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Co-occurrence of carbapenemase encoding
genes in Acinetobacter baumannii, a dream
or reality?
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Abstract

Background: Acinetobacter baumannii is an important opportunistic pathogen that is rapidly evolving towards
multidrug resistance and is responsible for life-threatening infections. Carbapenems are commonly used to treat A.
baumannii infections but the emergence of carbapenemase encoding genes, such as blaOXA-23-like, blaOXA-24-like,
blaOXA-58-like, and blaNDM has been reported. Moreover, several studies have reported the co-occurrence of two
distinct carbapenemases in some isolates. The aim of the present study is to demonstrate whether the
phenomenon of co-occurrence of two distinct carbapenemase encoding genes in a single isolate still exists.

Results: We studied six strains of A. baumannii including one harboring blaOXA-23-like and blaOXA-24-like genes and
five with blaOXA-23-like and blaNDM genes. One colony of each strain was inoculated in sterile water and diluted
ten-fold. Each dilution was cultivated on trypticase soy agar plates for 24 h at 37 °C and the isolated bacteria were
analyzed. For two of the six tested strains, we identified two different populations of A. baumannii, each with a
different carbapenemase, genes encoding aminoglycoside modifying enzymes, resistance phenotype, and clonal
type. In addition, the two different populations had the same aspect on the agar plate.

Conclusions: Here, we demonstrate that A. baumannii infections could be linked to multiple clones harboring
different carbapenemase encoding genes in the same sample. In addition, we describe an easy method of verifying
the presence of co-occurrence of carbapenemase in one isolate.

Keywords: Acinetobacter baumannii, Carbapenemase, Co-occurrence

Background
Acinetobacter baumannii is an important opportunistic
Gram-negative bacteria pathogen that is rapidly evolving
towards multidrug resistance. Worldwide, this bacterium is
responsible for nosocomial infections and life-threatening
infections [1]. The most common treatment is the use of
carbapenems but extensive use of antimicrobial agents
within hospitals has contributed to resistance against these
antibiotics. The principal mechanism of resistance to carba-
penems in A. baumannii is the production of OXA-type
carbapenemases, such as OXA-23, OXA-24, and OXA-58
enzymes, and the new metallo-β-lactamase (MBL), New
Delhi Metallo-β-lactamase 1 (NDM-1) [1].

The location of the carbapenemase genes is not fixed,
since some studies have described blaOXA-23, blaOXA-24

and blaOXA-58 as chromosomal or plasmidic [2]. In epi-
demiologic studies, co-occurrences of carbapenemase
genes, such as blaOXA-23-blaOXA-24, blaOXA-23-blaNDM,

and blaOXA-58-blaNDM have been described [3–8]. In
blaOXA-23 and blaNDM co-expressing Acinetobacter spp.
strains, blaNDM can be acquired by plasmid [4, 9]. How-
ever, it remains unclear whether and how these
co-existing carbapenemase genes are expressed and how
they contribute to drug resistance. The aim of our study
was to provide an alternative explanation for the coexist-
ence of blaOXA and blaNDM genes in A. baumannii. For
this purpose, we describe an easy method of determining
whether the co-occurrence of carbapenemase genes in
such bacteria was “real” or whether it is due to the exist-
ence of different bacterial clones harboring different
genes in the same sample.
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Results
Ten isolated colonies from the original diluted strain
were analyzed and re-identified as A. baumannii using
MALDI-TOF MS. Original strains 519, 598, 624, and
679 and all colonies tested were positive for both
blaNDM and blaOXA-23 genes before and after the limit
dilution (Table 1). We therefore considered them as
“true” strains with the co-occurrence of different carba-
penemase genes. Original strain 924 was positive for
both blaNDM and blaOXA-23 genes. All 10 colonies ob-
tained after the limit dilution were tested using real time
PCR: six were positive only for the blaNDM gene while
four were positive only for the blaOXA-23 gene. The ori-
ginal strain belonged to the sequence type ST2 as were
the clones carrying the blaOXA-23 gene, whereas the
clones harboring the blaNDM gene belonged to ST25
(Table 1).
Original strain AH35 was positive for both the

blaOXA-23 and blaOXA-24 genes. Of the 10 colonies which
were obtained after the limit dilution, six were positive
only for the blaOXA-23 gene while four were positive only
for the blaOXA-24 gene. All strains (the original strain
and the clones obtained after dilution) belonged to ST2

(Table 1). For the original strain AH35, resistance to
aminoglycosides was due to the production of
aminoglycoside-modifying enzymes (AMEs) aph(3′)-VI,
ant(2″)-I and aac(3)-Ia. The clone (AH35-A) which was
susceptible to gentamycin and tobramycin harbored the
blaOXA-23, aph(3′)-VI and ant(2″)-I genes whereas the
clone (AH35-B) which was resistant to these antibiotics
carried the blaOXA-24 and aac(3)-Ia genes. The original
strain 924 was positive for the presence of the
aph(3′)-VI gene. The clone (924-A) which was resistant
to amikacin harbored the blaOXA-23 and aph(3′)-VI
genes; while no AME genes were found in the clone
(924-B) carrying the blaNDM gene and resistant to ami-
kacin with relatively low MIC. Original strains AH35
and 924 were chimeras of their two clones. The results
of the antibiotic susceptibility testing (AST) of the
obtained clones after the limit dilution revealed two dif-
ferent resistance phenotypes according to the aminogly-
cosides presented in the different clones (Table 1). After
sub-culturing the two original strains (924 and AH35) in
the same conditions and the same TSA medium (Fig. 1),
we observed no phenotypic differences in terms of size,
form or color.

