological activities [14–17]. Al-
though, nearly two third of the naturally occurring
marketed antibiotics are obtained from Streptomyces
spp. but it is just the tip of the iceberg that have been
explored [18]. Therefore, to combat with drug resist-
ance and to discover new therapeutic compounds, we
need to screen novel streptomycetes from unexplored
resources. Keeping this in mind, we isolated an actino-
bacterium from rhizospheric soil, exhibiting potent
antibacterial activity against multidrug resistant bac-
teria. The present study reports identification of po-
tent actinobacterium as well as purification and
characterization of antibacterial compounds, active
against MRSA and VRE, produced by it.

Methods
Sample collection
The soil sample was collected into a sterile glass screw
cap bottle from the rhizosphere of Stevia rebudiana
grown in the fields of Palampur, Himachal Pradesh, India.

Test organisms
Different test bacteria such as Bacillus subtilis (MTCC
619), Escherichia coli (MTCC 1885), Klebsiella pneumo-
niae sub sp. pneumoniae (MTCC 109), Staphylococcus
epidermidis (MTCC 435), Salmonella typhi (MTCC 733),
Mycobacterium smegmatis (MTCC 6) and Staphylococcus
aureus (MTCC 96) were procured from Microbial Type
Culture Collection (MTCC) and Gene Bank,
CSIR-Institute of Microbial Technology (IMTECH),
Chandigarh, India. Clinical isolates used in the current
study viz. E. coli (S1-LF) (resistant to cefotaxime, cefoper-
azone, ciprofloxacin, rifampicin, and clindamycin), MRSA
(resistant to methicillin, teicoplanin, imipenem, and clin-
damycin) and VRE (resistant to vancomycin, methicillin,
teicoplanin, imipenem, and clindamycin) were obtained
from local hospitals. All the bacterial cultures were main-
tained on nutrient agar slants in refrigerator at 4 °C.

Isolation and screening of actinobacteria
Soil sample was air-dried and given the pre-treatment
by heating at 100 °C for 1 h to create favorable condi-
tions to accomplish the isolation of actinobacteria.
Serial dilution of the treated soil was done up to 10− 6.
Aliquots of 0.1 ml from 10− 2, 10− 3, and 10− 4 were
spread on the surface of SCNA (starch casein nitrate
agar) plates. The medium was supplemented with cy-
cloheximide (50 μg/ml) and nalidixic acid (50 μg/ml)
to inhibit the growth of fungi and other bacteria, re-
spectively. Plates were then incubated at 28 °C for 7–
21 days. Isolated colonies of actinobacteria were sub-
cultured and purified on SCNA plates. The isolates
were preserved in 20% glycerol at − 20 °C as stock for
future use.

Screening for antibacterial activity
Primary screening was performed by modified method
of Kirby Bauer antibiotic susceptibility test using dual
culture technique [19]. In this, 6 mm plugs of actino-
bacteria, grown on SCNA plates, were placed on Mueller
Hinton Agar medium (MHA) already seeded with test
bacteria. The plates were then incubated at 37 °C. The re-
sults as zone of inhibition (mm) were obtained after 24 h
of incubation. Isolates which displayed broad spectrum
antibacterial activity in primary screening were subjected to
secondary screening using Kirby Bauer agar well diffusion
assay [19]. Erlenmeyer flasks (250ml) containing 50ml of
starch casein nitrate broth were inoculated with 7 days old
culture and incubated at 28 °C for 7 days at 180 rpm. The
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MHA plates seeded with test bacteria (OD equivalent to
McFarland standard 0.5) were punctured with sterile cork
borer to make wells of 6 mm in size. After addition of cul-
ture supernatant (50 μl) to each well, the plates were kept
in refrigerator for 1 h for diffusion of active metabolites
followed by incubation at 37 °C for 24 h. The results were
observed in terms of inhibition zones around the wells.
Out of 12 active isolates, strain M7 was selected based on
its strong and broad spectrum antibacterial activity.

Characterization of selected isolate M7
Morphological, physiological and biochemical
characterization
The culture characteristics of strain M7 were deter-
mined according to the International Streptomyces Pro-
ject (ISP) based on the mycelium growth and color, as
well as the soluble pigment at 28 °C for 7 days [20].
Melanin production was detected by growing on ISP6
and ISP7 media. Morphological characteristics of the
strain, grown on SCNA at 28 °C for 4 days, were ob-
served using bright field light and scanning electron
microscopy [21]. Physiological and biochemical tests,
like growth at different temperatures, pH, salt concen-
tration, and ability to produce different hydrolytic enzymes
were performed as per standard protocols [22–24]. Ana-
lysis of the sugar components in whole cell hydrolysate and
isomer of diaminopimelic acid (DAP) in the cell wall was
done according to the method given by Lechevalier and
Lechevalier [25]. Assimilation of sugars as carbon sources
was studied according to Shirling and Gottlieb [20].

