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Background: Theobroma cacao L. (cacao) is a perennial tropical tree, endemic to rainforests of the Amazon Basin.
Large populations of bacteria live on leaf surfaces and these phylloplane microorganisms can have important
effects on plant health. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated
studies of the phylloplane microbiome. In this study, we characterized the bacterial microbiome of the phylloplane
of the catongo genotype (susceptible to witch's broom) and CCN51 (resistant). Bacterial microbiome was
determined by sequencing the V3-V4 region of the bacterial 165 rRNA gene.

Results: After the pre-processing, a total of 1.7 million reads were considered. In total, 106 genera of bacteria were
characterized. Proteobacteria was the predominant phylum in both genotypes. The exclusive genera of Catongo
showed activity in the protection against UV radiation and in the transport of substrates. CCN51 presented genus
that act in the biological control and inhibition in several taxonomic groups. Genotype CCN51 presented greater
diversity of microorganisms in comparison to the Catongo genotype and the total community was different
between both. Scanning electron microscopy analysis of leaves revealed that on the phylloplane, many bacterial
occur in large aggregates in several regions of the surface and isolated nearby to the stomata.

Conclusions: We describe for the first time the phylloplane bacterial communities of T. cacao. The Genotype
CCN51, resistant to the witch's broom, has a greater diversity of bacterial microbioma in comparison to Catongo
and a greater amount of exclusive microorganisms in the phylloplane with antagonistic action against

Background

The phylloplane alone represents the largest biological
surface on Earth, outnumbering the cells of the plants
themselves [1, 2]. The microorganisms that live in this
region multiply and occupy newly formed niches while
the leaves are expanding [2, 3]. They are influenced by
sunlight and the plants metabolism that have nutrients,
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including carbohydrates, organic acids and amino acids
[4, 5]. Furthermore, the cuticle reduces water evapor-
ation as well as leaching the metabolites in the leaves,
resulting in a favorable environment [6-8]. These sur-
faces are an open environment that receive migrants
transferred by various mechanisms including rain, ani-
mals and deposition of aerial particles, which contributes
to a large microbial diversity [2, 9].

The phylloplane microorganisms can be shared randomly
among its neighbors, but their survival and presence is gen-
erally regulated by the plant [10]. Furthermore, a theory
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proposes a possible transfer of microorganisms through
generations [11]. However, this whole microbiome can be
affected by environmental factors, including radiation [12]
and pollution [13], as well as biotic factors such as leaf age
and the presence of other microorganisms [14].

The microbiome present in the phylloplane includes a di-
versity of bacteria, fungi, yeasts, algae and other microor-
ganisms that have commensal, pathogenic and mutualistic
interactions with the plant [2, 15, 16]. Bacteria are numeric-
ally dominant in the phylloplane environment, of which a
large part are proteobacteria, actinobacteria and bacteroi-
detes [9, 15, 17—-22]. This variation is observed in different
species of plants that have characteristic communities of
bacteria in the phylloplane, varying between genotypes [23,
24], as well as between species and taxonomic classifica-
tions [17].

The microbial activities in the leaves can significantly in-
fluence the plant health [25-27]. The nitrogen fixation in
the phylloplane is the main mechanism for the addition of
nitrogen in tropical humid ecosystems [28] and temperate
forests [29]. Plants can still be affected by the production
of growth hormones [27] and indirect protection against
pathogens [3, 25, 30]. In this environment, the cuticle [8]
and the trichomes [31, 32] are also considered defense
components in the phylloplane that together with the mi-
croorganisms, constitute a complex region [33, 34].

Next-generation sequencing technology (NGS) had a
great impact in the microbial genomics field [35, 36]. The
method provides new insights into the non-cultivable mi-
croorganisms and the complex host-microbe interactions
[19, 37]. In this approach, the metagenomics used a hyper-
variable region of the highly conserved 16S rRNA gene as
a phylogenetic marker allowing the characterization of the
diversity of organisms of the total microbiota found in a
given habitat [9, 20, 21, 38—40].

