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Abstract

Background: Exploiting soil microorganisms in the rhizosphere of plants can significantly improve agricultural
productivity; however, the mechanism by which microorganisms specifically affect agricultural productivity is poorly
understood. To clarify this uncertainly, the rhizospheric microbial communities of super rice plants at various
growth stages were analysed using 16S rRNA high-throughput gene sequencing; microbial communities were then
related to soil properties and rice productivity.

Results: The rhizospheric bacterial communities were characterized by the phyla Proteobacteria, Acidobacteria,
Chloroflexi, and Verrucomicrobia during all stages of rice growth. Rice production differed by approximately 30% between
high- and low-yield sites that had uniform fertilization regimes and climatic conditions, suggesting the key role of
microbial communities. Mantel tests showed a strong correlation between soil conditions and rhizospheric bacterial
communities, and microorganisms had different effects on crop yield. Among the four growing periods, the rhizospheric
bacterial communities present during the heading stage showed a more significant correlation (p< 0.05) with crop yield,
suggesting their potential in regulating crop production. The biological properties (i.e., microbes) reflected the situation of
agricultural land better than the physicochemical characterics (i.e., nutrient elements), which provides theoretical support
for agronomic production. Molecular ecological network (MEN) analysis suggested that differences in productivity were
caused by the interaction between the soil characteristics and the bacterial communities.

Conclusions: During the heading stage of rice cropping, the rhizospheric microbial community is vital for the resulting
rice yield. According to network analysis, the cooperative relationship (i.e., positive interaction) between between
microbes may contribute significantly to yield, and the biological properties (i.e., microbes) better reflected the real
conditions of agricultural land than did the physicochemical characteristics (i.e., nutrient elements).

Keywords: Bacterial diversity, Bacterial community structure, Super hybrid rice, 16S rRNA pyrosequencing technology,
Crop yield, Soil physicochemical properties

Background
Recent studies have suggested that modern agriculture
will face substantial challenges over the coming decades
[1], and the market demand for agricultural products
will increase by at least 70% to 2050 [2]. Over the last
few decades, improper agricultural production methods,

e.g. the improper use of chemical fertilizers and pesticides
[3], have triggered a series of environmental problems [4, 5].
Numerous studies have addressed sustainability issues, and
one recommended approach is exploiting the soil microor-
ganisms [2] to sustainably meet agricultural demands [6].
Soil microorganisms play important roles in agriculture, par-
ticularly in the nutrient supply and in the biocontrol of plant
disease [7, 8]. Rhizospheric microorganisms exist within a
narrow zone around the root of a plant and are found at
densities of approximately 1011 cells per gram [9];
additionally, these microorganisms, are considered as the
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plant’s second genome [10]. The rhizospheric microbial
community structure is mainly mediated by root exudate
(e.g., sugars, amino acids, siderophores, and enzymes)
[11]. Therefore, the interaction between plant roots and
rhizospheric microorganisms potentially influences
ecosystem functioning by promoting the circulation of
materials [12].
Complex biochemical processes occur between rhizo-

