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Abstract

Background: Gut microbiota plays an important role in the harvesting, storage, and expenditure of energy obtained
from one's diet. Our cross-sectional study aimed to identify differences in gut microbiota according to body mass
index (BMI) in a Korean population. 165 rRNA gene sequence data from 1463 subjects were categorized by BMI into
normal, overweight, and obese groups. Fecal microbiotas were compared to determine differences in diversity and
functional inference analysis related with BMI. The correlation between genus-level microbiota and BMI was tested
using zero-inflated Gaussian mixture models, with or without covariate adjustment of nutrient intake.

Results: We confirmed differences between 165r RNA gene sequencing data of each BMI group, with decreasing diversity
in the obese compared with the normal group. According to analysis of inferred metagenomic functional content using
PICRUSt algorithm, a highly significant discrepancy in metabolism and immune functions (P < 0.0001) was predicted in the
obese group. Differential taxonomic components in each BMI group were greatly affected by nutrient adjustment, whereas
signature bacteria were not influenced by nutrients in the obese compared with the overweight group.

Conclusions: We found highly significant statistical differences between normal, overweight and obese groups using a large
sample size with or without diet confounding factors. Our informative dataset sheds light on the epidemiological study on

population microbiome.
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Background
The growing incidence of obesity and obesity-associated
complications, including diabetes, cardiovascular disease,
and stroke, is a major public health concern worldwide [1].
The etiology of obesity, which implies an energy imbalance
between calories consumed and expended, is complicated
by biological and environmental factors [2, 3]. Recently, a
large number of studies have demonstrated that gastro-
intestinal bacteria can interplay with diet in the develop-
ment and propagation of obesity [4].

There have been considerable advances in determining
possible mechanisms underlying gut microbiota-induced
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obesity [5-7]. These mechanisms contain a key feature of
increased energy production/absorption; for example,
short-chain fatty acid (SCFA)-producing bacteria can fer-
ment indigestible dietary fiber and hydrogentrophs with
the importance of H2 removal, an end product of bacterial
fermentation [8-11]. Moreover, changes in metabolic
pathways caused by intestinal dysbiosis, such as de novo
lipogenesis in liver [12—-14], can induce increased adiposity
by host gene suppression [6]. In addition, the induction of
low-grade inflammation by increased endotoxin exposure
through gut leakage [15] and the effects of appetite and
satiety regulation by leptin signaling on gut-brain axis [13]
have been proposed as candidate pathways leading to
obesogenic environments [15, 16].
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However, the results of many articles speculating on the
potential associations between gut microbiota and obesity
are conflicting and have not been replicated in clinical
studies. These shortcomings prevent designation of a
consistent pattern of human gut microbiota that correlates
with obesity [4, 17, 18]. Therefore, the challenge to incorp-
orate assessment of microbiomes into epidemiologic
studies remains and is critical. Surprisingly, there is a lack
of statistically significant study with a large sample size in
gut microbiota studies. The large sample sizes in epidemi-
ologic studies will provide increased statistical power and
help to reveal significant findings involved with human-
associated microbiota [19].

Here we examined the correlation between the gut
microbiota and body mass index (BMI) in relatively large
sample size of Asian population. This study could
contribute to further population-based association study
using microbiota data.

Table 1 Characteristics of the study population categorized by BMI
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Methods

Study subjects

The study used data from a total of 1463 subjects who
were enrolled in the Kangbuk Samsung Health Study,
which is a cohort study of Korean men and women who
underwent a comprehensive annual or biennial examin-
ation at Kangbuk Samsung Hospital Total Healthcare
Screening Centers in Seoul, South Korea, between June
and September 2014 [20, 21]. The datasets provided the
age, weight, and height for BMI (kg/m?) determination as
well as dietary status (Table 1). The supplemental informa-
tion regarding metabolic status of study groups is also
shown in Table 1. We didn’t exclude total 42 type 2
diabetes (T2DM) patients including patients under
medication, because of no significant difference between
the BMI groups (Table 1). We excluded 141 participants
because they had used: antibiotics within 6 weeks prior to
enrollment (N = 55), cholesterol-lowering medications