16S rRNA gene amplification and phylogenetic analysis
DNA extraction from isolate M7 was performed using
standard protocol described by Marmur [26]. Using
genomic DNA as template, 16S rRNA gene was ampli-
fied using universal primers f27 (5’AGAGTTTGA
TCATGGCTCAG 3′) and r1492 (5’ TACGGCTAC
CTTGTTACGACTT-3′) [27]. The 1.5 kb PCR product
was then got sequenced from IMTECH, Chandigarh
(India). The pairwise sequence alignment of 16S rRNA
gene sequence was done using ClustalW program and
compared with the other related Streptomyces spp. retrieved
from EzTaxon server (http:// eztaxon-e.ezbiocloud.net)
[15]. Neighbor joining method was used to construct
phylogenetic tree based on bootstrap values (1000 replica-
tions with MEGA6 software) [28, 29]. The 16S rRNA gene
sequence (1418 bp) was deposited in GenBank with acces-
sion no. KY548390.

Antibacterial activity profile of Streptomyces strain M7
Production of active metabolites was done by carrying
out fermentation in Erlenmeyer flasks (250 ml), con-
taining 50 ml of production medium (SCN broth) inoc-
ulated with 2% inoculum, at 28 °C for 10 days under

agitation at 180 rpm. After every 24 h, the flasks were
harvested and the biomass was separated from the cul-
ture broth by centrifugation at 10,000 rpm for 20 min.
The biomass was dried at 60 °C for 2 days, weighed and
expressed in mg on dry weight basis. The remaining
cell free culture supernatant was used to check the
antibacterial activity against test bacterial cultures using
agar well diffusion assay.

Extraction of active compounds
For the recovery of antibacterial metabolites, 96 h old
culture supernatant was extracted twice with different
organic solvents viz. ethyl acetate, chloroform, hexane,
butanol and diethyl ether using solvent-solvent extrac-
tion technique. The separated organic phase was con-
centrated using the rotary evaporator and redissolved
in respective solvent and checked for its antibacterial
activity against B. subtilis.

Bioautography
For the analysis of antibacterial metabolites, the ethyl acet-
ate extract was separated by thin layer chromatography
(TLC) using ethyl acetate: hexane (9:1, v/v) as solvent sys-
tem and the developed chromatogram was observed
under UV light and in iodine chamber. TLC strips were
then aseptically placed on the surface of MHA already
seeded with the test bacterium. Then, the plates were kept
at 4 °C for 1 h to allow diffusion of the active metabolites
from the TLC strips. After that the plates were incubated
at 37 °C for 24 h and observed for the presence of inhib-
ition zones which indicate the number of active com-
pounds in the solvent extract.

Purification of the active compounds
To purify the antibacterial compounds, ethyl acetate
extract (150 mg) was subjected to silica gel chromatog-
raphy. The column (35 × 1.0 cm) was packed with silica
gel (60–120 mesh) using hexane as solvent and eluted
step-wise with 100% hexane, 90:10, 80:20, 70:30, 60:40,
50:50, 40:60, 30:70, 20:80, 10:90 (v/v) of hexane: ethyl
acetate, 100% ethyl acetate (200 ml each) at a flow rate
of 2 ml/min. A total of 88 fractions of 25 ml each were
collected, concentrated and redissolved in the same
solvent ratio from which they were recovered. Fractions
showing antibacterial activity against B. subtilis were
pooled and further purified using size exclusion chro-
matography with Toyopearl resin HW-40 and methanol
as an eluent. A total of 65 fractions were collected and
screened for antibacterial activity against B. subtilis. Ac-
tive fractions were further fractionated using prepara-
tive RP-HPLC: Shimadzu MicrosorbMV, 100 mm × 10
mm ID, 10 μm, at a flow rate of 3 ml/min, with mobile
phase of acetonitrile: H2O (55%) in 30 min and UV de-
tection at 440 nm. The peaks of the chromatogram
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were collected by using a fraction collector attached
with the HPLC system, concentrated and then screened
for antibacterial activity.