spheric microorganisms and plants, and microorganisms
enhance soil fertility [13–15], maintain below-ground
ecological structure and are associated with plant health
(e.g., diseases, pathogens and weed suppression) [16].
Microbial diversity is also an indicator of soil microor-
ganisms in a region [17], which provide a vast amount of
ecological information in terms of the soil. Although the
relationships between the soil microbial diversity and
the functioning and sustainability of agricultural ecosys-
tems have not been fully elucidated [18, 19], it is ac-
cepted that microbial diversity plays an important role
in agricultural production [20, 21]. Microbial diversity
includes the range of microorganisms and their relative
abundance in natural habitats [22]. In addition to micro-
bial diversity, microbial community structure also re-
sponds to the basis of agroecosystem services in
agricultural production [23]. Soil microbial communities
drive globally important processes [24], including elem-
ental cycles and energy flows. These microbial commu-
nities are involved in various processes that serve
essential functions in agricultural production [25] by
promoting crop absorption of nutrients and inhibiting
harmful pathogens [7, 8, 26–28]. For example, soil mi-
crobes can promote plant growth through the degrad-
ation of manure fertilizers and form humus nutrients,
which are then easily absorbed by plants. Other microor-
ganisms may regulate soil pH, generating favourable
conditions that permit functional microorganisms to
work at full capacity and promote production [29]. This
kind of microorganism often plays a crucial role in the
agricultural ecosystem. Explaining the direct effects of
soil microbial communities on crop-growth and yield is
challenging because the ecosystem functions provides by
most soil microorganisms are not well clear [30, 31].
Numerous studies have shown dramatically related re-
sults that indicate soil community structure is character-
ized by Proteobacteria, Acidobacteria, Actinobacteria,
Bacteroidetes, Firmicutes, etc. Nevertheless, further con-
sideration of the interactions between the microbial
communities and the external environment has identi-
fied biological and abiotic factors related to crop yield.
Some studies have associated the soil microbial proper-
ties with the transformation of edaphic nutrients, which
have an essential role in plant growth that helps obtain
high yields [10, 32]. However, the innate mechanism of
how microorganisms specifically affect crop productivity

is poorly understood, and our study is devoted to statis-
tically explaining the links between them.
In the process of production, we found a gap (more

than 30%) in crop production between different super
rice cultivation types with similar, fertilisation regimes
and latitudinal and longitudinal positions. High-
throughput sequencing methods served to collect rhi-
zospheric microbial community information in soils.
The relationship between soil physicochemical attri-
butes and rhizospheric microorganisms at different
stage (from pre-transplanting to the ripening stage) of
the super hybrid rice “Y Liang You 900” was investi-
gated to reveal the inborn mechanism of how micro-
organisms specifically affect crop productivity. We
mainly explored the interaction of microbial commu-
nities. By comparing the differences between soil mi-
croorganisms in high- and low-yield areas during
discrete periods, we explored the mechanism of how
microorganisms specifically affect agricultural prod-
uctivity based on soil characteristics. Our study con-
cluded that (1) it is possible improve the average crop
yield by controlling rational agricultural management
in the heading stage, (2) the positive species interac-
tions within communities may contribute to crop
yield, and(3) the biological properties (i.e., microbes)
were better than the physicochemical characteristics
(i.e., nutrient elements) in terms of reflecting the ac-
tual situation of agricultural land.

Methods
Study sites and sampling
Soil samples were collected from Xupu (110°31′E, 27°23′N,
Ha), Ningxiang (112°16′E, 28°08′N, Ly), Longhui-
Zhaojiachong (110°56′E, 27°27′N, Hb) and Longhui-
Niuxingzui (110°56′E, 27°29′N, Hc). The sites are paddy
fields planted with “Y Liang You 900” super hybrid rice.
Sampling was conducted on private land, and the land
owner gave permission for our sampling activity. For all
sites, the fertilization regime was the same and rice was
harvested in October, 2014. The rice yield was calculated
according to Chen et al. [33]. Rhizospheric soil samples
were collected at four rice development stages: pre-
transplanting stage (0 weeks), tillering stage (6 weeks),
heading stage (14 weeks), and ripening stage (20 weeks).
When sampling, three biological replicates were sampled
from each site, resulting in a total of 48 samples (4 stages ×
4 sites × 3 replicates = 48 samples, also see in
Additional file 1: Table S2). Rhizosphere soils were sampled
according to Smalla et al. [34]. After sampling, soil samples
were separated into two parts, one part was air dried and
stored at 4 °C until physiochemical analysis and the other
part was frozen in liquid nitrogen and stored at − 80 °C
until molecular analysis.
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The yields of super hybrid rice “Y Liang You 900”
from four sampling sites are presented in Additional file
1: Table S1. Based on the rice yield, the sites were re-
ferred to as ‘low-yield’ sites (Ly, 1.074 kg/m2) and ‘high-
yield’ sites (Ha, 1.543 kg/m2; Hb, 1.517 kg/m2; and Hc,
1.589 kg/m2). The yield of ‘high-yield’ sites was
approximately 30% higher than the yield of the ‘low-
yield’ site.