Normal Overweight Obese Trend Total
P value®

Subjects® 529 326 419 1274
Male% 416 724 85.0 63.7
Age (years) 453 (93) 46.3 (9.0) 4538 (8.5) 0.302 45.7 (9.0)
BMI (kg/m2) 21.1.(14) 24.0 (0.6) 272 (2.0) <0.0001 238 (3.0)
Fat mass (kg) 9 (3.0) 16 .9 3.7) 220 (5.0) <0.0001 175 (5.3)
Glucose (mg/dl) 926 (11.1) 95.9 (14.8) 98.8 (17.3) <0.0001 96.2 (15.3)
Triglycerides (mg/dl) 94.5 (49.6) 119.7 (70.1) 147.5 (84.3) <0.0001 1199 (72.1)
HDL cholesterol (mg/dl) 62.6 (14.5) 554 (13.6) 49.8 (11.2) <0.0001 563 (14.2)
Systolic BP (mmHg) 104.1 (11.7) 1108 (11.7) 116.8 (13.0) <0.0001 1102 (13.1)
Diastolic BP (mmHg) 67.8 (9.1) 71309.2) 756 (10.2) <0.0001 713 (10.0)
Insulin (ulU/ml) 42 (24) 54 (3.0 75 (47) <0.0001 5.7 (3.8)
HbA1c (%) 5.5(04) 56 (04) 56 (0.5) 0.180 56 (0.5)
HOMA-IR 1.0 (0.6) 1.3 (09 19 (14) 0.003 14 (1.1)
Hypertensionb 14 19 56 <0.0001 89
Type 2 Diabetes (T2DM)° 12 15 15 0.191 42
Med. Of T2DMP 10 7 9 0965 26
Subjects with nutrient information® 387 245 308 940
Male% 40.8 71.8 84.7 654
Total calorie (kcal/day) 1423.5 (603.8) 1543.7 (679.8) 1596.9 (669.5) 0.001 1512.3 (649.9)
Carbohydrate (g/day)° 2512 (47.8) 2573 (46.7) 2512 (50.2) 1.000 253.0 (46.7)
Fiber (g/day)" 13.1 (5.6) 128 (5.5) 124 (5.0) 0.064 12.8 (54)
Fat (g/day)* 270 (11.9) 26.8 (12.7) 283 (126) 0.211 274 (12.2)
Protein (g/day)* 49.7 (11.0) 50.0 (10.6) 51.0(10.7) 0.156 503 (10.7)

Data are presented as mean (SD)

BMI body mass index, HDL high-density lipoprotein, BP blood pressure, HbATc Hemoglobin A1c, HOMA-IR homeostasis model assessment-estimated insulin resist-

ance (insulin (uU/mL) X glucose (mg/dL)/405)

“Trend P value from multiple logistic regression analysis
PCount data

“Nutrients adjusted for energy using the residual method
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(N = 74), or probiotics (N = 19) within 4 weeks prior to
enrollment (Fig. 1). The BMI was classified into categories
of underweight (BMI < 18.5), normal (18.5 < BMI < 23),
overweight (23 < BMI < 25), and obese (BMI > 25) accord-
ing to the revised Asia-Pacific BMI criteria by the World
Health Organization Western Pacific Region [22].
Underweight subjects were excluded from this study
(n = 41, Fig. 1). Dietary consumption was assessed using a
103-item self-administered food frequency questionnaire
(FFQ) designed for use in Korea [23]. Dietary intake data
were collected at the same day of the health checkup using
the validated FFQ, which was designed to measure a
participant’s usual consumption of foods and food groups
during the previous year. This nutrient intake data has
been validated in previous publications [24]. The variables
selected for this study were total energy, carbohydrate,
fiber, fat, and protein. Only subjects within three standard
deviations of the mean value of the log-transformed energy
intake were included when nutrients adjustments were
needed (the missing data of nutrients was 334; Fig. 1).
Nutrients variables were applied as residuals from the
regression model, with absolute nutrient intakes as the
dependent variables and total energy intake as the inde-
pendent variable [25].