Structure elucidation of the purified compounds
The structures of the bioactive compounds were eluci-
dated using various spectroscopic techniques. Physico-
chemical properties such as appearance, color, odor and
solubility were determined according to the standard
procedures [30]. The UV-Visible spectrum was re-
corded qualitatively on UV- Visible Spectrophotometer
(Shimadzu) in the range of 200–800 nm using chloro-
form as reference solvent. The mass spectrometry (MS)
was done with Bruker MICROTOF II spectrometer,
Fourier transformation infrared spectroscopy (FT-IR)
was recorded with Perkin–Elmer Spectrum RX-IFTIR
spectrophotometer in the range 400–4000 cm− 1 and
nuclear magnetic resonance (NMR) spectroscopy was
recorded in chloroform-d [99.8 atom% D, containing
0.1% (v/v) tetramethylsilane (TMS)] at 25 °C on 500
MHz AVANCE III Bruker spectrometer equipped with
a 5 mm double channel solution state probe [31, 32].

Antibacterial activity of purified compounds
The antibacterial activity of the purified compounds was
assayed using the standard Kirby-Bauer disc diffusion
method. Petri plates containing MHA were swabbed

with test bacteria and then discs loaded with 25 μg of
purified compounds were placed on the surface of the
medium followed by compound diffusion at refrigeration
temperature for 30 min. The plates were incubated over-
night at 37 °C and the zones of inhibition were measured
in millimetres.

Bioautography of purified compounds
The pure compounds (30 μg) were loaded onto pre-
coated TLC plates and separated using ethyl acetate-
hexane (9:1, v/v). The dried TLC plates were placed
onto the medium seeded with B. subtilis. These plates
were kept in refrigerator for 1 h for diffusion. There-
after, these plates were incubated overnight at 37 °C for
24 h, observed for clear zones and Retardation factor
(Rf ) values of purified compounds calculated.

Minimum inhibitory concentration (MIC) of purified
compounds
Minimum inhibitor concentrations of the purified
compounds were determined by 96 well microtiter
plate dilution assay. The different concentrations of
the purified compound (0.96, 1.97, 3.95, 7.56, 15.12,
31.25, 62.5, 125 μg/ml) were prepared in sterile water
[33] and added to the test bacteria viz. VRE, MRSA,
S1-LF, K. pneumoniae sub sp. pneumoniae and B. sub-
tilis grown to logarithmic phase (between 0.3 to 0.5

Fig. 1 Cultural characteristics of S. antibioticus strain M7 (a) Aerial Mycelium, (b) Substratum Mycelium, (c) Aerial hyphae bearing straight spore
chains under Light Microscope (100X), (d) Scanning electron micrograph (3500X)
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OD at 595 nm). Bacterial culture (100 μl) was mixed
with 100 μl of different concentrations of compounds,
control blanks contained 100 μl of test compound of
different concentrations with 100 μl of nutrient broth,
positive control well consisted of 100 μl of bacterial
culture and 100 μl of Nutrient broth (NB), negative
control contained 200 μl of NB only and the plates were
incubated at 37 °C and OD was measured at 595 nm at 24
and 48 h using ELISA microplate reader (Bio-rad, Model
680XR). MIC values were calculated by comparing the
growth in wells containing extract to the growth in con-
trol wells and are the lowest concentration that resulted in
90% inhibition in growth compared to the growth in con-
trol well.

Results
Isolation and screening
Out of 20 different actinobacteria isolates recovered
from the soil, 12 isolates showed activity against one or
more test bacteria in the primary screening. Among
these, 7 isolates displayed antibacterial activity in fer-
mentation broth with varying degree of inhibition
against different test bacteria. Isolate M7 exhibiting po-
tent antibacterial activity against all the test bacteria
was selected for further studies.

Identification and characterization of strain M7
The actinobacterial strain M7 grew well on all the ISP
media and SCNA with different cultural characteristics
(Additional file 1: Table S1). The strain produced yellow
colored diffusible pigment on SCNA (Fig. 1a, b) and
brown colored pigment on ISP6 and ISP7 media.
Microscopic studies showed the formation of branched
substratum mycelium and rectiflexibilis-type spore
chains, bearing 25–38 smooth cylindrical spores on aer-
ial mycelium (Fig. 1c, d). Chemotaxonomic analysis of
cell wall and whole cell hydrolysates revealed the pres-
ence of type 1 cell wall, containing LL-DAP as the diag-
nostic amino acid and no characteristic sugar. The
physiological and biochemical characteristics of the
strain are shown in Table 1. The strain M7 was able to
grow at temperature between 25 and 45 °C (optimum at
28 °C), pH 5 to 10 (optimum at pH 7.0) and could toler-
ate NaCl upto 5%. M7 strain utilized different tested
carbon sources: starch, glycerol, D-glucose, sucrose,