Soil properties
Soil pH was measured using a pH metre and by dissolv-
ing 5 g of each soil sample in 25 mL of distilled water.
The nitrogen contents, including total nitrogen (TN)
and available nitrogen (AN), were determined by the
Kjeldahl procedure [35]. Phosphorus (P) was determined
photo metrically as orthophosphate with using a
vanado-molybdate method [36], and potassium (K) was
determined using inductively coupled plasma-atomic
emission spectroscopy (ICP-AES) [37]. Additionally, soil
organic matter (SOM) was analysed using the potassium
dichromate method by titration with ammonium ferrous
sulphate (i.e., Mohr’s salt solution) [38].

DNA extraction, PCR amplification and MiSeq sequencing
The soil samples were homogenized in liquid nitrogen
and mixed completely, and 1 g of each soil sample was
used for DNA extraction. Soil microbial genomic DNA
was extracted using a soil microbial DNA extraction kit
(MOBIO, San Diego, USA). The hyper-variable region
(V4) of prokaryotic 16S rRNA [39] was amplified using
the primer pair 515F (5′-GTGCCAGCMGCCGCGG-
TAA-3′) and 806R (5′-GGACTACHVGGTWTCTAAT-
3′) [31]. PCR products were recovered and the quality
and quantity of recovered PCR products was determined
using a Nano-drop spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Purified PCR products
were subjected to the MiSeq platform (Illumina, San
Diego, CA) with a 500-cycle kit (2 × 250 bp paired-ends)
for sequencing. Data processing was conducted accord-
ing to Tao et al. [40] and Yin et al. [41]. Specifically,
reads were assigned to different samples according to
the barcode sequence and primers were removed. The
left and right reads were then merged with a minimum
of 10 bp overlap and less than 5% mismatches using
Flash [42]. Ambiguous bases (N) were removed from the
merged sequences and chimers were removed by Uchim
[43]. Finally, high-quality sequences were clustered using
UCLUST [44] at 97% similarity level [45], and the OTU
table was constructed after removing the false positive
sequences (singletons). Taxa assignment was carried out
by blasting the sequences to the RDP database [46] with
50% confidence. The rarefaction curve is shown in
Additional file 1: Figure S1. To reduce the variations
caused by different sequencing depth, sequencing depths

was rarefied to16, 000 for all samples and the rarefied
OTU table was used for all downstream analyses. All se-
quences were submitted to the NCBI database under the
accession number SRP083104.

Statistical analysis
Soil microbial diversity indices, including the Shannon
Wiener, Inverse Simpson, and Pielou evenness indices,
were calculated using the R version 3.3.2 (https://www.r-
project.org/) platform with the package vegan 2.4.2. [47].
Detrended correspondence analysis (DCA) for detecting
the variation in microbial community composition
among sites/stages was also performed using the vegan
package. Permutational multivariate analysis of variance
(Adonis) was used to test the effects of soil variables on
crop yield. Standard and Mantel tests were carried out
to identify the correlations between environmental fac-
tors and soil bacterial communities (based on Euclidean
distance). The relationship between soil properties and
microbial microorganisms in the heading stage was fur-
ther analysed by the PLSPM model (partial least-squares
path) using the plspm package [48]. Additional statistical
analysis including one-way ANOVA and Pearson correl-
ation analysis was also completed using R version 3.3.2,
and a p value less than 0.05 was considered significant.
A molecular ecological network (MEN) using an RMT-
based network approach was built on the IEG website
(http://ieg4.rccc.ou.edu/) to investigate the interaction
between microbes [49–51] and the networks; finally, the
result were visualized using Cytoscape 3.4.0.