Theobroma cacao L. is a plant native to the South
American rainforest, belonging to the Malvaceae family
[41]. It is considered that this plant has two large groups
of origin according to their morphological and genetic
characteristics and geographic location [42, 43]. The
cocoa has great industrial importance since it is the raw
material for chocolate [44]. Currently, the genotype
CCNb51 is the most commercialized clone in several
countries due to its great productivity. In contrast, the
Catongo genotype is used as a model of sustainability of
the fungus Moniliophthora perniciosa [31, 45], which
causes witches’ broom disease in cocoa trees.

The CCN51 genotype is resistant to the fungus Moni-
liophthora perniciosa [45], and its phylloplane has twice as
greater index of short glandular secreting trichomes than
the Catongo genotype. A total of 41 proteins from leaf
water washes (LWW) of the CCN51 identified by mass
spectrometry revealed 28 plant proteins and 13 bacterial
proteins [31]. This variation of the short glandular secreting
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trichomes index between the two genotypes may interfere
in the microbial community of the phylloplane.

In this study, we propose that two contrasting geno-
types for resistance to witches’ broom have variations in
the phylloplane microbiota. Therefore, using an inde-
pendent culture approach, the total microbiome of the
T. cacao phyloplane of the genotypes CCN51 and
Catongo, were studied and characterized. We show that
the differences in the index of glandular trichomes in
the contrasting genotypes may affect the variety of bac-
terial microbioma symbiont of the phylloplane, and that
the CCN51 genotype presents an exclusive genera with
antagonistic potential against phytopathogens in relation
to the catongo genotype, reinforcing its preference of
agriculture for the cultivation and commercialization.

Materials and methods

Plant material and DNA extraction

A total of 300 plants of Theobroma cacao L. were cultivated
in the greenhouse at CEPEC / CEPLAC (Cacao Research
Center, Ilhéus-BA); 150 plants of the Catongo genotype
and 150 of the CCN51 genotype. The plants were kept at
room temperature and drip irrigation to avoid leaf washing.
Seven pots of plants were randomly selected from each
genotype to form the pool of the first biological sample,
and another second group, also with seven pots of plants to
form the pool of the second biological sample (Add-
itional file 1: Figure S1). Therefore, the four biological sam-
ples (two from CCN51 and two from Catongo) underwent
the extraction of the metagenomic DNA and analyzed in
triplicates experimental (Additional file 2: Figure S2).

Young leaves were collected within 15 to 20 days after
leaf primordium formation, and the metagenomic DNA
extraction from the phylloplane was obtained through
leaf water wash according to the method described by
Shepherd [46]. Furthermore, other young leaves of the
CCN51 and Catongo genotypes were collected with the
purpose of observing the phylloplane topography and
microbes using the Scanning Electron Microscope
(SEM) Quanta 250 model (FEI Company).

For extraction of total DNA, each leaf was washed by
immersion for 15s in a beaker containing 100 ml of dis-
tilled water maintained at temperature 8 °C. The micro-
biota was obtained from the LWW by filtering through a
0.22 um cellulose membrane to retain the microorgan-
isms. Afterwards, the membrane was distributed in
eppendorf tubes, flash-frozen in liquid nitrogen and
freeze dried until complete elimination of water. 0.5 g of
freeze-dried membrane was weighed and DNA was ex-
tracted using the PowerSoil® DNA Isolation Kit (MoBio
Laboratories, USA) according to the manufacturer’s
instructions. DNA quality was checked on 0.8% (w/v)
agarose gel and concentration and purity measured
using the Nanodrop (Thermo Scientific, USA).
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Library construction and sequencing

Bacterial 16S rRNA gene sequences of the V3-V4 hyper-
variable region were amplified by PCR using the (341F)
forward and (805R) reverse primer [47]. PCR was per-
formed in a final volume of 25 pL containing the follow-
ing: 2L of template DNA, 12.5uL of HiFi HotStart
ReadyMixPCR Kit (Kapa Biosystems) and 5 pL of each
oligonucleotide. Amplification was performed on the Mx
3005P apparatus (Agilent Technologies) under the fol-
lowing conditions: 95 °C for 3 min, followed by 25 cycles
of 95°C for 30, 55°C for 30s and 72°C for 30s, and a
final elongation step at 72 °C for 5 min.