DNA extraction and sequence data generation

The 16S rRNA genes were extracted and amplified from
stool specimens using the MO-BIO PowerSoil DNA
Isolation Kit (MO-BIO Laboratories) according to the
manufacturer’s instructions. Amplification and sequen-
cing were performed as described previously for analysis
of bacterial communities [26]. Briefly, the V3-V4 domain
of bacterial 16S rRNA genes was amplified using primers
F319 (5'- TCGTCGGCAGCGTCAGATGTGTATAAGA
GACAG) and R806 (5'-GGACTACHVGGGTWTC-
TAAT-3"). Each primer was modified with Nextera® XT
kit (Illumina, Inc.) to contain a unique 8-nt barcode index
by combination (16 of S and 24 of N). Polymerase chain
reactions (PCRs) comprised a 5 ng/uL DNA template,

-

Total 1463 subjects with 16S rRNA gene sequence from stool DNA

Exclusion

- Antibiotics (n=55), probiotics (n=19), or hyperlipidemia medication (n=74)
- <1,000 sequences per sample (n=2)

- BMI < 18.5 Underweight (n=41)

1274 subjects for Qiime and PICRUSt analysis

Exclusion
- Missing data on FFQ (n=334)

940 subjects for metagenomeSeq

Fig. 1 Flow chart of study subjects
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2 x KAPA HiFi HotStart Ready Mix (KAPA Biosystems),
and 2 pmol of each primer. Reaction conditions were an
initial 95 °C for 3 min, followed by 25 cycles of 95 °C for
30 s, 55 °C for 30 s, and 72 °C for 30 s, and a final exten-
sion of 72 °C for 5 min. After PCR cleanup and indexing,
sequencing was performed on the Illumina MiSeq plat-
form (Illumina, Inc.) according to the manufacturer’s
specifications. The 100 bp of overlapping paired-end reads
were merged using pandaseq (version 2.7). Only data from
[lumina reads with a length of >300 bp were retained for
further analysis. Chimeric sequences were filtered out by
UCHIME algorithm in USEARCH platform which
performs both de novo chimera and reference based
detection (USEARCH v6.1.544).

Sequence analysis

Microbial operational taxonomic units (OTUs) and their
taxonomic assignments were obtained using default
settings in the QIIME version 1.9 and by closed reference
mapping at 97% similarity against representative se-
quences of Greengenes (version 13_8). We used all default
settings in QIIME 1.9 for OTU mapping and the pre-
assigned taxonomy for the Greengenes OTU representa-
tive sequences. As recommended for Illumina-generated
data [27], we removed OTUs comprised <0.005% of reads
in the total data set. Samples with <1000 sequences per
sample (n = 2) were considered failures and filtered out
(Fig. 1). Finally, total 1274 subjects with a mean of 26,024
(+/-18,528) sequences per sample were included for the
QIIME analysis. Alpha and beta diversity on Cumulative
Sum Scaling (CSS) normalized OTU tables to assess
phylogenetic diversity (PD) metrics were calculated by
QIIME [28]. The PD metrics provide a measure of alpha
diversity of taxa present based on phylogenetic tree within
subjects, while the weighted UniFrac distance metrics
reflects the similarity between bacterial communities
between subjects, so called beta diversity. The significant
difference between categories in alpha diversity (PD) and
beta diversity (weighted UniFrac) was compared by creat-
ing boxplots with a two-sided Student’s two-sample t-test.
The analysis of similarities (ANOSIM) on beta diversity
was applied to test the difference of distance metrics by
grouping, and a P value was calculated by 999 Monte
Carlo permutation non-parametric tests.

PICRUSt analysis

The PICRUSt approach was used to evaluate the functional
potential of microbial communities [29]. Since this is a
following process after QIIME analysis, we included the
same samples with QIIME (n = 1274; Fig. 1). The BIOM
format of data from QIIME 1.9 was processed with the
PICRUSt version 1.0.0 using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis module. Total 328
predicted KOs (KEGG orthology terms) were grouped into
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the levels of categorization, hierarchical levels 1, 2 and 3.
The results were further analyzed with the STAMP version
2.1.3 as a graphical tool [30], extended error bar plot for
two-group analysis module of normal/obese groups or box
plots for multiple group analysis module of normal/over-
weight/obese groups. Welch’s t-test for two groups and
Kruskal-Walis H-test for multiple groups without control-
ling of confounding factors were applied. An adjusted P
value of <0.05 was considered statistically significant after
Bonferroni multiple test correction for all analyses.