Table 1 Morphological, Biochemical and Chemotaxonomic
Characteristics of Streptomyces antibioticus M7

Characteristics Results

Cultural Characteristics

Spore mass Grey

Spore chain Straight

Spore shape Cylindrical

Sugar pattern No sugar

Substratum mycelium Yellow

Aerial mycelium White

Diffusible pigment Yellow

Diaminopimelic acid LL-DAP

Physiological characteristics

Salt tolerance 5.0%

Temperature tolerance 20 °C to 45 °C

pH tolerance 5–10

Production of Melanoid
pigment

Tyrosine agar medium +

Peptone Yeast extract
agar medium

+

Biochemical characteristics

Indole production –

Methyl red –

Vogues proskaur
test

–

Citrate utilization +

Casein hydrolysis –

Catalase test +

Urea hydrolysis +

Esculin hydrolysis +

Starch hydrolysis +

Lipid hydrolysis +

Gelatin hydrolysis +

Hydrogen sulphide
test

+

Oxidase test +

Nitrate Reduction
test

–

Utilization of Sugar

Maltose +

D-Glucose +

Sucrose +

Lactose +

Inositol +

D-Xylose +

D-Fructose +

Raffinose +

Table 1 Morphological, Biochemical and Chemotaxonomic
Characteristics of Streptomyces antibioticus M7 (Continued)

Characteristics Results

Arabinose +

Starch +

Glycerol +

+ = Positive, − = Negative
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lactose, D-fructose, raffinose, inositol, arabinose and D-
xylose. The maximum growth was observed on medium
containing starch, maltose and sucrose. Biochemical
studies showed positive results for production of cata-
lase, oxidase, hydrogen sulfide and citrase, the results
for methyl red, voges-proskauer, indole and nitrate re-
duction were negative. Strain was also able to hydrolyze

starch, cellulose, esculin, urea, lipid, and gelatin but did
not show casein hydrolysis.
Based on morphological, cultural and chemotaxonomy

characteristics, isolate M7 was designated as Streptomyces
sp. and was further confirmed by 16S rRNA sequencing.
Alignment of 16S rRNA sequence of M7 (1418 bp), using
EzTaxon database [15], showed 96.47–100% similarity

Fig. 2 Phylogenetic tree obtained by neighbor joining analysis of 16S rRNA gene sequences showing the relationship between M7 and related
species belonging to genus Streptomyces obtained from EzTaxon database. Numbers on branch nodes are bootstrap values (expressed as
percentage of 1000 replications)

Fig. 3 Growth and antibacterial activity of S. antibioticus strain M7 against test organisms viz. B. subtilis, M. smegmatis, K. pneumoniae sub sp.
pneumoniae, S. aureus, S. epidermidis, S. typhi, E. coli, E. coli (S1LF), MRSA and VRE
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with different Streptomyces spp. It showed the maximum
similarity (100%) with Streptomyces antibioticus NBRC
12838T (AB184184) with overlapping of 1417 bp out of
1418 bp. Phylogenetic tree constructed by neighbor join-
ing method further confirmed its similarity with S. anti-
bioticus (with high bootstrap values 99%) (Fig. 2).

Antibacterial activity profile of Streptomyces strain M7
In vitro bioassay demonstrated strong antibacterial ac-
tivity of Streptomyces strain M7 against tested bacteria.
It showed pronounced inhibition against pathogenic
bacteria viz. VRE, MRSA and M. smegmatis with inhib-
ition zones of 23–21 mm. Moderate to weak activity
was observed against B. subtilis, K. pneumoniae sub sp.
pneumoniae, S. epidermidis, S. typhi, E. coli, S1-LF and
S. aureus with inhibition zones of 15–20 mm. This sug-
gests that MRSA, VRE and M. smegmatis are more sus-
ceptible as compared to other test bacteria. The
production of active metabolites in SCN culture broth
started after 24 h of incubation, reached the maximum
after 96 h and declined slightly as the incubation was
further extended (Fig. 3).

Recovery, separation and bioautography of bioactive
metabolites
Among all the solvents used, ethyl acetate was found
to be the best solvent to achieve the maximum recov-
ery of active metabolites from fermentation broth of
pH 5.0. The extracted metabolites in ethyl acetate were
concentrated under reduced pressure using rotary

evaporator and resulted orange colored dried extract
was redissolved in ethyl acetate. Separation of antibac-
terial metabolites present in crude solvent extract was
carried out by thin layer chromatography using ethyl
acetate: hexane (9:1, v/v) as solvent system (Add-
itional file 2: Figure S2a). Bioautography of purified actino-
mycins also confirmed the three antibacterial compounds
with Rf values of 0.25 (compound P1), 0.52 (compound
P2), and 0.48 (compound P3) (Additional file 2: Figure
S2b).