Amplicons from each biological replicate (3 amplifica-
tions for each of the four DNA extractions) were purified
using the Agencourt” AMPure® XP system (Beckman
Coulter, USA). The quality of the purified amplicons was
evaluated in 1.5% agarose gel. A new PCR with Nextera
XT Index Kit (FC-131-1002) with final volume of 50 uL
was performed in order to add the barcodes, using dual
indexing strategy with two 8-base indices. The new ampli-
fication was performed under the same conditions as the
previous PCR, except for the number of cycles (8). After
quantification of the 12 samples using the Kapa Library
Quantification kit (Additional file 3: Figure S3), the librar-
ies were sequenced on the Illumina MiSeq™ equipment
using the V3 kit (MiSeq® Reagent - Illumina).

Data analysis

Raw bacterial sequence reads were initially subjected to
the following preprocessing steps and quality controls:
(i) < 100 nucleotides in length (not including sample bar-
codes) or more than 600 bp were not considered and (ii)
reads were trimmed at the beginning of a poor quality
region with 10 bp analyzed in FastQC [48] software with
a Phred-score < 20. In subsequent screenings, files were
processed using MeFit [49], to identify the best possible
overlap region, with the least number of mismatching
bases and carry out the merger.

Files were demultiplexed and end chimeras removed
using the Quantitative Insights into Microbial Ecology
(QIIME) [50] software package and operational taxo-
nomic units (OTUs) were assigned by clustering the se-
quences with a threshold of 99% identity against the
Greengen database version 13.8 16S rRNA [51]. OTUs,
were assigned to “chloroplasts” and “mitochondria” be-
fore it was rarefied and served as input for alpha and
beta diversity analysis, were filtered. The Qiime package
generated rarefaction curves (richness of population
analysis) and the calculation of the population diversity
analysis estimator Chaol, as also, Alpha (within-sample
richness) and beta diversity (between-sample dissimilar-
ity) estimate. Using the GeanAIEx [52] software, the
Principal Coordinates Analysis (PCoA) chart was plotted
according to weighted UniFrac metrics (B-diversity). To
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test whether there is a significant difference in bacterial
community composition among genotypes CCN51 and
Catongo, we used the analysis of similarity (ANOSIM)
with 999 permutations [53].

Results

After pre-processing, filtering and rarefaction, the sequen-
cing produced a total of 1.7 million reads of the V3-V4
variable region of the 16S rRNA from leaf water washes of
the two contrasting cacao genotypes for resistance of
witches’ broom disease, caused by M. perniciosa fungus.
The average number of reads per sample was 95.398, ran-
ging from 42.068 to 346.420. The identified bacteria were
classified according to phylum, class, order, family, and
genus (Additional file 4: Table S1). A total of 10 phyla and
73 genera were identified in the Catongo genotype and a
total of 11 phyla and 91 genera in the CCN51 genotype
(Fig. 1a). At the phylum level, proteobacteria is the most
abundant phylum in the two genotypes, followed by
cyanobacteria also in both genotypes and by bacteroidetes
in the genotype Catongo (Fig. 1b) and actinobacteria in
the CCN51 genotype (Fig. 1c).

The three dominant bacterial taxonomic classes in the
Catongo and CCN51 genotypes were Gammaproteobac-
teria, Alphaproteobacteria and Actinobacteria (Fig. 2a
and b). Among the orders identified (Fig. 1a), oceanos-
pirillales, rickettsiales and enterobacteriales, were the
three most abundant orders in both genotypes, 45.9,
21.6 and 9.6% for Catongo and, 43.0, 20.1 and 6.6% for
CCNG51, respectively.