Results
Soil properties
The pH varied from 4 to 7 (Additional file 1: Table S3),
and the lowest pH was at the Ly site. The Ly site had a
lower concentration of soil nutrients (N, P, and K) than
the other sites; particularly, the SOM (soil organic mat-
ter) showed the largest difference between Ly and the
high-yield sites. Permutational multivariate analysis of
variance (Adonis) was conducted using three methods
(Bray, Euclid and Horn), and analyses indicated that the
rice yield was closely associated with the soil physio-
chemical properties (Additional file 1: Table S4). The
DCA based on soil environmental factors (Fig. 1)
showed the low-yield site had very different soil proper-
ties compared to the high-yield sites. Pearson correlation
analysis showed various correlations between the rice
yield and the soil properties (Additional file 1: Table S5).
Among all soil properties, the available nitrogen (AN)
and available potassium (AK) were significantly (Pearson
correlation > 0.650; p < 0.05) and positively associated
with rice yield. In addition, TN, TP, and SOM were also
significantly correlated (p < 0.05) with crop yield in all
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stages of development. Furthermore, pH was substan-
tially correlated with yield during the tillering stage.

Bacterial diversity
The microbial community diversity indices, including
Shannon and Simpson diversity and Pielou evenness
were significantly higher in the high-yield sites than in
the low-yield site, and generally, the diversity indices
were the highest during the tillering stage. The diversity

differed slightly between the pre-transplant and heading
stages in the Ha and Hc sites; however, the bacterial di-
versity at the Ly site was similar during all stages of crop
development. In addition, two-way ANOVA indicated
that both stage and site had significant effects on micro-
bial community diversity indices (Table 1). Pearson cor-
relation showed the microbial community diversity
during the pre-transplanting and heading stages was
positively correlated (p < 0.05) with rice yield (Fig. 2).
Adonis (permutational multivariate analysis of variance)
also showed the microbial community during the pre-
transplanting stage and the heading stage had a signifi-
cant effect on crop yield (Additional file 1: Table S6),
whereas the tillering and ripening stages did not show
significant effects.

Network analysis on relationships between key microbial
communities
To explore the interactions between rhizospheric mi-
crobes, RMT-based molecular ecological networks (MEN)
were constructed and analysed. All sites had similar RMT
thresholds (0.88~ 0.90). However, the number of nodes
and links was lower in the Ly site than in the other sites
(Figs. 3 and 4, Additional file 1: Figures S2 and S3). There
were more positive interactions between OTUs in the
high-yield site (Ha, Hb and Hc) network than that in the

Fig. 1 Detrended correspondence analysis (DCA) of soil
environmental factors with all samples from pre-transplanting stage
to ripening stage

Table 1 Rhizospheric microbial community diversity at different developmental stages at four sites