Statistical analysis of microbiome data

The zero-inflated Gaussian mixture (fitZIG) model of
metagenomeSeq package version 1.14.2 was used for cor-
relation analysis between bacterial normalized count data
(as dependent variables) and BMI (as independent categor-
ical variables) [28]. Besides age and sex covariates, dietary
components with the strongest impact (Additional file 1:
Table S1), and total energy intake were chosen for adjust-
ment according to the residual nutrient model for regres-
sion analysis [25, 31]. Since this analysis needs conditions
with or without nutrient adjustment, final sample size was
940 after exclusion of missing data on FFQ (Fig. 1). Bacter-
ial count data from QIIME were aggregated to genus level.
The genera that were abundant (>50 normalized counts
per sample) and prevalent (present in 10% of samples) were
applied to the fitZIG model with Bonferroni multiple cor-
rection (an adjusted P value <0.05 is significant). This ana-
lysis was performed using R software package version 3.2.3.

Results

Gut bacterial diversity differentiated by BMI category
Table 1 shows descriptive statistics by BMI category. As
Fig. 1 presents, final 1274 subjects were included for a
basic metagenomic analysis. The relative abundance of
gut taxa in each BMI group (normal, overweight, and
obese) is considerably even throughout the phylum-to-
order level (Additional file 2: Figure S1). The phylum
Firmicutes:Bacteroidetes ratio has no significant differ-
ence between BMI groups. At family and genus levels,
however, bacterial compositional change is seen while
processing from normal weight to obese status.

Alpha diversity in OTU level was compared to check
the significant difference in diversity. The results shown
in Fig. 2a indicate that obese samples have significantly
less phylogenetic diversity than normal weight and over-
weight ones (P < 0.01). The overall diversity decreased
with increasing BML

Distance matrix analysis from Principal Coordinates
analysis (PCoA) of weighted UniFrac also identified sig-
nificant differences between three BMI groups (Fig. 2b)
and the statistical significance of sample clustering (ANO-
SIM; R = 0.020, P = 0.001).
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These results suggest that the diversity according to
BMI descends stepwise and the cluster of each BMI
group contains unique bacterial components. The
distance from normal group was significant greater in
obese than overweight group.

Functional differences of gut microbiota in BMI groups
PICRUSt analysis identified that ‘Energy Metabolism’ and
‘Metabolism of Cofactors and Vitamins’ genes were over-
represented according to BMI increase, as the comparison
of obese vs. normal groups (Fig. 3a) as well as in the
multi-group comparison with the normal, overweight, and
obese groups (Fig. 3b—c) showed a statistical significance.
Lipid metabolism, together with excretory and endocrine
systems and xenobiotics biodegradation function were
depleted in the obese group (Fig. 3a, d). Notably, gene on-
tologies of essential metabolic pathways in the Metabolism
category were present with a reasonable majority (Table 2,
Additional file 3: Table S2). We detected predicted in-
creases in genes related to oxidative phosphorylation and
purine metabolisms in obese compared to normal-weight
subjects. In contrast, we detected decreases in carbohy-
drate metabolism of glycolysis/gluconeogenesis, pyruvate
metabolism, and amino acid metabolism of histidine/ar-
ginine-proline/valine-leucine-isoleucine in the obese
group. NOD-like receptor signaling, antigen processing
and presentation, and primary immunodeficiency involved
in inflammation and immune response had significantly
higher predicted abundances in the obese group com-
pared with the normal group (Table 2). This result was
also true for the three-group comparison of the normal,
overweight, and obese groups, in which the immune-
related pathways get over-represented with ascending
BMI level (Additional file 3: Table S2).