At the family level, oceanospirillales (44.3%) is the
most abundant order in the CCN51 genotype, followed
by rickettsiales (20.7%) and enterobacteriales (6.8%).
Rickettsiales (42.0%) is the most abundant order
followed by enterobacteriales (18.7%) and sphingomona-
dales (4.9%), in the Catongo genotype. Comparison at
genus level was carried out to reveal bacteria commonly
or specifically identified in both genotypes, (Fig. 2c).
Genotype CCN51 presented 33 genera of bacteria exclu-
sive to its phylloplane in comparison to Catongo. The
Stenotrophomonas genus was prevalent with 13.5%
exclusively found in the CCN51 genotype, whereas the
genus Sphingomonas prevailed with 75.3%, in the
Catongo genotype (Additional file 5: Table S2).

In terms of bacterial diversity, rarefaction curves gen-
erated from the library reads (42.000 reads per sample)
based on a cutoff 99% sequence identity showed an
asymptote for both genotypes, which tended to stabilize
indicating sufficient sampling to capture most OTUs
within communities (Fig. 3b). The graphic analysis
showed the differences in biodiversity, because the geno-
type CCN51 represents the curves of the upper part of
the figure, revealing that microbial communities from
genotype CCN51 were more diverse than those from
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microbial communities from the genotype Catongo. The
PCoA analysis based on weighted UniFrac metrics
showed that the bacterial community were clustered per
genotype (Fig. 3a), indicating the distinct bacterial diver-
sity between CCN51 and Catongo. The ANOSIM results
also showed that there is a significant difference in
bacterial composition between genotypes CCN51 and
Catongo (Global R =0.996, P < 0.05).

Electron microscopy analysis of the leaves revealed that
in the phylloplane many epiphytes occur in large bacterial
aggregates, and fungi (Fig. 4). The field images provides
spatial view of microbiome locations. Isolated bacterial
cells have also been observed and some mixed aggregates
can be found. The bacteria were visualized next to
stomates, cell junctions and mainly in the foliar veins.

Discussion

Cocoa is a source of raw material for chocolate production
and is cultivated in tropical and subtropical regions around
the world [44]. Great losses in cacao production happen due
to fungal diseases, such as witches’ broom and frosty pod,
caused by M. perniciosa and M. roreri [54], respectively.

These pathogens are hemibiobrophyc and start the infection
process with spores deposited on the phylloplane from
young cacao tissues (leaf and fruits). There is no effective
chemical control after the invasion of the apoplast and onset
of the parasitic phase of the disease [55, 56]. The mecha-
nisms of spore germination and pre-infection processes in
contrasting resistance cacao genotypes has been analyzed
[57]. Furthermore, the topography of the epicuticular wax
layer [58], the short glandular secreting trichomes and the
importance of water-soluble components of the phylloplane
[31] have also been analyzed. M. perniciosa tends to have a
relatively short epiphytic phase [31, 59] and requires few or
no exogenous nutrients in this phase [60]. Thus, if biocon-
trol occurs at the epiphytic phase, antagonists that act as
antibiotics (rather than competition) should be the most ef-
fective [61]. In this work, we analyze the composition and
bacterial diversity of the phylloplane of CCN51 and Catongo
cacao genotypes, resistant and susceptible to witches’ broom
respectively. DNA extracted from microorganisms recov-
ered by filtration from leaf water washes was analyzed by
metagenomic approach based on the sequencing of the
v3-v4 hypervariable region from the 16S rRNA.
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Microbiome communities contained abundance of
genera within the proteobacteria and cyanobacteria
phylum, with prevalence of Candidatus Portiera in both
genotypes (Additional file 4: Table S1). This genus pre-
sented a single species Candidatus Portiera aleyrodi-
darum sp. which provides amino acids and carotenoids
[62] to its host Bemisia tabaci [63]. In the phylloplane,
this microorganism may be acting symbiotically with T.
cacao, participating in the organic metabolism with the
contribution of amino acids tryptophan and also par-
ticipating in the photosynthesis providing carotenoids
[62, 64]. Tryptophan may be involved in the cellular
elongation of young leaves of T. cacao, as this amino
acid is a precursor of indolylacetic acid, a growth
hormone [65, 66].