Purification of antibacterial compounds from S.
antibioticus strain M7
For purification of antibacterial compounds, fermenta-
tion was carried out in SCN broth for 4 days at 28 °C.
After 4th day of incubation, culture broth was centri-
fuged at 10,000 rpm and then extracted twice using
ethyl acetate (1:2, v/v). The obtained orange color crude
extract was subjected to silica gel column chromatog-
raphy for isolation of active compounds. Twenty six
fractions (33–58), eluted with hexane: ethyl acetate (10:90,
v/v) showed antibacterial activity. These were pooled to-
gether based on their similar TLC pattern and concen-
trated. The pooled fraction was further fractionated on
size exclusion chromatography using toyopearl resin
HW-40. Nine fractions (27–35) which showed activity
were again pooled and finally subjected to semi-preparative
HPLC. Individual peaks were collected, and antibacterial
activity was detected in two peaks with retention times of
10.524 and 15.443min (Additional file 2: Figure S1a).

Fig. 4 Chemical structure of Actinomycin V (P1), Actinomycin X2 (P2), Actinomycin D (P3) from S. antibioticus strain M7
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Active peak with retention time of 15.443 was further
fractionated by performing HPLC using acetonitrile:
water (95:5, v/ v) as gradient and resulted in separation
of compounds P2 and P3 with retention times of 5.814
and 6.548, respectively (Additional file 2: Figure S1b).
The collected peaks were further chromatographed
using acetonitrile: water (55:45) and single peaks with
retention times of 10.628, 15.318, and 15.999 min were
obtained which indicated the purity of the compounds
[Additional file 2: Figure S1 (c-e)].

Characterization of the purified antibacterial compounds
The three active compounds (P1, P2 and P3) were charac-
terized as actinomycins by various spectrometric tech-
niques such as UV-visible, FT-IR, Mass spectrometry and
1H NMR (Fig. 4). All the compounds were soluble in water,
chloroform, methanol, ethyl acetate and DMSO. The FT-IR
data of these purified compounds confirmed the presence
of various functional groups such as primary amine, hy-
droxyls, alkenes, primary amide and carbonyl groups which
are the characteristics of phenoxazone ring. The presence
of band range of 2854–2874 cm− 1 and 2956–2964 cm− 1

showed the symmetrical and asymmetrical C-H stretching
of –CH2 group, respectively. The Compound P1 (yield: 30
mg) was yellow in color, UV λmax 256, 445 nm, Mass
Spectrum (TOF, ESI): m/z (M+): 1271.5212 (Fig. 5a), FT-IR
(Additional file 2: Figure S3a). From these data along with
1H-NMR [Table 2 and Additional file 3: Figure S4 (a-d)] the
compound P1 was identified as Actinomycin V. The Com-
pound P2 was orange in color, yield: 30mg having UV λmax

254, 444 nm, Mass Spectrum (TOF, ESI): m/z (M+):
1269.3968 (Fig. 5b), FT-IR (Additional file 2: Figure S3b)
and 1H-NMR spectrum [Table 3 and Additional file 3:
Figure S5 (a-f)] identified the compound as Actinomycin
X2. Similarly, the yellow color compound P3 (yield: 40
mg) was identified as Actinomycin D on the basis of UV
λmax 256, 442 nm, Mass Spectrum (TOF, ESI): m/z (M)+:
1255.5266 (Fig. 5c), FTIR (Additional file 2: Figure S3c),
1H-NMR spectrum [Table 4 and Additional file 3: Figure
S6 (a-g)]. The molecular formulae for actinomycins V, X2

and D, calculated on the basis of the NMR, LC-MS and
FT-IR data, are C62H86N12O17, C62H84N12O17 and
C62H86N12O16, respectively which are also in agreement
with previous findings.

Fig. 5 Mass Spectra of purified compounds from S. antibioticus strain M7 (a) Actinomycin V (P1), (b) Actinomycin X2 (P2), (c) Actinomycin D (P3)
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Antibacterial activity of purified compounds
The purified compounds exhibited potent antibacterial
activity against a range of both Gram negative and
Gram positive bacteria viz. B. subtilis, K. pneumoniae
sub sp. pneumoniae, S. aureus, S. epidermidis, S.
typhi, E. coli, S1-LF, MRSA and VRE. In case of
MRSA and VRE, the compound P2 (Actinomycin X2)
was more effective with inhibition zones in the range
of 18 and 26 mm as compared to compound P3 (Ac-
tinomycin D) (17 and 25 mm) and compound P1 (Ac-
tinomycin V) (14 and 24 mm). The compounds
showed significant activity against drug resistant
strains which are resistant to methicillin (MRSA)
(10 μg/disc) and vancomycin (30 μg/disc) (VRE) (Fig. 6,
Additional file 1: Table S3).