Shannon diversity Simpson Pielou evenness

Ha_0p 7.01 ± 0.08abcde 0.9971 ± 0.0005ab 347.61 ± 60.66abcd

Ha_2p 7.28 ± 0.11a 0.9981 ± 0.0004a 553.05 ± 116.91a

Ha_3p 7.08 ± 0.03abcd 0.9976 ± 0.0005ab 421.17 ± 78.66abcd

Ha_4p 6.77 ± 0.05e 0.9948 ± 0.0026b 223.77 ± 95.43d

Hb_0p 7.05 ± 0.13abcde 0.9978 ± 0.0006ab 488.8 ± 131.09abc

Hb_2p 7.28 ± 0.06a 0.9983 ± 0.0002a 583.58 ± 62.07a

Hb_3p 7.19 ± 0.06ab 0.9982 ± 0.0001a 548.53 ± 21.6ab

Hb_4p 7.17 ± 0.01abc 0.9982 ± 0.0001a 551.81 ± 16.64ab

Hc_0p 7.03 ± 0.1abcde 0.9977 ± 0.0003ab 442.72 ± 61.61abcd

Hc_2p 7.07 ± 0.17abcde 0.9975 ± 0.0009ab 427.48 ± 139.1abcd

Hc_3p 7.05 ± 0.14abcde 0.9977 ± 0.0005ab 453.29 ± 85.08abcd

Hc_4p 6.87 ± 0.13cde 0.9969 ± 0.0005ab 328.54 ± 58.07bcd

Ly_0p 6.86 ± 0.12de 0.9962 ± 0.0012ab 277.73 ± 73.87bcd

Ly_2p 6.94 ± 0.1bcde 0.9971 ± 0.0007ab 363.47 ± 92.08abcd

Ly_3p 6.9 ± 0.11bcde 0.9957 ± 0.0021ab 264.65 ± 101.48bcd

Ly_4p 6.84 ± 0.04de 0.996 ± 0.001ab 257.85 ± 56.84 cd

Two-way ANOVA Shannon Simpson Pielou evenness

Site effect < 0.001 0.001 < 0.001

Stage effect < 0.001 0.034 < 0.001

Cross effect 0.026 0.182 0.082

0p: pre-transplanting stage; 2p: tillering stage; 3p: heading stage; and 4p: ripening stage. The results are shown as the means and S.D. of three biological replicates.
Values that do not share letters are different at the p < 0.05 level following Tukey’s t-test. Site, stage and cross effects were accessed by two-way ANOVA
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low-yield site (Ly) network. Nodes with high degrees in
the Ly networks were classified into Bacteroides (OTU_
1367 and OTU_742) and Proteobacteria (OTU_807 and
OTU_275), while in high-yield site networks, nodes with
high degree were classified into Acidobacteria, Actinobac-
teria and Planctomycete. In addition, site Hb had the most
complicated network (Additional file 1: Figure S3) with
the most links and the maximal degree, presenting more
intricate topological properties than the other sites.

Microbial community composition and structure
All sequences were clustered into 14,332 operational
taxonomic units (OTUs) and were assigned into 469
genera. The permutational multivariate analysis of vari-
ance (Adonis) from three methods (Bray, Euclid and
Horn) at the OTUs (Additional file 1: Table S7) and the
genus level (Additional file 1: Table S8) showed that the
microbial community structure during the heading stage
was closely associated with the yield. A venn diagram
(Fig. 5c and Additional file 1: Figure S4) showed there
were 87 OTUs shared by sites Ha, Hb, and Hc during
the pre-transplanting stage, but this was not found at
the Ly site. During the crop-growth period, 184 OTUs
were shared by high-yield sites. Whereas the number of
shared OTU taxa in the four sites reduced from 600
during the pre-transplanting stage to 370 during the
crop-growth period. The number of unique OTUs in site

Ly and the other sites increased when the stage changed
from the pre-transplanting stage to the heading stage
(Fig. 5d). An increase in unique OTUs in site Ly indi-
cated that the difference between high- and low-yield
sites increased. Detrended correspondence analysis
(DCA) showed that the microbial community structure
differed more substantially during three of the crop-
growth stages than in the pre-transplanting stage (Fig.
5a and b; Additional file 1: Figure S4c and d). Further-
more, the community structure differences between the
low- and high-yield sites were most obvious during the
heading stage; therefore, we focused on the rhizospheric
microbial community during the heading stage
(Additional file 1: Table S9). Proteobacteria, Acidobac-
teria, and Chloroflexi were the most abundant phyla
found in the rhizospheric microbial community dur-
ing the heading stage (Additional file 1: Table S9a),
and each accounted for more than 10% of the com-
munity. At the class level, Deltaproteobacteria was
the most abundant class in all samples, and was
followed by Anaerolineae, Betaproteobacteria, Alpha-
proteobacteria. (Additional file 1: Table S9b).