Taxonomic comparison by BMI

A genus-level representation of the three BMI categories
was assessed by metagenomeSeq, with sequence count data
as a dependent variable and BMI as a categorical independ-
ent variable, and with controlling of confounding factors.

Statistical analysis using sequence-counting data is
challenged by the assumption of normal distribution. This
challenge becomes a critical issue when the dependent
variable is over-dispersed and contains many instances of
zero microbiome count data. We therefore used the zero-
inflated Gaussian mixture model in a metagenomeSeq
package, which is a recently described and relevant statis-
tical model that is purported to be able to overcome this
limitation [28].

Table 3 shows significant differential bacterial genus
out of total 87 genera with adjustment for age and sex,
with or without nutrient adjustment. Total calorie intake
and the one nutrient factor that associated the most
were chosen for nutrient adjustment (Additional file 1:
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Table 2 PICRUSt predicted functions of KEGG categories represented in obese group compared to normal group

KO Functional Categories

Difference between Ad.

Level 2 Level 3 ?g:sgsv(gss/ grcrg; P values’
Metabolism of Cofactors and Vitamins Porphyrin and chlorophyll metabolism 0.025 (0.014-0.037) 742 %107
Nucleotide Metabolism Purine metabolism 0.026 (0.014-0.037) 236 x 1072
Energy Metabolism Oxidative phosphorylation 0.020 (0.014-0.027) 133x 1077
Photosynthesis proteins 0.019 (0.012-0.025) 373 x10°°
Photosynthesis 0.019 (0.012-0.025) 564 x 107°
Enzyme Families Peptidases 0.020 (0.011-0.029) 329%x 107
Amino Acid Metabolism Histidine metabolism —0.015 (=0.020-0.009) 139x 107%
Arginine and proline metabolism —0.015 (-0.022-0.008) 083 x 1073
Valine, leucine and isoleucine biosynthesis —0.015 (-0.022-0.008) 272 %x107°
Carbohydrate Metabolism Glycolysis / Gluconeogenesis —0.013 (-0.019-0.008) 639 % 10°°
Pyruvate metabolism —-0.022 (-0.030-0.015) 123 % 107°°
Immune System Diseases Primary Immunodeficiency 0.204 (0.139-0.269) 321 %1077
Immune System Antigen Processing and Presentation 0.068 (0.044-0.092) 726 X 10°°
NOD-like receptor signaling pathway 0.064 (0.049-0.080) 871 x 107"

Only significant (Adj. P < 0.05) level 3 functions for obese vs normal weight were included in this table
#Compared the difference between the means of relative frequency (%) of functional trait in normal and obese groups

PApplied by Bonferroni multiple comparison correction methods

Table S1). Strong positive associations of Cyanobacteria
and Desulfovibrio in overweight subjects compared with
normal subjects disappeared after adjustment for intake
of fat and fiber, respectively. Cyanobacteria, a hydrogen
producer, and Desulfovibrio, a sulfate-reducing hydro-
gentroph, are known to relate with host energy metabol-
ism [11, 13]. Paraprevotellaceae CF231 and Bacteroidales
unknown family and unknown genus belong to the order
Bacteroidales under the phylum Bacteroidetes, and both
had a commonly positive correlation the overweight
group. In particular, this positive correlation remained
high for Paraprevotellaceae (Adj. P value <0.0001) with
or without adjustment of fat intake. In contrast, this
positive association in the overweight group was not ob-
served in the obese group with an additional adjustment
of fat intake. Acidaminococcus was the only bacteria that
was associated in common throughout all combinations
of comparison. Although its positive association with the
overweight group disappeared with adjustment of fiber
intake, it showed a highly significant positive correlation
(Adj. P value <0.0001) in the obese group compared with
overweight and normal groups. Eggerthella negatively as-
sociated with both overweight and obese groups com-
pared with the normal group, but the negative
association no longer reached statistical significance
after adjustment of carbohydrate. The effect estimates
were made more significant by adjustment for nutrient
intake when the obese group was compared with the
overweight group; for example, in the cases of Acidami-
nococcus and Mitsuokella. In some cases, like Akkerman-
sia and Adlercreutzia, there was a nutrient-independent

association (Additional file 1: Table S1). The decrease of
Akkermansia, depletion of which is responsible for caus-
ing inappropriate immune responses in the host [32],
was significantly associated with obese group compared
with the overweight group. Christensenellaceae, which is
reported to be associated with leanness [33], showed
negative correlation with the obese group only without
nutrient adjustment. Additionally, T2DM status or medi-
cation of T2DM almost didn’t influence to all these cor-
relations showing in Table 3 (Additional files 4 and 5:
Tables S3 and S4).