MIC values of purified compounds
The MIC values of the purified compounds were de-
termined by 96 well plate method. The Actinomycin

X2 was found to be more potent with lowest MICs as
compared to actinomycins D and V. The MIC values
of purified actinomycin X2 against test bacteria
ranged between 1.95 and 15.62 μg/ml whereas those
for actinomycins V and D ranged between 2.25 and
31.25 μg/ml, and 2.0 and 15.0 μg/ml, respectively. All
the three actinomycins were found to be more effect-
ive against MRSA and VRE with MICs of 1.95–
2.25 μg/ml and 3.5–4.0 μg/ml, respectively than
against K. pneumoniae sub sp. pneumoniae, S1-LF
and B. subtilis with MIC values of 15.0–31.5 μg/ml,
14.23–15.90 μg/ml and 8.0–15.62 μg/ml, respectively.
(Additional file 1: Table S3).

Discussion
The emergence and spread of multidrug resistant bacteria
cause an array of health problems due to various intercon-
nected factors, many of which are related to over and mis-
use of antimicrobial drugs and acquisition of resistance
genes [34–36]. The rising levels of antibiotic resistance

Table 2 1H NMR Data of Purified Actinomycin V

Group Compound P1: Actinomycin V (δ-value) Actinomycin V (Wang et al. 2017) (δ-value)

Phenoxazone 7.64 (d) 7.64 (d)

7.37 (d) 7.35 (d)

2.56 (s) 2.54 (s)

2.25 (s) 2.22 (s)

Amino acids Ring 1 Ring 2 Ring 1 Ring 2

Threonine 4.77 (dd) 4.73 (dd) 4.81 (dd) 4.49 (dd)

5.19 (m) 5.24 (m) 5.24 (m) 5.24 (m)

1.27 (s) 1.24 (d) 1.28 (d) 1.24 (d)

7.37 (d) 7.48 (d) 7.44 (d) 7.50 (d)

Valine 3.57 (dd) 3.55 (dd) 3.57 (dd) 3.55 (dd)

2.17 (m) 2.07 (m) 2.16 (m) 2.12 (m)

0.96 (d) 0.94 (d) 0.96 (d) 0.94 (d)

0.74 (d) 0.74 (d) 0.72 (d) 0.74 (d)

8.17 (d) 8.01 (d) 8.17 (d) 7.91 (d)

Proline 5.95 (d) 6.02 (d) 5.97 (d) 6.05 (d)

1.84 (m), 2.78 (m) 4.13 (m), 3.95 (m) 1.84 (m), 2.78 (m) 4.13 (m), 3.95 (m)

2.06 (m), 2.26 (m) 4.70 (m) 2.06 (m), 2.26 (m) 4.70 (m)

3.83 (m), 3.77 (m) 3.56 (m), 3.08 (m) 3.85 (m), 3.73 (m) 3.56 (m), 3.08 (m)

Sarcosine 4.62 (d) 4.50 (d) 4.72 (d) 4.55 (d)

3.63 (d) 3.59 (d) 3.63 (d) 3.59 (d)

MethylValine 2.88 (s) 2.88 (s) 2.87 (s) 2.87 (s)

2.70 (d) 2.68 (d) 2.71 (d) 2.67 (d)

2.78 (m) 2.65 (m) 2.78 (m) 2.64 (m)

0.96 (d) 0.94 (d) 0.96 (d) 0.94 (d)

0.74 (d) 0.74 (d) 0.75 (d) 0.74 (d)