Relationship between soil characteristics, microorganisms
and crop yield
Mantel tests were carried out to determine the correla-
tions between the soil physical and chemical properties

Fig. 2 Dcomparing the differences in microbial diversity indices was carried out by one-way analysis of variance (ANOVA) before the transplanting
and heading stages. Error bars are based on the standard error and different lowercase letters indicate significant differences at the level of 0.05
as indicated by the ANOVA results. (a): Shannon Wiener index; (b): Inverse Simpson index; (c)Linear regression analysis of the relationship between
crop yield and Shannon Wiener diversity index during pre-transplanting stage; and (d) Linear regression analysis of the relationship between crop
yield and Shannon Wiener diversity index at the heading stage
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and the soil microorganisms [52] (Table 2). The results in-
dicated that soil conditions had a significant influence on
the bacterial community structure (p < 0.05) during the
pre-transplanting and heading stages. During the heading
stage, there was a significantly negative correlation (Pearson
correlation = − 0.647; p < 0.05, Additional file 1: Table S10)
between the yield and Crenarchaeota (Additional file 1:
Table S10). In addition, soil environmental factors, such as
AK, had a significant negative correlation (Pearson correl-
ation = − 0.666, p < 0.05; Additional file 1: Table S10) with
Crenarchaeota, but a significant positive correlation with
crop yield. Crop yield and AN were also significantly
positively correlated (Pearson correlation = 0.668; p < 0.05;
Additional file 1: Table S10). In addition, Proteobacteria
and Bacteroidetes showed a significant positive correlation

(Pearson correlation = 0.743–0.752; p < 0.01; Additional file 1:
Table S10) with pH, whereas Chloroflexi exhibited a signifi-
cant negative correlation with pH (Pearson correlation =− 0.
621; p < 0.05, Additional file 1: Table S10). Overall, pH
showed significant effects on constraining the bacterial
community.
Further analyses showed 17 phyla had significant ef-

fects on soil fertility and crop production. Some genera
had significant impact on soil fertility as shown in
Additional file 1: Table S11. The genera Geobacter,
Syntrophorhabdus, Phaselicystis, Thiobacter, and Chon-
dromyces (in addition to Cystobacter) of the phylum Pro-
teobacteria, had negative impacts on crop yield.
However, the abundance of the Proteobacteria was posi-
tively correlated with soil fertility. This also stressed that

Fig. 3 Network constructed by thethe highest level (highly degree) of bacterial communities at site Hc. Each node signifies an OTU that could
corresponds to a microbial population. Colours of the nodes indicate different major phyla. Blue and red lines represent positive and negative
path coefficients, respectively
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the structure and function of the bacterial community
was diverse and complex at the phylum level. Armatimo-
nadetes-gp2 and Armatimonadetes-gp5 in Armatimona-
detes showed contradictory correlation with soil fertility
and crop production. Gp17, Gp6, Gp24, and Gp25,
which belong to Acidobacteria, were significantly core-
lated with production. Spartobacteria incertae sedis in
Verrucomicrobia, and OD1-sedis in OD1 showed diverse
effects on crop yield. Therefore, the overall effect could
be directly observed at the phylum level, as well as on a
more precise level when considering the individual ef-
fects of each bacterial community at the genus level.
The partial least squares path model (PLSPM, Fig. 6)

showed an association between the yield and soil bio-
logical and abiotic factors, in general, at the heading stage.

The bacterial diversity and the major bacterial communi-
ties were substantially related to the yield of super rice,
but the structure of the bacterial communities was in-
significant. The main soil factors affecting the yield
of super rice were pH and SOM, which were also
closely associated with the structure of soil bacterial
communities. The goodness of fit to the model was
0.702 (> 0.350), which validates the result and pro-
vides a reference value for our study.