Gammaproteobacteria is dominant in the taxonomic
composition at class level of phylloplane communities of
T. cacao (Fig. 2). It differs from tropical and temperate
community structures already described. Phylloplane
communities in Canadian forests were dominated by
Alphaproteobacteria (68%) [40], contrasting with 27% in
Malaysia [21] and 22.8% in Panama [67] in tropical trees.
However, percentages of Alphaproteobacteria in trees of
tropical climates were similar to percentages found in T.
cocoa. Some studies report that phylloplane bacteria vary
among plants of different developmental stages and ge-
notypes [10, 29]. The bacterial diversity in the phyllo-
plane appears to be as high as that presented in roots or
in the human gut [10]. Others describe that microbial
diversity and plant species may change according to the
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environment, climate and geography [22, 26, 40, 68], re-
vealing patterns of change in the phylloplane microbial
communities of each species across geographically
separated ecosystems. The large diversity of microbiota
at the phylloplane may also influence plant evolution, as
described by the hologenome theory. Both host and
symbiont genomes can be transmitted from one gener-
ation to the next [11].

Sphingomonas (75.3%), the predominant genus among
the exclusive ones in Catongo, has a pigmentation which
confers protection against UV radiation to the phylloplane
[2], also assists in transportation of substrates (e.g. sugars,
vitamins, siderophore) [22] and acts as regulator of
stress-related responses, such as PhyR and EcfG [26]. Sev-
eral members of the genus Sphingomonas isolated from

plants (Arabidopsis thaliana, Acacia caven, Oryza sativa
and Nicotiana tabacum) conferred protection in A. thali-
ana against Pseudomonas syringae and Xanthomonas cam-
pestris, reducing disease symptoms or diminishing
pathogen growth in the phylloplane [69]. Sphingomonas
melonis and Methylobacterium extorquens demonstrated a
profound impact on the transcriptome of the plant Arabi-
dopsis thaliana, researchers found that the expression of
nearly 400 genes may be involved in the plant defense
responses [70]. Nonetheless, Stenotrophomonas is the
predominant genus (13.5%) among the exclusive ones in
CCNB51 and it was reported as being characteristic from
plant leaves (Chlorophytum comosum, Olea europaea and
Dracaena draco), that grow in cold temperate climates
[71]. The regulation system of pathogenicity factors (Rpf)
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Fig. 4 Scanning electron microscopy analysis. a Adaxial surface of the CCN51 genotype. b Abaxial surface of the CCN51 genotype. ¢ Adaxial
surface of the Catongo genotype. d Abaxial surface of the Catongo genotype
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and diffusible signal factor (DSF), are also conserved in this
type of genus [72]. Other predominant genera among the
exclusive ones in CCN51, were Lysobacter (5.89%) and Pae-
nibacillus (3.13%). Lysobacter spp. has been shown to be
important as biological control agents, producing both anti-
biotics and enzymes capable of degrading the cell walls
from host fungi in Cucumis sativus and Solanum lycopersi-
cum [73, 74]. In contrast, a species of the genus Paenibacil-
lus (P. peoriae), demonstrated a broad inhibition spectrum
in several taxonomic groups of bacteria and fungi [75].
Rarefaction analyses (Fig. 3b) and PCoA analysis show
that the total bacterial diversity in the genotype CCN51
phylloplane was larger in comparison to the Catongo geno-
type and the bacterial community is clustered as per the
genotype type (Fig. 3a). According to the rarefaction curve,
the CCN51 genotype of T. cacao showed higher OTUs
than the Catongo genotype. The rarefaction curves trends
to plateau suggests that a good coverage of the entire com-
munity of the phylloplane was achieved. The difference in
the curve between the biological samples of the CCN51
genotype can be explained by the interval of 15 days be-
tween the collection of the first and second biological sam-
ples. The highest index of short glandular secreting
trichomes that occur in the witch’s broom-resistant CCN51
genotype compared to the susceptible Catongo [31], may
affect the amount and variety of proteins and metabolites
released into the phylloplane [2]. We believe that it might

be the cause of the qualitative and quantitative differences
in the microbial community of the two genotypes shown in
the results. Furthermore, these phylloplane variations, due
to plant metabolites and of the microbial community, to-
gether with variations in the topography of the phylosphere
between genotypes (Fig. 4), strongly suggests that they may
contribute to the differences in resistance to disease occur-
ring between the CCN51 and Catongo genotypes [31].