2.94 (s) 2.91 (s) 2.91 (s) 2.94 (s)
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have complicated the treatment therapy for HAI (health
care–associated infections) MRSA and VRE infections
[37]. In this biological arm race, humans appear to be
helpless as pathogens continue to develop resistance
against each new drug introduced in the market. Hence,
there is an urgent need to search new antimicrobial agents
against these pathogens.
In the light of this, during our research studies to find

new antibacterial compounds, a Streptomyces strain, des-
ignated M7, possessing potent antibacterial activity
against various bacteria including MRSA and VRE was
identified as Streptomyces antibioticus. The antibacterial
compounds purified from strain M7, belonging to phe-
noxazone group of chromopeptides, were identified as
actinomycins V, X2 and D on the basis of their LC-MS,
NMR and FTIR spectral data [38–46]. Many Streptomy-
ces spp. viz. Streptomyces MITKK-103, Streptomyces
padanus JAU4234, Streptomyces elizabethii, Streptomy-
ces sp. MS449, Streptomyces sp. HUST012, Streptomyces
heliomycini are reported to produce actinomycins D, V

and X2 simultaneously [40, 41, 47–50]. Recently, Wang
et al. (2018) demonstrated the production of two new
natural actinomycins, neo-actinomycins A and B formed
from actinocin chromophore of actinomycin D (by the
condensation of actinomycin D with α-ketoglutarate and
pyruvate), in addition to actinomycin D and X2 from a
marine-derived Streptomyces sp. IMB094 [51].
Actinomycins are cytotoxic compounds which ex-

hibit potential cytotoxicity against various cancer cell
lines but low toxicity against normal human cell lines
[50]. They are one of the oldest anticancer drugs used
in the treatment of various sarcomas. However, anti-
microbial activities of actinomycins against pathogenic
bacteria, especially MRSA and VRE have gained very
little attention. Khieu et al. reported antibacterial activ-
ities of actinomycin D (SPE-B5.4) and a new compound
(SPE-B11.8) purified from an endophytic Streptomyces sp.
HUST012 against a set of test bacteria [E. coli ATCC
25922, K. pneumoniae sub sp. pneumoniae ATCC 13883,
methicillin-resistant Staphylococcus epidermidis ATCC

Table 3 1H NMR Data of Purified Actinomycin X2
Group Compound P1: Actinomycin X2 (δ-value) Actinomycin X2 (Wang et al. 2017) (δ-value)

Phenoxazone 7.61 (d) 7.60 (d)

7.37 (d) 7.35 (d)

2.56 (s) 2.55 (s)

2.25 (s) 2.24 (s)

Amino acids Ring 1 Ring 2 Ring 1 Ring 2

Threonine 4.55 (m) 4.48 (m) 4.55 (m) 4.48 (m)

5.15 (m) 5.24 (m) 5.15 (m) 5.24 (m)

1.14 (d) 1.26 (d) 1.14 (d) 1.26 (d)

7.17 (d) 7.67 (d) 7.17 (d) 7.67 (d)

Valine 3.57 (dd) 3.71 (m) 3.57 (dd) 3.70 (m)

2.10 (m) 2.09 (m) 2.10 (m) 2.09 (m)

0.90 (d) 0.89 (d) 0.90 (d) 0.89 (d)

1.12 (d) 1.15 (d) 1.12 (d) 1.15 (d)

7.68 (d) 8.21 (d) 7.68 (d) 8.19 (d)

Proline 5.96 (d) 6.02 (d) 5.95 (d) 6.05 (d)

1.82 (m), 2.75 (m) 3.85 (m), 2.23 (m) 1.84 (m), 2.75 (m) 3.85 (m), 2.33 (m)

2.25 (m) 2.24 (m)

3.89 (m), 3.74 (m) 4.55 (m), 3.89 (m) 3.85 (m), 3.73 (m) 4.55 (m), 3.89 (m)

Sarcosine 4.72 (d) 4.57 (d) 4.72 (d) 4.57 (d)

3.62 (d) 3.62 (d) 3.62 (d) 3.62 (d)

MethylValine 2.89 (s) 2.90 (s) 2.88 (s) 2.89 (s)

2.68 (m) 2.68 (m) 2.68 (m) 2.68 (m)

2.68 (m) 2.68 (m) 2.68 (m) 2.68 (m)

0.94 (d) 0.97 (d) 0.94 (d) 0.97 (d)

0.74 (d) 0.73 (d) 0.74 (d) 0.73 (d)