Discussion
Relationship between rhizospheric microbial community
and rice productivity
Crop productivity was mainly affected by the flow of en-
ergy and material in the soil ecosystem which is driven by

Fig. 4 Network constructed by thethe highest level (highly degree) of bacterial communities in site Ly. Each node signifies an OTU that
corresponds to a microbial population. Colours of the nodes indicate different major phyla. Blue and red lines represent positive and negative
path coefficients, repectively
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soil organisms. Microorganisms located in the plant’s
rhizosphere play pivotal roles in the soil geochemical cycle
[53]. In the present study, the microbial community
responded instantly to ecological changes during the pre-
transplanting and heading stages. Generally, the bacterial
diversity was higher in the high-yield sites than in the low-
yield site, which suggested that high bacterial diversity po-
tentially increases the yield of super rice. This is because
high bacterial diversity maintained a relatively stable eco-
system in the rhizosphere, which allowed effective nutri-
ent cycling [54]. The difference in the microbial
communities between the high-yield sites and the low-
yield site may be a result of different nutrient levels in the
soils. This was further supported by the Mantel test, which
showed that the soil physiochemical properties had signifi-
cant effects on the soil microbial communities. Resident
plants shaped and restructured rhizospheric microbial
communities via root exudates [55], which provides

nutrients for microbial communities and regulated micro-
bial diversity [56, 57]. The ecosystem properties such as
robustness and trophic interactions [58] were more stable
in response to environmental fluctuations as diversity in-
creased, for the richness of taxonomic diversity leads to
the extension of niches and the utilization of resources. It
is urgent to improve the stability and sustainability of
farmland ecosystems [59], and meagre microbial diversity
makes it difficult to resist the interference of detrimental
factors. Additionally, a previous study by Laurent Philip-
pot (2013) showed a loss in microbial diversity could affect
nutrient cycling in soil [54], and microbial communities
were closely related to material cycling.

Rhizospheric microbial community was crucial for rice
production in the heading stage
The heading stage is a critical period for crop produc-
tion; during this time, crops exhibit the most rapid

Fig. 5 Analsis of compositions and structures of bacterial communities from four groups. (a) Detrended correspondence analysis (DCA) of 16S
rRNA gene sequencing data at the genus level during the tillering stage; (b) Detrended correspondence analysis (DCA) of 16S rRNA gene
sequencing data at the genus level during the heading stage; (c) Venn diagrams were calculated by R with the package gplots and based on
OTU level during the heading stage. Figures in pictures represent the taxa number of OTUs with common ownership at different sites; (d)
Variation trends in OTUs under different classifications from pre-transplanting to heading stages. ∩: Intersection of mathematical symbol; ∪:Union
mathematical symbol; and S: Ha∩Hb∩Hc∩Ly (intersection of four sites)

Table 2 Pearson correlation between microbial community diversity and rice yield

Pearson
correlation

Yield

Before transplanting Tillering stage Heading stage Ripening stage

Shannon.Wiener 0.614* 0.613* 0.650* 0.197

Simpson 0.579* 0.485 0.720** 0.286

Pielou 0.658* 0.477 0.594* 0.182

The stars indicate the significance level: *: P < 0.05, **: P < 0.01
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growth and development of their entire life. It is a crit-
ical period for determining the amount of grains. Dur-
ing this stage, crops respond to external conditions
[60]. Abundant nutrients, water, temperature, illumin-
ation, and other external conditions are required during
this period, suggesting that this is an excellent time for
farmers to increase production by means of topdress-
ing. Soil fertility, a fundamental factor for plant growth,
is mainly dependent on microbial transformations.
Thus it is not surprising that the microbial community
was most closely related to rice production during the
heading stage. The association between the super rice
with soil characteristics and the microbial microorgan-
isms during the heading stage was further analysed
using the PLSPM (partial least-squares path, Fig. 6).
Bacterial communities such as Blastopirellula in the
Planctomycete, are good indicators of soil fertility be-
cause the microorganisms respond to topdressing more
rapidly than do the soil physicochemical characteristics
[61], and microorganisms represent the true situation
of the farmland; this is of great significance when estab-
lishing a stable and high-yield agricultural system. In
the present study, some bacterial communities such as
Chloroflexi, which do not produce oxygen during
photosynthesis and have decreased nitrogen-fixation
abilities, are abundant in soils; therefore, these bacteria
are negatively correlated with the yield of super rice
[62]. In contrast to detrimental bacteria, some bacterial
communities, such as members of Acidobacteria, can
degrade cellulose and adjust soil pH effectively [63, 64];
therefore, they are closely related to rice yield. How-
ever, the specific features of some Acidobacteria, e.g.,
GP6 and GP17, remain unclear.