Remarkably, in comparisons of the obese vs. over-
weight groups, nutrient adjustment had little effect on
the significance; i.e. bacterial components related to the
obese group were not influenced by the diet confound-
ing factor compared with overweight group. This sug-
gests there is a signature bacterium for the obesity that
has no relation with dietary intake.

Discussion
Recent human microbiome project studies have linked hu-
man gut microbes to obesity, proving the evidence that gut
microbiota plays an important role in the harvesting, stor-
age, and expenditure of energy obtained from diet [4, 34].
Our cross-sectional study aimed to identify differences in
human gut microbiota associated with BMI in a large-scale
metagenome cohort controlled by diet intake information.
Our results, like those of many others, do not support
the hypothesis that an increased ratio of Firmicutes to
Bacteroidetes may make a significant contribution to the
pathophysiology of obesity. However, there is a consistent
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Table 3 Regression analysis between gut microbiota and BMI levels

Overweight vs. Normal Age- and sex- adjusted Multivariate adjusted

Coefficient® Adj. P value® Coefficient® P value Adj. P value®

Cyanobacteria YS2¢ 0618 263 %1077 0.035 0.700 1
Desulfovibrio® 0435 908 x 107 -0.101 0.273 1
Bacteroidales unknown family unknown genus® 0403 248 x 107" 0314 0.001 0.068
Paraprevotellaceae CF231° 0.360 458 x 107" 0.463 213 x 1077 151 x 107°
Acidaminococcus® 0.331 0.002 -0.073 0403 1
Lactobacillales unknown family unknown genus® 0.174 0.031 0.080 0333 1
Lactococcus® 0.152 0.042 0.099 0.064 1
Eggerthella® —0.155 0.005 -0.103 0.022 1

Obese vs. Normal
Acidaminococcus® 0498 390 x 1078 0.378 2.89 x 107° 0.002
Paraprevotellaceae CF231¢ 0463 732%10° 0.284 0.003 0.181
Megasphaera® 0443 179107 0.355 0.002 0.146
Mitsuokella® 0.302 0.034 0.217 0013 0.946
Eggerthella® -0.162 0.003 -0.073 0.356 1
Christensenellaceae unknown genus® -0.152 0.031 —0.055 0.003 0.230
Clostridiales unknown family unknown genus —-0.063 0.004 —-0.063 524 x107° 0.004

Obese vs. Overweight
Acidaminococcus® 0.329 0.001 0.504 2.64x 1078 1.87 x 107°
Mitsuokella® 0271 0.007 0.381 1.10 x 107° 2.61x107°
Akkermansia -0.225 0.038 -0.225 0.001 0.038
Christensenellaceae unknown genus® -0.179 0.003 -0.170 0.020 0.126
Adlercreutzia 0.139 0.007 0.139 9.34x107° 0.007

Coefficient (log2 ratio) driven by zero-inflated Gaussian mixture model (fitZig) using metageomeSeq package

PApplied by Bonferroni multiple comparison correction
“Additionally adjusted for fat and total calorie intake
4Additionally adjusted for fiber and total calorie intake
¢Additionally adjusted for carbohydrate and total calorie intake
Coefficient with Adj. P value < 0.05 shown in italic

alpha diversity trend in previous reports that obese individ-
uals have less diverse gut microbiota than normal weight
individuals [4]. Clustering of three groups showed a signifi-
cant difference between each other, with the obese group
showing the greatest differences from normal and over-
weight groups.