2.92 (s) 2.93 (s) 2.92 (s) 2.93 (s)
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35984 (MRSE) and methicillin-resistant Staphylococcus
aureus ATCC 25923 (MRSA)]. The compound SPE-B11.8
exhibited moderate antibacterial activity with MIC values
ranging between 15.63–62.5 μg/ml whereas actinomycin
D showed strong activity with MIC values between 0.04–
2.24 μg/ml against various test organisms [49]. Wang et
al. determined antibacterial activities of actinomycins
X0β, X2 and D purified from Streptomyces heliomycini
strain WH1 and demonstrated strong activity of actino-
mycins X2 and D against S. aureus, methicillin-resistant
S. aureus, B. subtilis and B. cereus with MIC values of
0.04–0.15 μM, whereas act X0β displayed weak activity
with MIC values of 0.3–2.5 μM [50]. Recently, Wang et
al. evaluated antibacterial activity of actinomycins D,
X2, and two new natural neoactinomycins A and B
against various strains of E. coli, K. pneumoniae, MRSA
and VRE. Actinomycins D and X2 were found to be
very effective against MRSA and VRE with MIC values
of 0.125–0.25 μg/ml, whereas neo-actinomycins A and
B showed moderate to weak antibacterial activity with
MIC values of 16–64 μg/ml and 128 μg/ml, respectively

against MRSA and VRE. However, all the actinomycins
showed weak activity against different strains of E. coli
and K. pneumoniae with MIC values > 128 μg/ml [51].
In contrast, Kulkarnia et al. demonstrated antifungal

activity of actinomycin D purified from an agricultural
soil bacterium Streptomyces hydrogenans IB310 against
fungal phytopathogens in addition to bacterial cultures
which suggests the future application of actinomycin D
in agriculture to control fungal plant diseases [52].
Our study demonstrated strong antibacterial activity of

actinomycins D, X2 and V isolated from Streptomyces
strain M7 against VRE, MRSA, B. subtilis, K. pneumo-
niae sub sp. pneumoniae, S. epidermidis, S. typhi, E. coli,
S1-LF and S. aureus. The MIC values of actinomycins
against VRE were 1.95–2.0 μg/ml, which are higher than
those reported in earlier studies [49–51]. However, acti-
nomycins were found to be more effective against E. coli
and K. pneumoniae (MIC values 15.65–64 μg/ml) as
compared to actinomycins D and X2 (> 128 μg/ml) re-
ported by Wang et al. [51]. The findings of the present
investigation also support the extended application of

Table 4 1H NMR Data of Purified Actinomycin D

Group Compound P3: Actinomycin D (δ-value) Actinomycin D (Wang et al.2017) (δ-value)

Phenoxazone 7.60 (d) 7.64 (d)

7.34 (d) 7.37 (d)

2.53 (s) 2.56 (s)

2.22 (s) 2.25 (s)

Amino acids Ring 1 Ring 2 Ring 1 Ring 2

Threonine 4.59 (d) 4.48 (d) 4.60 (d) 4.48 (d)

5.21 (d) 5.15 (d) 5.20 (d) 5.16 (d)

1.23 (s) 1.23 (s) 1.26 (s) 1.26 (s)

7.13 (d) 7.72 (d) 7.19 (d) 7.81 (d)

Valine 3.52 (m) 3.54 (m) 3.54 (m) 3.55 (m)

2.18 (m) 2.02 (m) 2.16 (m) 2.08 (m)

0.97 (d) 0.87 (d) 0.90 (d) 0.89 (d)

1.10 (d) 1.10 (d) 1.12 (d) 1.12 (d)

8.14 (d) 7.98 (d) 8.09 (d) 7.94 (d)

Proline 5.99 (d) 5.93 (d) 6.02 (d) 5.98 (d)

1.88 (m), 2.67 (m) 1.87 (m), 2.67 (m) 1.88 (m), 2.67 (m) 1.87 (m), 2.67 (m)

2.18 (m) 2.15 (m), 2.17 (m), 2.25 (m) 2.15 (m), 2.25 (m)

3.73 (m) 3.93 (m) 3.72 (m) 3.82 (m)

Sarcosine 4.75 (d) 4.68 (d) 4.76 (d) 4.70 (d)

3.62 (d) 3.64 (d) 3.61 (d) 3.64 (d)

2.88 (s) 2.88 (s) 2.88 (s) 2.88 (s)

MethylValine 2.68 (m) 2.68 (m) 2.67 (m) 2.67 (m)

0.93 (d) 0.86 (d) 0.96 (d) 0.95 (d)

0.72 (d) 0.72 (d) 0.75 (d) 0.75 (d)

2.85 (s) 2.91 (s) 2.90 (s) 2.94 (s)
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actinomycins to treat bacterial infections caused by drug
resistant bacteria, especially methicillin-resistant S. aur-
eus and vancomycin resistant Enterococcus.

Conclusions
The results of the present study reveal the potential of
actinomycins V, X2 and D, which are generally used as
anticancer drugs, to treat nosocomial infections caused
by various bacteria viz. K. pneumoniae sub sp. pneumo-
niae, S. epidermidis, S. typhi, E. coli, S1-LF, S. aureus,
MRSA and VRE.
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