Bacterial communities presented distinct colonization
patterns in the T. cacao phylloplane (Fig. 4). Some studies
have described that penetration of the germinal tube of
the fungus M. perniciosa [76, 77], and colonization of
other microorganisms, can occur at the base of the glan-
dular trichoma, junctions of the cells, sites of lesions, sto-
mata, and in the veins [2, 78], and may undergo changes
at different seasons and age of the leaf. The diversity is
lower during hot and dry months and higher during rainy
and cold seasons [79]. In young leaves, communities are
made up of a greater number of microorganisms relative
to mature and senescent leaves, as well as at different sea-
sons [79, 80]. The formation of aggregates by bacteria may
constitute between 30 and 80% of the total bacterial popu-
lation in certain species of plants [81].

In the rice phylloplane, the microbiome presented
greater diversity in cultivated and controlled plants in pots
than those cultivated in the open field [82]. Bacterial com-
munity composition in phylloplane of Deschampsia
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antarctica at different locations in open fields, revealed
significant differences [83]. The phylloplane and its micro-
bial communities are interrelated [84] and can provide a
structural and functional model microenvironment [3, 85]
to understand plant-pathogen interactions and thus to se-
lect more resistant plants, which will contribute to the
continuity of food production.

Conclusions

In this study, to the best of our knowledge, we describe for
the first time the phylloplane bacterial communities of 7.
cacao. In addition, we performed the first evaluation of
hosts identity and an analysis of diversity in two contrasting
genotypes for witch’s broom resistance. Proteobacteria is
the most abundant phylum in the two genotypes, with
prevalence of Candidatus Portiera in both. Genotype
CCNG51, resistant to the witch’s broom, has a greater diver-
sity of bacterial microbioma in comparison to Catongo and
also greater amount of exclusive microorganisms in the
phylloplane with antagonistic action against phytopatho-
gens. The bacterial diversity among phylloplane populations
are distinct between the genotypes according the PCoA
analysis and validated by statistics ANOSIM that showed a
significant difference in bacterial composition between ge-
notypes CCN51 and Catongo. The study revealed the im-
portance of epiphytic microbiome and may be a highly
valuable tool in the process of biological control. The find-
ings will be of great value for improving the understanding
of the defense and interaction mechanisms that occur in
the phylloplane.

Additional files

Additional file 1: Figure S1. Distribution of plants in the greenhouse.
(A) Selected plants: green (first biological), red (second biological). (B)
Panoramic photo of plants. (DOCX 2745 kb)

Additional file 2: Figure S2. Extraction of the metagenomic DNA in
triplicates experimental. (A) First biological sample - CCN51. (B) First
biological sample - Catongo. (C) Second biological sample - CCN51 and
(D) Second biological sample - Catongo. (DOCX 151 kb)

Additional file 3: Figure S3. Quantification of libraries. (A)
Electrophoresis on 1% (w / v) agarose gel with the six standards, 12
libraries (quantified in triplicates) and three negative controls - a, b and ¢
first biological sample - CCN51; d, e and f: first biological sample -
Catongo; g, h and i: second biological sample - CCN51; j, k and I: second
biological sample - Catongo; NC: negative control. (B) Dissociation curve
- a: libraries; b: negative control. (DOCX 307 kb)

Additional file 4: Table S1. Bacteria identified and classified according
to phylum, class, order, family, and genus for in the genotypes CCN51
and Catongo, with a threshold of 99% identity against the Greengen
database version 13.8 165 rRNA. (DOCX 19 kb)

Additional file 5: Table S2. Bacterial genera exclusive to the
phylloplane of the genotypes CCN51 and Catongo. (DOCX 17 kb)
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