Effects of microbial species interactions on rice
productivity
Distinct sites had uniform fertilization regimes and simi-
lar climatic conditions, so the main difference in prod-
uctivity was due to the rhizospheric microbial
communities. In agricultural production, rhizospheric
microorganisms are always associated with a consider-
able yield within a stable farmland ecosystem [65]. Ac-
cording to the molecular ecology networks, rhizospheric
bacterial communities that played pivotal roles in the
site Ly (Fig. 4), such as Bacteroidetes and Proteobacteria,
are always classified as ‘copiotrophs’ (R-strategists), hav-
ing a high growth rate in nutrient-rich conditions [66].
Owing to efficient metabolism in decomposing organic
matter, the R-strategists should be chosen as the centre
of communication among microbial communities, espe-
cially in artificially controlled nutrient-rich conditions. A
farmland is a relatively complete ecosystem that keeps a
dynamic balance between the input (contrived fertilizers)
and output (plant growth) energetic processes; thus, due
to rich resources leading to niche diversification and a
reduction in the intensity of competition between co-
occurring communities [57], the excellent decomposers
and communicators with powerful metabolic rates, i.e.,
R-strategists, should present a positive role in the node
of energy flows and material cycling. After all, co-
occurrences may indicate a benign or mutually beneficial
relationship. Conversely, the results showed that many
R-strategists were negatively linked with their nearest
neighbour in site Ly due to competition for resources,
which implies a decline in microenvironment vitality.
One possible explanation is that mutual exclusivity be-
tween bacterial communities caused by competition ex-
ists widely in the low-yield area, especially within similar
niches. In addition, high-yield sites differed considerably
from site Ly in terms of most members of Actinobac-
teria, Acidobacteria, and Planctomycetes. We infer that
member of Acidobacteria and Actinobacteria had stron-
ger adaptability and resilience, which enable their sur-
vival under stressful conditions [66], and regulated the
surrounding environmental attributes through feedback
mechanisms. The microbial community links showed
more specific ecological significance than the physico-
chemical characteristics of farmland throughout the en-
tire period of rice growth.

Conclusion
The results of the present study demonstrated that the
gaps in crop yield are strongly associated with variations
in the soil microbial communities during the heading
stage, which were due to the effects of soil characteristic
before transplanting; thus, in addition to adjusting the
microhabitat before transplanting, there is the potential
to improve the average crop yield by controlling rational

Fig. 6 Partial least squares path modelling (PLSPM) of the association
between the yield of super rice and soil biological and abiotic factors
during the heading stage. Goodness-of-fit of the model is 0.702. Blue
and orange arrows represent positive and negative path coefficients,
respectively. *p < 0.05, **p < 0.01, **p < 0.01
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agricultural management during the heading stage. In
addition, the positive species interactions within com-
munities may contribute to yield, as seen through net-
work analysis, and the biological properties (i.e.,
microbes) better reflect real-world farmland situations
than do physicochemical characteristics (i.e., nutrient el-
ements). However, we have essentially focused on the re-
lationships among soil characteristics and the variations
and interactions of microbial communities. Hypotheses
can be formed based on correlation analyses and need to
be further tested to determine whether they are applic-
able to other land types.
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