The theory of increased energy harvesting by an obeso-
genic microbiome is supported by the finding of increased
production of SCFAs in the obese subjects [10, 13]. Our
PICRUSt results indicate that gut microbial function in the
obese group involves oxidative phosphorylation which can
stimulate lipogenesis or gluconeogenesis [35] while de-
creasing carbohydrate metabolism. SCFA can increase oxi-
dative phosphorylation, glycolysis, and fatty acid synthesis,
which contribute the energy production [36]. SCFAs are
generated by microbial fermentation of indigestible dietary
polysaccharides into absorbable monosaccharides, which
are converted to more complex lipids in the liver [8]. The
major SCFAs are acetate, propionate, and butyrate, and the
rate and amount of their production depends on the

species and amounts of microbes present in colon [37].
Firmicutes, including Clostridium and Lactobacilli, are
major producers of acetate and butyrate. Whereas Bacteroi-
detes can ferment carbohydrate to produce propionate,
Acidaminococcus, Megasphaera, and Mitsuokella from the
Veillonellaceae family cannot digest a carbohydrate, but can
utilize lactate to produce propionate [38]. Our results
showed that carbohydrate metabolism in the KEGG path-
way was less predicted in the obese group compared with
the normal group, which can be speculated by the positive
association of Veillonellaceae in the obese group. Parapre-
votellaceae (Bacteroidetes) in the overweight group and
Veillonellaceae in the obese group contribute to propionate
formation but via different pathways, which suggests that
substrates or conditions specific to the obese group influ-
ence this switch of propionate producers. The mechanism
behind this phenomenon will need to be further studied.
Additional mechanisms involving perturbation of the
intestinal microbiota and changes in intestinal permeability
as potential triggers of inflammation contribute to the risk of



Yun et al. BMC Microbiology (2017) 17:151

obesity and associated diseases [5]. A reduced abundance of
Akkermansia may reflect a thin mucus layer and thus an im-
paired gut barrier function with increased translocation of
pro-inflammatory bacterial toxins that potentially lead to
metabolic disturbances [32]. Lately, Akkermansia was pro-
posed to increase body thermogenesis and energy expend-
iture in cold temperatures [39]. One longitudinal study
showed that successful weight reduction in obese human in-
dividuals is accompanied by increased Akkermansia numbers
in feces [40]. A significant negative correlation of Akkerman-
sia in the obese group was a consistent feature in our results
as well. Thus, this microbe would need to be considered in
relation with obesity in future studies.

Eggerthella and Adlercreutzia in the Coriobacteriia
group within Actinobacteria have been repeatedly linked to
positive effects in host lipid metabolism and involved in the
stimulation of a major hepatic detoxification activity [41].
In addition, these strains have been shown to play a role in
the transformation from soy compound to equol, which
has higher binding affinity to human estrogen receptors
and induces transcription more strongly than any other
isoflavone [42]. Our results showed the negative correlation
of Eggerthella with overweight and obese groups compared
to the normal group, but the negative correlation was not
significant when adjustment was made for carbohydrate in-
take. In contrast, the increase of Adlercreutzia was signifi-
cantly correlated with the obese group compared with the
overweight group and was not influenced by any nutrients.
It can be speculated that Adlercreutzia may be replaced in
the same niche as Eggerthella, but the meaning of this
exchange in the obese group will need further study.

We have several limitations from 16S amplicon-based
sequencing data which can introduce biases through
PCR amplification steps, and resolute only genus level as
a maximum [43]. Another limitation of our study could
be that our functional approach is represented only by
using 16S rRNA gene. However, previous report showed
this phylogenetic marker gene, 16S rRNA gene, is
sufficiently linked with PICRUSt functional data, which
accuracy already reached a maximum with around 100
sequence depth of 16S sequencing [29]. Nevertheless,
further studies on the correlation between significant
bacteria and their predicted function will be required to
define the role related with obesity.

Conclusions

Although there are a lot of gut microbiota studies regarding
obesity, only recently have there been studies using large-
scale epidemiologic data with significant statistical power
and long-term diet confounding factors. The results of this
study will contribute to establishment of a consistent theory
on the extent of the influence of intestinal microbiota on
obesity. The expectation is that a huge dataset affords the
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new possibility to discover a novel microbial component
with impact on the human health.
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