Fig. 1 a Isolation of original strain AH35 blaOXA-23 and blaOXA-24 on TSA medium and isolation of clones. AH35A; blaOXA-23 on the left, AH35B;
blaOXA-24 on the right. b Isolation of original strain 924 blaNDM and blaOXA-23 on TSA medium and isolation of clones 924A; blaOXA-23 on the left,
924B and blaNDM on the right
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Discussion
Since A. baumannii is able to remodel its genome, anti-
biotic use and the host environment might impose se-
lective forces that drive its rapid adaptive evolution.
Microscale genome modification has been revealed
through the analysis of single nucleotide polymorphisms
(SNPs) between A. baumannii strains isolated from the
same patient. This modification can lead the emergence
of resistance and to different sequence typing by modify-
ing a single allele [10]. However, this explanation cannot
be applied to our case, because ST2 and ST25 have only
two common alleles. Mutations in five alleles would be a
substantial evolution. Moreover, this cannot be an evolu-
tion of a clone because the presence of different
carbapenemase-encoding genes was also observed.
Another phenomenon, referred to as small colony vari-

ants (SCVs), mostly described in Staphylococcus aureus,
was also identified from one sample with different suscepti-
bility to antibiotics from the parent strain [11]. SCVs can
cause latent and recurrent infections and have been
observed in many genera of bacteria, including Gram-nega-
tive bacteria such as Pseudomonas aeruginosa [12]. In our
case, the populations are morphologically identical and do
not have the aspect of small colony variants.

The presence of different populations of a same species
in the same sample had been already described in S. aureus
[13]. Similarly to our study, different clones with different
resistance phenotypes, such as methicillin-susceptible and
methicillin-resistant S. aureus strains could be isolated from
the same sample by increasing the number of colonies
tested for each sample [14].
BlaOXA-23, blaOXA-24 and blaNDM can be located either

on the chromosome or plasmid. For this reason, we tend
to believe that co-occurrence with other resistance genes
is due to the presence of different genes in the same
strain. However, another explanation could be the pres-
ence of a polyclonal population of A. baumannii from
the same sample. These populations are morphologically
undetectable with the naked eye. Although the number
of strains studied was limited, our work represents the
proof of concept that co-occurrence of carbapenemases
in A. baumannii could be due to multiple clones.

Conclusion
In this work, we demonstrated that from one sample
and from an original “chimera” strain with two carbape-
nemase genes which were highly resistant to antibiotics,
we were able to isolate two less resistant strains with

Fig. 2 Example of the study of the strain 924
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only one gene encoding for carbapenems resistance. The
presence of different clonal types and different genes en-
coding aminoglycoside modifying enzymes in each clone
is also evidence of polyclonal coexistence in a single
sample.
Another option, in similar case to this current study, is

the coexistence in a single sample of different clones
harboring one carbapenemase encoding gene as well as
different resistance genes. In addition, this study has
strong implications for clinical practice. The use of only
one colony from one sample to conduct AST may omit
another population which may be more resistant.

Methods
Six A. baumannii strains (924, 519, 598, 624, and 679) iso-
lated from two Algerian hospitals were studied; five A.
baumannii co-expressed blaOXA-23 and blaNDM genes re-
covered from a hospital in Algiers, and one A. baumannii
(AH35) co-expressed blaOXA-23 and blaNDM gene isolated
from a urine sample in an intensive care unit in a hospital
in Setif (Table 1). These clinical isolates were taken for the
purpose of this study. Identification was confirmed using
matrix-assisted laser desorption and ionization time-
of-flight mass spectrometry (MALDI-TOF) (Microflex,
Brüker Daltonics, Bremen, Germany) [15].
For each strain, one colony was inoculated in sterile

water and diluted ten-fold to isolate a single clone. Each
dilution was cultivated on Trypticase Soy Agar (TSA)
plates for 24 h at 37 °C and isolated bacterial were ana-
lyzed. Antibiotic susceptibility was determined by mini-
mum inhibitory concentrations (MICs) using broth
microdilution method (Biocentric) for colistin and using
the E-test method (bioMérieux) for others antibiotics
tested in accordance with the European Committee on
Antimicrobial Susceptibility Testing (EUCAST). Real
time PCR was performed to verify the presence of the
blaOXA-23, blaOXA-24 and blaNDM genes [16, 17]. Stand-
ard PCR amplification was carried out using primers for
amplification of the aph(3′)-VI, ant(2″)-I, aac(3)-Ia,
aac(6′)-Ib and armA genes [18]. Clonal types of the
isolates were determined using multilocus sequence
typing (MLST) in line with the Pasteur schemes (https://
pubmlst.org/abaumannii/). Each stage of the materials
and methods section is summarized in Fig. 2.

Abbreviations
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